
Getting computing into the classroom:
building a cluster

Erik Spence

SciNet HPC Consortium

2 April 2015

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 1 / 31

Today’s class

High Performance Computing (HPC) involves parallel programming. This
is SciNet’s specialty.

The plan for today:

Introduce distributed-memory clusters.

Introduce a cluster that you can create in your own classroom.

Introduce some basic parallel programming.

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 2 / 31

Distributed Memory: Clusters

Clusters are among the simplest
types of parallel computer to build:

Take existing powerful
standalone computers,

and network them.

Easy to build and easy to
expand.

This is what we’ve done with
some of the computers in this
lab.

(source: http://flickr.com/photos/eurleif)

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 3 / 31

Today’s cluster
What about this cluster?

The cluster is based on BCCD
(Bootable Cluster CD).

The computers boot off of a
CD, DVD, USB stick, or in
this case, inside a virtual
machine.

The cluster is automatically
created, with nodes given the
means to communicate with
each other.

In theory this can be done on
top of a classroom’s existing
network. In practise I have
never gotten this to work.

‘

Test to see if it’ll work for
your classroom. If it doesn’t,
another solution is to separate
the computers from the school
network using a hub.

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 4 / 31

BCCD

The BCCD cluster has been specifically developed for educational
purposes.

It comes with various parallel-programming approaches built in (MPI,
OpenMP, CUDA).

It comes with various software packages built-in, to learn parallel
programming.

I Monte Carlo simulation of a game of darts (Parameter-space).
I Cellular Automata (Game of LIfe).
I Area under the curve.
I N-body gravitational calculations (GalaxSee).
I Introductory CUDA programming examples.
I And many others.

Because it’s built on Debian Linux, it’s not too difficult to expand.

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 5 / 31

Setting up our cluster
bccd@node000:~$ pwd

/home/bccd

bccd@node000:~$ bccd-snarfhosts

bccd@node000:~$ ls
Area-under-curve GalaxSee-v2 Pandemic Templates

BW-Modules HPL-benchmark Parameter-space Tests

CUDA Hello-world Pictures Tree-sort

Desktop Life Public Videos

Documents Makefile Readme btdevices

Downloads Molecular-dynamics Sieve machines-openmpi

GalaxSee Music StatKit

bccd@node000:~$ cat machines-openmpi

node011.bccd.net slots=2

node010.bccd.net slots=2

node009.bccd.net slots=2

node000.bccd.net slots=2

bccd@node000:~$

bccd-snarfhosts sets up the list of other computers on the
network that you will be allowed to use.

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 6 / 31

We’ll start on our own machines
By default your code will run on the computers (’nodes’) in the order they
are listed in your machines-openmpi file. We want to run on our own
machines first. I’ve written a script that will modify your
machines-openmpi file, and create a new file called ’mefirst’.

bccd@node000:~$ cat machines-openmpi

node011.bccd.net slots=2

node010.bccd.net slots=2

node009.bccd.net slots=2

node000.bccd.net slots=2

bccd@node000:~$ bin/make me first.sh

bccd@node000:~$ cat mefirst

node000.bccd.net slots=2

node011.bccd.net slots=2

node010.bccd.net slots=2

node009.bccd.net slots=2

We can now indicate to use our own machine first.

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 7 / 31

Setting up our cluster, continued

bccd@node000:~$ ls -F
Area-under-curve/ GalaxSee/ Music/ StatKit/

BW-Modules/ GalaxSee-v2/ Pandemic/ Templates/

CUDA/ HPC-class/ HPL-benchmark/ Tests/

Desktop/ Hello-world/ Pictures/ Tree-sort/

Documents/ Life/ Public/ Videos/

Downloads/ Makefile Readme btdevices

Molecular-dynamics/ Sieve/ machines-openmpi mefirst

bccd@node000:~$ cd HPC-class

bccd@node000:~/HPC-class$ ls

bccd@node000:~/HPC-class$ mkdir Dr.S

bccd@node000:~/HPC-class$ cd Dr.S

bccd@node000:~/HPC-class/Dr.S$ ~/bin/setupMyDirectory.sh
bccd@node000:~/HPC-class/Dr.S$

Whatever you call your directory, make sure that it’s unique. If it’s not
you’ll end up conflicting with other computers on the network.

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 8 / 31

~
~
~
~
~
~

Distributed Memory: Clusters

Each processor core is
independent! Programs run on
separate processors,
communicating with each other
when necessary.

Each processor has its own
memory! (Or we should assume
so.) Whenever it needs data
from another processor, that
processor needs to send it.

All communication between
processors must be hand-coded.

MPI programming is used in
this scenario.

~ ~
~

~

n n
n

n

CPU1

CPU2

CPU3

CPU4

�
�
�
�
�
�
�
�
�
�
�
���

�
��

�*

6

�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
��

���
��

?

�
�
�

�	

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 9 / 31

Distributed Memory: Clusters

Each processor core is
independent! Programs run on
separate processors,
communicating with each other
when necessary.

Each processor has its own
memory! (Or we should assume
so.) Whenever it needs data
from another processor, that
processor needs to send it.

All communication between
processors must be hand-coded.

MPI programming is used in
this scenario.

~ ~
~

~

n n
n

n

CPU1

CPU2

CPU3

CPU4

�
�
�
�
�
�
�
�
�
�
�
���

�
��

�*

6

�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
��

���
��

?

�
�
�

�	

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 9 / 31

How does MPI programming work?

MPI = Message Passing Interface.

When an MPI job is started, each processor gets the same code to run.
Each processor is assigned a unique processor number by the program that
launches the MPI job. The steps in the code are, in general:

1 Start the MPI session.

2 Find out how many processors are part of the job.

3 Find out which processor you are.

4 Do your work, doing different things depending upon which processor
you are.

5 Close the MPI session.

After this, carry on as usual, but remember that you are part of a larger
job...

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 10 / 31

Our first MPI program

bccd@node000:~/HPC-class/Dr.S$ pwd

/home/bccd/HPC-class/Dr.S

bccd@node000:~/HPC-class/Dr.S$ ls

bccd@node000:~/HPC-class/Dr.S$ emacs

firstMPI.py &

bccd@node000:~/HPC-class/Dr.S$

Emacs is a text editor. You may use
any text editor you prefer.

The & is needed to push the process
into the background, otherwise you
lose control over the command line
until emacs is finished.

\ is a line continuation symbol. You
don’t need it if you write the
command as one line.

firstMPI.py

import pypar

The ’size’ is the number of

processors

numprocs = pypar.size()

’rank’ is the processor number

myid = pypar.rank()

Some implementations will let

you have the processor name

node = pypar.get processor name()

print "Hello from processor", \
myid, "of", numprocs, \
"on node", node

pypar.finalize()

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 11 / 31

~
~
~
~

Our first MPI program, continued

Import the pypar module.
This initiates the MPI
session.

Find out how many
processors there are.

Find out which processor I
am.

Close the MPI session.

��
���:

-

-

@
@
@
@
@
@
@
@R

firstMPI.py

import pypar

The ’size’ is the number of

processors

numprocs = pypar.size()

The ’rank’ is the processor number

myid = pypar.rank()

Some implementations will let

you have the processor name

node = pypar.get processor name()

print "Greetings from processor", \
myid, "of", numprocs, "on node", \
node

pypar.finalize()

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 12 / 31

What does it output?

So what happens when we run it?

bccd@node000:~/HPC-class/Dr.S$
bccd@node000:~/HPC-class/Dr.S$ python firstMPI.py

Pypar (version 2.1.5) initialised MPI OK with 1 processors

Greetings from processor 0 of 1 on node node000.bccd.net

bccd@node000:~/HPC-class/Dr.S$

Not bad, but that’s just one processor. How do we run with multiple
processors?

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 13 / 31

~
~
~

Running on multiple processors

We use the ”mpirun” command to run on more than one processor.

bccd@node000:~/HPC-class/Dr.S$ mpirun -np 2 -machinefile ~/mefirst
python firstMPI.py

Pypar (version 2.1.5) initialised MPI OK with 2 processors

Greetings from processor 0 of 2 on node node000.bccd.net

Greetings from processor 1 of 2 on node node000.bccd.net

bccd@node000:~/HPC-class/Dr.S$

mpirun -np 3 -machinefile ~/mefirst
python firstMPI.py

Pypar (version 2.1.5) initialised MPI OK with 3 processors

Greetings from processor 0 of 3 on node node000.bccd.net

Warning: Permanently added ’node009’ (RSA) to the list of known hosts.

Greetings from processor 2 of 3 on node node009.bccd.net

Greetings from processor 1 of 3 on node node000.bccd.net

Note that the first time you run on a new node you will get a warning
message letting you know that you are connecting to that node
for the first time.

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 14 / 31

~
~
~
~

Running on multiple processors

We use the ”mpirun” command to run on more than one processor.

bccd@node000:~/HPC-class/Dr.S$ mpirun -np 2 -machinefile ~/mefirst
python firstMPI.py

Pypar (version 2.1.5) initialised MPI OK with 2 processors

Greetings from processor 0 of 2 on node node000.bccd.net

Greetings from processor 1 of 2 on node node000.bccd.net

bccd@node000:~/HPC-class/Dr.S$ mpirun -np 3 -machinefile ~/mefirst
python firstMPI.py

Pypar (version 2.1.5) initialised MPI OK with 3 processors

Greetings from processor 0 of 3 on node node000.bccd.net

Warning: Permanently added ’node009’ (RSA) to the list of known hosts.

Greetings from processor 2 of 3 on node node009.bccd.net

Greetings from processor 1 of 3 on node node000.bccd.net

Note that the first time you run on a new node you will get a warning
message letting you know that you are connecting to that node
for the first time.

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 14 / 31

~
~
~
~

What is happening?

bccd@node000:~/HPC-class/Dr.S$ mpirun -np 2 -machinefile ~/mefirst
python firstMPI.py

Pypar (version 2.1.5) initialised MPI OK with 2 processors

Greetings from processor 0 of 2 on node node000.bccd.net

Greetings from processor 1 of 2 on node node000.bccd.net

bccd@node000:~/HPC-class/Dr.S$

The command mpirun -np 2 launches the command ’python firstMPI.py’ on
2 processors. The argument -machinefile indicates the file containing the
list of nodes to use, in this case ~/mefirst.

bccd@node000:~/HPC-class/Dr.S$ cat ~/mefirst
node000.bccd.net slots=2

node009.bccd.net slots=2

node011.bccd.net slots=2

node010.bccd.net slots=2

bccd@node000:~/HPC-class/Dr.S$

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 15 / 31

~
~
~
~
~
~
~

Why does it work?
Why did running ”off-node” work at all?

There’s another problem. How did mpirun on the other machines
know what code to run?

Did you put the code on the other machines? If not, you likely got a
”file not found” error.

I’ve written a script that will copy your code to the other nodes.

Run this script every time you edit your code and wish to run on
nodes other than your own.

bccd@node000:~/HPC-class/Dr.S$
bccd@node000:~/HPC-class/Dr.S$ ~/bin/rsyncMyFiles.sh
Syncing files to node009

Syncing files to node011

Syncing files to node010

bccd@node000:~/HPC-class/Dr.S$

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 16 / 31

~
~
~
~

Sending messages
secondMPI.py

import pypar

myid = pypar.rank() # This var. is the only difference between processors.

numprocs = pypar.size()

msg = myid * 2

Where I’m sending my message, and from whom I’m receiving a message.

sendto = (myid + 1)

recvfrom = (myid - 1)

if (sendto == numprocs): sendto = 0

if (recvfrom == -1): recvfrom = numprocs - 1

print "Processor", myid, "is sending a message to Processor", sendto

pypar.send(msg, sendto)

msg2 = pypar.receive(recvfrom)

print "Proc.", myid, "recieved the message", msg2, "from Proc.", recvfrom

pypar.finalize()

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 17 / 31

What does the output look like?

bccd@node000:~/HPC-class/Dr.S$ ~/bin/rsyncMyFiles.sh
bccd@node000:~/HPC-class/Dr.S$
bccd@node000:~/HPC-class/Dr.S$ mpirun -np 5 -machinefile ~/mefirst
python secondMPI.py

Proc. 1 is sending a message to Proc. 2

Pypar (version 2.1.5) initialised MPI OK with 5 processors

Warning: Permanently added ’node011’ (RSA) to the list of known hosts.

Processor 0 is sending a message to Processor 1

Processor 2 is sending a message to Processor 3

Processor 3 is sending a message to Processor 4

Processor 4 is sending a message to Processor 0

Proc. 3 has received message 4 from Proc. 2

Proc. 1 has received message 0 from Proc. 0

Proc. 2 has received message 2 from Proc. 1

Proc. 0 has received message 8 from Proc. 4

Proc. 4 has received message 6 from Proc. 3

bccd@node000:~/HPC-class/Dr.S$

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 18 / 31

~
~
~
~
~
~

The area-under-a-curve problem
Suppose you have a curve.
How about
y = 0.7x3 − 2x2 + 4?

And suppose you want the
area under the curve,
between 0.0 and 3.0.

Who cares? Well, it actually
shows up all the time in
scientific calculations.

Easy! Just use calculus!

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
x

0

1

2

3

4

5

6

y

area =
∫ 3

0

(
0.7x3 − 2x2 + 4

)
dx

=
[
0.7

4
x4 −

2

3
x3 + 4x

]3
0

= 8.175

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 19 / 31

The area-under-a-curve problem
Suppose you have a curve.
How about
y = 0.7x3 − 2x2 + 4?

And suppose you want the
area under the curve,
between 0.0 and 3.0.

Who cares? Well, it actually
shows up all the time in
scientific calculations.

Easy! Just use calculus!

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
x

0

1

2

3

4

5

6

y

area =
∫ 3

0

(
0.7x3 − 2x2 + 4

)
dx

=
[
0.7

4
x4 −

2

3
x3 + 4x

]3
0

= 8.175

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 19 / 31

The area-under-a-curve problem
Suppose you have a curve.
How about
y = 0.7x3 − 2x2 + 4?

And suppose you want the
area under the curve,
between 0.0 and 3.0.

Who cares? Well, it actually
shows up all the time in
scientific calculations.

Easy! Just use calculus!

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
x

0

1

2

3

4

5

6

y

area =
∫ 3

0

(
0.7x3 − 2x2 + 4

)
dx

=
[
0.7

4
x4 −

2

3
x3 + 4x

]3
0

= 8.175

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 19 / 31

The area-under-a-curve problem
Suppose you have a curve.
How about
y = 0.7x3 − 2x2 + 4?

And suppose you want the
area under the curve,
between 0.0 and 3.0.

Who cares? Well, it actually
shows up all the time in
scientific calculations.

Easy! Just use calculus!
0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

x
0

1

2

3

4

5

6

y

area =
∫ 3

0

(
0.7x3 − 2x2 + 4

)
dx

=
[
0.7

4
x4 −

2

3
x3 + 4x

]3
0

= 8.175
Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 19 / 31

Area under a curve, continued

However, it’s only easy to do
with calculus if you CAN do
it with calculus. This isn’t
always the case.

Instead, let’s approximate
the area under the curve
using a Riemann sum.

area =
n−1∑
i=0

y(xi)∆x

This means chopping up the
range 0 ≤ x ≤ 3 into n
chunks and summing over
the area of the rectangles.

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
x

0

1

2

3

4

5

6

y

∆x

y(xi)

?

xi

y = 0.7x3 − 2x2 + 4

correct area = 8.175

this area = 8.09175

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 20 / 31

Area under a curve, continued

However, it’s only easy to do
with calculus if you CAN do
it with calculus. This isn’t
always the case.

Instead, let’s approximate
the area under the curve
using a Riemann sum.

area =
n−1∑
i=0

y(xi)∆x

This means chopping up the
range 0 ≤ x ≤ 3 into n
chunks and summing over
the area of the rectangles.

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
x

0

1

2

3

4

5

6

y

∆x

y(xi)

?

xi

y = 0.7x3 − 2x2 + 4

correct area = 8.175

this area = 8.09175

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 20 / 31

Area under a curve, continued

However, it’s only easy to do
with calculus if you CAN do
it with calculus. This isn’t
always the case.

Instead, let’s approximate
the area under the curve
using a Riemann sum.

area =
n−1∑
i=0

y(xi)∆x

This means chopping up the
range 0 ≤ x ≤ 3 into n
chunks and summing over
the area of the rectangles.

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
x

0

1

2

3

4

5

6

y
∆x

y(xi)

?

xi

y = 0.7x3 − 2x2 + 4

correct area = 8.175

this area = 8.09175

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 20 / 31

Area under a curve, continued

As the number of bars
increases, the accuracy of the
estimate improves.

y = 0.7x3 − 2x2 + 4

correct area = 8.175

area, 10 bars = 8.09175

area, 30 bars = 8.13575

area, 100 bars = 8.1620175

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
x

0

1

2

3

4

5

6

y

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 21 / 31

Area under a curve, continued

As the number of bars
increases, the accuracy of the
estimate improves.

y = 0.7x3 − 2x2 + 4

correct area = 8.175

area, 10 bars = 8.09175

area, 30 bars = 8.13575

area, 100 bars = 8.1620175

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
x

0

1

2

3

4

5

6

y

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 21 / 31

Area under a curve, continued

As the number of bars
increases, the accuracy of the
estimate improves.

y = 0.7x3 − 2x2 + 4

correct area = 8.175

area, 10 bars = 8.09175

area, 30 bars = 8.13575

area, 100 bars = 8.1620175
0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

x
0

1

2

3

4

5

6

y

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 21 / 31

The serial version

At the right is a code which
calculates the area. It takes an
optional command-line argument for
the number of bars.

bccd@node000:~/HPC-class/Dr.S$
python AUC.serial.py

The area is 8.09175

bccd@node000:~/HPC-class/Dr.S$
python AUC.serial.py 100

The area is 8.1620175

bccd@node000:~/HPC-class/Dr.S$

It works!

AUC.serial.py

import sys

Get the n from the command line.

if (len(sys.argv) == 2):

n = int(sys.argv[1])

else: n = 10

area = 0.0

x = 0.0

dx = 3.0 / n

for i in range(n):

y = 0.7 * x**3 - 2 * x**2 + 4

area = area + y * dx

x = x + dx

print "The area is", area

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 22 / 31

~
~
~

Parallelizing your code

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
x

0

1

2

3

4

5

6

y

0 1 2 3

Suppose that n = 20.

AUC.serial.py

import sys

Get the n from the command line.

if (len(sys.argv) == 2):

n = int(sys.argv[1])

else: n = 10

area = 0.0

x = 0.0

dx = 3.0 / n

for i in range(n):

y = 0.7 * x**3 - 2 * x**2 + 4

area = area + y * dx

x = x + dx

print "The area is", area

����)

Different for each proc.

Needs to change.��9

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 23 / 31

Parallelizing your code

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
x

0

1

2

3

4

5

6

y

0 1 2 3

Suppose that n = 20.

AUC.serial.py

import sys

Get the n from the command line.

if (len(sys.argv) == 2):

n = int(sys.argv[1])

else: n = 10

area = 0.0

x = 0.0

dx = 3.0 / n

for i in range(n):

y = 0.7 * x**3 - 2 * x**2 + 4

area = area + y * dx

x = x + dx

print "The area is", area

����)

Different for each proc.

Needs to change.��9

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 23 / 31

Parallelizing your code, continued

How would you parallelize this?

1 Break the x axis up into
numprocs pieces, and have each
processor work on its piece.
Each processor gets:

I Its own starting value of x.
I Its own number of bars to

work on.

2 Once each processor has
calculated its part of the
answer, send the totals back to
processor number 0.

3 Have processor 0 sum the
sub-answers and print out the
answer.

AUC.serial.py

import sys

Get the n from the command line.

if (len(sys.argv) == 2):

n = int(sys.argv[1])

else: n = 10

area = 0.0

x = 0.0

dx = 3.0 / n

for i in range(n):

y = 0.7 * x**3 - 2 * x**2 + 4

area = area + y * dx

x = x + dx

print "The area is", area

����)

Different for each proc.

�
�
�
��

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 24 / 31

Parallelizing your code, continued

How would you parallelize this?

1 Break the x axis up into
numprocs pieces, and have each
processor work on its piece.
Each processor gets:

I Its own starting value of x.
I Its own number of bars to

work on.

2 Once each processor has
calculated its part of the
answer, send the totals back to
processor number 0.

3 Have processor 0 sum the
sub-answers and print out the
answer.

AUC.serial.py

import sys

Get the n from the command line.

if (len(sys.argv) == 2):

n = int(sys.argv[1])

else: n = 10

area = 0.0

x = 0.0

dx = 3.0 / n

for i in range(n):

y = 0.7 * x**3 - 2 * x**2 + 4

area = area + y * dx

x = x + dx

print "The area is", area

����)

Different for each proc.

�
�
�
��

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 24 / 31

Parallelizing your code, continued

How would you parallelize this?

1 Break the x axis up into
numprocs pieces, and have each
processor work on its piece.
Each processor gets:

I Its own starting value of x.
I Its own number of bars to

work on.

2 Once each processor has
calculated its part of the
answer, send the totals back to
processor number 0.

3 Have processor 0 sum the
sub-answers and print out the
answer.

AUC.serial.py

import sys

Get the n from the command line.

if (len(sys.argv) == 2):

n = int(sys.argv[1])

else: n = 10

area = 0.0

x = 0.0

dx = 3.0 / n

for i in range(n):

y = 0.7 * x**3 - 2 * x**2 + 4

area = area + y * dx

x = x + dx

print "The area is", area

����)

Different for each proc.

�
�
�
��

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 24 / 31

Your parallel code
AUC.parallel.py

import pypar, sys

from numpy import zeros

numprocs = pypar.size()

myid = pypar.rank()

Holds the sub-answers.

answer = zeros(numprocs)

Get the n from the command line.

if (len(sys.argv) == 2):

n = int(sys.argv[1])

else: n = 10

dx = 3.0 / n # Width of each bar.

area = 0.0

My starting x value.

x = myid * 3.0 / numprocs

Number of bars for each processor.

numbars = n / numprocs

Each proc. just works on numbars.

for i in range(numbars):

y = 0.7 * x**3 - 2 * x**2 + 4

area = area + y * dx

x = x + dx

if (myid != 0): pypar.send(area, 0)

if (myid == 0):

answer[0] = area

for i in range(1, numprocs):

answer[i] = pypar.receive(i)

print "The area is", sum(answer)

pypar.finalize()

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 25 / 31

What’s the output?
bccd@node000:~/HPC-class/Dr.S$ ~/bin/rsyncMyFiles.sh
bccd@node000:~/HPC-class/Dr.S$ mpirun -np 2 -machinefile ~/mefirst
python AUC.parallel.py

Pypar (version 2.1.5) initialised MPI OK with 2 processors

The area is 8.09175

bccd@node000:~/HPC-class/Dr.S$

mpirun -np 2 -machinefile ~/mefirst
python AUC.parallel.py 100

Pypar (version 2.1.5) initialised MPI OK with 2 processors

The area is 8.1620175

bccd@node000:~/HPC-class/Dr.S$ time mpirun -np 2 -machinefile ~/mefirst
python AUC.parallel.py 100

Pypar (version 2.1.5) initialised MPI OK with 2 processors

The area is 8.1620175

real 0m1.154s

user 0m0.156s

sys 0m0.072s

bccd@node000:~/HPC-class/Dr.S$

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 26 / 31

~
~
~
~
~
~
~
~
~

What’s the output?
bccd@node000:~/HPC-class/Dr.S$ ~/bin/rsyncMyFiles.sh
bccd@node000:~/HPC-class/Dr.S$ mpirun -np 2 -machinefile ~/mefirst
python AUC.parallel.py

Pypar (version 2.1.5) initialised MPI OK with 2 processors

The area is 8.09175

bccd@node000:~/HPC-class/Dr.S$ mpirun -np 2 -machinefile ~/mefirst
python AUC.parallel.py 100

Pypar (version 2.1.5) initialised MPI OK with 2 processors

The area is 8.1620175

bccd@node000:~/HPC-class/Dr.S$

time mpirun -np 2 -machinefile ~/mefirst
python AUC.parallel.py 100

Pypar (version 2.1.5) initialised MPI OK with 2 processors

The area is 8.1620175

real 0m1.154s

user 0m0.156s

sys 0m0.072s

bccd@node000:~/HPC-class/Dr.S$

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 26 / 31

~
~
~
~
~
~
~
~
~

What’s the output?
bccd@node000:~/HPC-class/Dr.S$ ~/bin/rsyncMyFiles.sh
bccd@node000:~/HPC-class/Dr.S$ mpirun -np 2 -machinefile ~/mefirst
python AUC.parallel.py

Pypar (version 2.1.5) initialised MPI OK with 2 processors

The area is 8.09175

bccd@node000:~/HPC-class/Dr.S$ mpirun -np 2 -machinefile ~/mefirst
python AUC.parallel.py 100

Pypar (version 2.1.5) initialised MPI OK with 2 processors

The area is 8.1620175

bccd@node000:~/HPC-class/Dr.S$ time mpirun -np 2 -machinefile ~/mefirst
python AUC.parallel.py 100

Pypar (version 2.1.5) initialised MPI OK with 2 processors

The area is 8.1620175

real 0m1.154s

user 0m0.156s

sys 0m0.072s

bccd@node000:~/HPC-class/Dr.S$

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 26 / 31

~
~
~
~
~
~
~
~
~

Scaling study

We are going to perform a scaling study on the parallel
area-under-the-curve code. What’s a scaling study?

A scaling study examines how much faster a code becomes as you
add more and more processors. It answers the question: ”how does
the code scale?”.

Perfect scaling means that if you double the number of processors
your code runs twice as fast.

This is rare, due to the serial portions of the code.

Such studies are performed on all codes used on high-performance
systems, to make sure that resources are being used efficiently.

This is a good exercise for students, to examine the utility of parallel
coding.

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 27 / 31

Scaling study
We are going to perform a scaling study using the ’time’ command.

bccd@node000:~/HPC-class/Dr.S$ time mpirun -np 1 -machinefile ~/mefirst
python AUC.parallel args.py 20000000

Pypar (version 2.1.5) initialised MPI OK with 1 processors

The area is [8.17499993]

real 0m20.979s

user 0m20.617s

sys 0m0.348s

bccd@node000:~/HPC-class/Dr.S$ time mpirun -np 2 -machinefile ~/mefirst
python AUC.parallel args.py 20000000

Pypar (version 2.1.5) initialised MPI OK with 2 processors

The area is [8.17499993]

real 0m11.827s

user 0m21.005s

sys 0m0.472s

bccd@node000:~/HPC-class/Dr.S$

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 28 / 31

~
~
~
~
~

Plotting in Python

If you’ve never plotted in python
you can use the code to the right
as an example of what to do.

bccd@node000:~/HPC-class/Dr.S$
python my scaling plot.py

bccd@node000:~/HPC-class/Dr.S$ ^C
bccd@node000:~/HPC-class/Dr.S$

Note that by running this code you
lose control over the terminal. You
either need to type Ctrl-C (^C), or
just close the figure window with
the mouse.

my scaling plot.py

from matplotlib import pylab as p

numprocs = [1, 2, 4, 5, 8, 10, 16,

20, 25, 32, 40]

data = [23.42, 11.85, 6.09, 4.98,

3.3, 2.77, 1.97, 1.7, 1.5, 1.36,

1.29]

p.plot(procs, data, ’-o’)

p.xlabel("Number of processors")

p.ylabel("Time [s]")

p.show()

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 29 / 31

~
~
^
~
^

Scaling plot

0 10 20 30 40 50
Number of processors

0

5

10

15

20

25
T
im

e
 [

s]

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 30 / 31

Speedup plot

0 10 20 30 40 50
Number of processors

0

2

4

6

8

10

12

14

16

18
se

ri
a
l
ti

m
e
 /

 p
a
ra

lle
l
ti

m
e

Erik Spence (SciNet HPC Consortium) MPI Cluster 2 April 2015 31 / 31

	Distributed Memory Clusters
	BCCD
	Setting up

	MPI Programming
	Our first MPI program
	Our second MPI program

	Area under a curve
	Riemann sums
	Scaling study
	Plotting in python

