Scientific Computing Ill. High
Performance Scientific Computing
(Phys 2109/Ast 3100H)

Lecture 8: Hybrid OpenMP/MPI Programming

SciNet HPC Consortium, University of Toronto

Winter 2013

Scilet

Shared and distributed memory

Modern clusters have a hybrid architecture.

» Multicore machines linked
together with an
interconnect

» Machines with GPU or
other coprocessors: GPU is
multi-core, but the amount
of shared memory is limited.

‘W
B HE B
‘W

i B

Scilet

MPI vs OpenMP

We have OpenMP for shared memory programming.

We have MPI to program distributed memory machines

model ‘ memory ‘ latency ‘ mem.overhead ‘ scalable ‘ incremental
OpenMP | shared mem | low low limited | yes
MPI distributed | high(er) | higher yes no

» Could we have the best of both worlds?

Scilet

MPI and OpenMP

Hybrid programming model of using MPI and OpenMP:

MPI across nodes
OpenMP within nodes

v

v

» Minimizes communication
Scalable

Not much more complicated than pure MPI

v

v

Scilet

Hybrid Programming

Pros

» No decomposition on node
> Lower latency, less communication
» Less duplication of data (and perhaps computation)

» OpenMP has load balance capabilities

Cons

» One more layer to maintain
» OpenMP has more hidden side effects
» May have to worry about NUMA (later)

Scilet

Hybrid Programming

Example

#include <mpi.h>

#include <omp.h>

#include <iostream>

int main(int argc, char **x argv)

{
int size,rank;
MPI_Init(&argc,&argv);
MPI_Comm_get_rank (MPI_COMM_WORLD, &rank) ;
MPI_Comm_get_size (MPI_COMM_WORLD,&size) ;
#pragma omp parallel for
for (int i=0;i<4;i++)

std::cout << "Hello world from thread "

MPI_Finalize();
}

<< omp_get_thread num() << std:

:endl;

Scilet

’ compute ca\cu\

Hybrid Programming

OMP_NUM THREADS

T~

N processes

» Memory shared among threads of same process

» Memory not shared among threads of different processes :
Scillet

Hybrid Programming

> Note: OpenMP inside MPI
» Often, one starts with an MPI code and adds in OpenMP.

» Compilation:
mpicxx -fopenmp [filename] -o [executable]

» Run:
export OMP_NUM_THREADS=M
mpirun -np N [executable]

» This starts N processes

» Between MPI_Init and MPI_Finalize, each process spawns
OMP_NUM_THREADS threads in #pragma omp parallel
blocks.

cSGﬁ\let

AAAAAA

Thread Safety

» Some implementations are limited and do not have support
for MPI calls within OpenMP parallel blocks

» Thus, may need to do MPI in serial regions

» Not necessarily bad:

Less communication channels

Bigger messages SGHVet

MPI_Init_thread

.is an MPI_Init replacement that can check for thread support of
the MPI implementation.

int MPI_Init_thread(int *argc, char **xargv,
int required,
int *provided);

required and *provided can take values:

MPI_THREAD SINGLE Only 1 thread will execute.
MPI_THREAD FUNNELED 1 thread calls MPI.
MPI_THREAD_SERIALIZED 1 thread calls MPI at one time.
MPI_THREAD MULTIPLE Multiple threads may call MPI at once

Scilet

) compute ca\cu\

Hybrid Programming

Example

#include <mpi.h>
#include <omp.h>
#include <iostream>
int main(int argc, char **x argv)
{
int size,rank,thread;
MPI_Init_thread(&argc,&argv,MPI_THREAD _FUNNELED,&thread) ;
if (thread>=MPI_THREAD FUNNELED) {
MPI_Comm get_rank (MPI_COMM_WORLD,&rank) ;
MPI_Comm_get_size (MPI_COMM_WORLD,&size) ;
#pragma omp parallel for
for (int i=0;i<4;i++)
std::cout << "Hello world from thread "
<< omp_get_thread num() << std::endl;
}
MPI Finalize();
}

et
(’ comeukthe; Ei\cu\

Common useful cases

>

Memory bound applications

- each mpi process is a full application
- openmp requires less memory

To fit NUMA (later)

Overlap comm/comp

- 1 thread for communication

- rest for work

(Seﬁ\let

AAAAAAA

Common useful cases

» Overlap 10/comp
- 1 thread for 10
- rest for work

AN

N

Scilet

Shared Memory: NUMA

NUMA = Non-Uniform Memory Access

» Multiple cores, but often
multiple sockets.

» Each socket may have some
memory nearby, but can
also access the memory of
the other socket, at a
slower rate.
» Each core typically has -

some memory/cache of its
own.

» Memory locality matters
even on a node.

SciNet

) compute ca\cul

Affinity

Where do processes, threads and memory go?
» Operating system distributes threads and processes over cores,
and may migrate them from one core to another.

» Typically, one would want the threads of a process to be on
the same core (but not always).

» One would want the memory used by a thread to be close to
the core on which it runs.

» In Linux, memory is not physically allocated until used.
» Memory is owned by the first thread that uses it: 'first access'.

» Data initialized in a serial section may be 'far’ for some
threads.

On most systems, these defaults make sense.

(Seﬁ\let

AAAAAAA

Tuning the process/thread affinity

Process/thread affinity:

» Command-line tools like numactl.
» Calls to sched setaffinity.

> Flags to mpirun.
E.g. OpenMPI has -bind-to-core and -bind-to-socket.

» OMP_PROC_BIND=true and implementation specific environment
variables.

This does prevent the OS from load balancing.
Not an issue if you're using all resources of a node.

cSGH\let

AAAAAA

Tuning the memory affinity

» If a process does not get migrated by OS, memory will remain
close to process.

» For threads, in coding, use thread-local variables if you can.
(sometimes copying into a thread-local variable can help)

» When a part of the data is mainly used by a specific thread,
initialize it in that thread (i.e. not in a serial section).

cSGﬁ\let

AAAAAA

Homework

» Take the diffusion code of last week's homework and add
OpenMP to the loops that you expect do most of the
computational work.

» Analyze your code’s scaling on a single GPC node, by timing
64 cases, varying both OMP_NUM_THREADS and the
number of MPI processes from 1 to 8.

» Plot the result and explain what you see.

» Try this on a pair of GPC nodes as well. Let
OMP_NUM_THREADS take values 1,2,4,8, while adjusting
the number of mpi processes to 16/OMP_NUM_THREADS.

» Plot the timing results and explain what you see.

» Email code, makefile, git log, plots, together with the
explanations in a file called explain.txt, by Tuesday April 23.

Scilet

