
Profiling and Tuning
SciNet TechTalk, December SciNet Users Group 

Meeting



How to improve 
Performance?

• Can’t improve what 
you don’t measure

• Have to be able to 
quantify where your 
problem spends its 
time.

Measure

Find 
bottlenecks

Make 
improvements



Make 
improvements

How to improve 
Performance?

• Can’t improve what 
you don’t measure

• Have to be able to 
quantify where your 
problem spends its 
time.

Measure

Find 
bottlenecks

Profiling

Make
change

Measure Better?

Yes

No



How to improve 
Performance?

• Can’t improve what 
you don’t measure

• Have to be able to 
quantify where your 
problem spends its 
time.

Measure

Find 
bottlenecks

Make 
improvements



How to improve 
Performance?

• Can’t improve what 
you don’t measure

• Have to be able to 
quantify where your 
problem spends its 
time.

Measure

Find 
bottlenecks

Make 
improvements

Profiling



How to improve 
Performance?

• Can’t improve what 
you don’t measure

• Have to be able to 
quantify where your 
problem spends its 
time.

Measure

Find 
bottlenecks

Make 
improvements

Profiling

Tuning



Profiling Tools
• Here we’ll focus 

on profiling.
• Tuning - each 

problem might 
have different sorts 
of performance 
problem

• Tools are general
• Range of tools on 

GPC



Profiling A Code

• Where in your program 
is time being spent?

• Find the expensive 
parts
• Don’t waste time 

optimizing parts that 
don’t matter

• Find bottlenecks.



Profiling A Code

• Timing vs. Sampling vs. 
Tracing 

• Instrumenting the code 
vs. Instrumentation-free



Timing whole program

• Very simple; can 
run any command, 
incl in batch job

• In serial, real = 
user+sys

• In parallel, ideally 
user = (nprocs)x 
(real)

$ time ./a.out

[ your job output ]

real    0m2.448s
user   0m2.383s
sys     0m0.027s

Elapsed 
“walltime”

System time:
Disk, I/O...

Actual user
time



Time in PBS *.o file
----------------------------------------
Begin PBS Prologue Tue Sep 14 17:14:48 EDT 2010 1284498888
Job ID:     3053514.gpc-sched
Username:   ljdursi
Group:      scinet
Nodes:      gpc-f134n009 gpc-f134n010 gpc-f134n011 gpc-f134n012
gpc-f134n043 gpc-f134n044 gpc-f134n045 gpc-f134n046 gpc-f134n047 gpc-f134n048
[...]
End PBS Prologue Tue Sep 14 17:14:50 EDT 2010 1284498890
----------------------------------------
[ Your job’s output here... ]
----------------------------------------
Begin PBS Epilogue Tue Sep 14 17:36:07 EDT 2010 1284500167
Job ID:     3053514.gpc-sched
Username:   ljdursi
Group:      scinet
Job Name:   fft_8192_procs_2048
Session:    18758
Limits:     neednodes=256:ib:ppn=8,nodes=256:ib:ppn=8,walltime=01:00:00
Resources:  cput=713:42:30,mem=3463854672kb,vmem=3759656372kb,walltime=00:21:07
Queue:      batch_ib
Account:
Nodes:  gpc-f134n009 gpc-f134n010 gpc-f134n011 gpc-f134n012 gpc-f134n043
[...]
Killing leftovers...
gpc-f141n054:   killing gpc-f141n054 12412

End PBS Epilogue Tue Sep 14 17:36:09 EDT 2010 1284500169
----------------------------------------



Can use ‘top’ on 
running jobs

$ checkjob 3802660
job 3802660

AName: GoL
State: Running 
Creds:  user:ljdursi  group:scinet  [...]
WallTime:   00:00:00 of 00:20:00
SubmitTime: Tue Dec  7 21:53:41
  (Time Queued  Total: 00:00:22  Eligible: 00:00:22)

StartTime: Tue Dec  7 21:54:03
Total Requested Tasks: 16

Req[0]  TaskCount: 16  Partition: torque  
Opsys: centos53computeA  Arch: ---  Features: compute-eth

Allocated Nodes:
[gpc-f109n001:8][gpc-f109n002:8]



gpc-f103n084-$ ssh gpc-f109n001
gpc-f109n001-$ top

More system then user time -- not very efficient.
(Idle ~50% is ok -- hyperthreading)



gpc-f103n084-$ ssh gpc-f109n001
gpc-f109n001-$ top

Also, load-balance issues; one processor under 
utilized (~70% use as vs 98.2%)



Insert timers into 
regions of code

• Instrumenting code
• Simple, but incredibly 

useful
• Runs every time your 

code is run 
• Can trivially see if 

changes make things 
better or worse

C



Insert timers into 
regions of code

• Instrumenting code
• Simple, but incredibly 

useful
• Runs every time your 

code is run 
• Can trivially see if 

changes make things 
better or worse

FORTRAN90



Matrix-Vector multiply

• Simple mat-vec multiply
• Initializes data, does 

multiply, saves result
• Look to see where it 

spends its time, speed it 
up.

• Options for how to 
access data, output 
data.

mat-vec-mult.c



Matrix-Vector multiply

• Can get an overview of 
the time spent easily, 
because we 
instrumented our code 
(~12 lines!)

• I/O huge bottleneck.

mat-vec-mult.c

$ mvm --matsize=2500

Timing summary:
 Init:  0.00952 sec
 Calc:  0.06638 sec
 I/O :  5.07121 sec



Matrix-Vector multiply

• I/O being done in ASCII 
• having to loop over 

data, convert to string, 
write to output.

• 6,252,500 write 
operations! 

• Let’s try a --binary 
option:

mat-vec-mult.c



Matrix-Vector multiply

• Let’s try a --binary 
option:

• Shorter...

mat-vec-mult.c



Binary I/O

• Much (36x!) faster.  
• And ~4x smaller.
• Still slow, but writing to 

disk is slower than a 
multiplication.

• On to Calc..

$ mvm --matsize=2500 
--binary

Timing summary:
 Init:  0.00976 sec
 Calc:  0.06695 sec
 I/O :  0.14218 sec

$ ./mvm --binary
$ du -h Mat-vec.dat
89M     Mat-vec.dat

$ ./mvm --binary
$ du -h Mat-vec.dat 
20M     Mat-vec.dat



Sampling for Profiling

• How to get finer-grained information about 
where time is being spent?

• Can’t instrument every single line.
• Compilers have tools for sampling execution 

paths.



Program Counter 
Sampling

• As program executes, 
every so often 
(~100ms) a timer goes 
off, and the current 
location of execution is 
recored

• Shows where time is 
being spent.



Program Counter 
Sampling

• Advantages:
• Very low overhead
• No extra 

instrumentation
• Disadvantages:

• Don’t know why code 
is there

• Statistics - have to 
run long enough job



gprof for sampling
$ gcc -O3 -pg -g mat-vec-mult.c --std=c99 
$ icc -O3 -pg -g mat-vec-mult.c -c99 

$ ./mvm-profile --matsize=2500
[output]
$ ls 
Makefile  Mat-vec.dat  gmon.out  
mat-vec-mult.c   mvm-profile

turn on
profiling

debugging symbols
(optional, but more info)



gprof examines 
gmon.out

$ gprof mvm-profile gmon.out  
Flat profile:

Each sample counts as 0.01 seconds.
  %   cumulative   self              self     total           
 time   seconds   seconds    calls  Ts/call  Ts/call  name    
100.24      0.41     0.41                             main
  0.00      0.41     0.00        3     0.00     0.00  tick
  0.00      0.41     0.00        3     0.00     0.00  tock
  0.00      0.41     0.00        2     0.00     0.00  alloc1d
  0.00      0.41     0.00        2     0.00     0.00  free1d
  0.00      0.41     0.00        1     0.00     0.00  alloc2d
  0.00      0.41     0.00        1     0.00     0.00  free2d
  0.00      0.41     0.00        1     0.00     0.00  get_options
[...]

Gives data by function -- usually handy, 
not so useful in this toy problem



gprof --line examines 
gmon.out by line

gpc-f103n084-$ gprof --line mvm-profile gmon.out  | more
Flat profile:

Each sample counts as 0.01 seconds.
  %   cumulative   self              self     total           
 time   seconds   seconds    calls  Ts/call  Ts/call  name    
 68.46      0.28     0.28                             main (mat-vec-mult.c:82 @ 4010d8)
 14.67      0.34     0.06                             main (mat-vec-mult.c:113 @ 40137e)
  7.33      0.37     0.03                             main (mat-vec-mult.c:63 @ 401048)
  4.89      0.39     0.02                             main (mat-vec-mult.c:112 @ 401350)
  4.89      0.41     0.02                             main (mat-vec-mult.c:113 @ 401360)
  0.00      0.41     0.00        3     0.00     0.00  tick (mat-vec-mult.c:159 @ 400d50)
  0.00      0.41     0.00        3     0.00     0.00  tock (mat-vec-mult.c:164 @ 400d00)
  0.00      0.41     0.00        2     0.00     0.00  alloc1d (mat-vec-mult.c:152 @ 400d70)
  0.00      0.41     0.00        2     0.00     0.00  free1d (mat-vec-mult.c:171 @ 400cb0)
  0.00      0.41     0.00        1     0.00     0.00  alloc2d (mat-vec-mult.c:130 @ 400da0)
  0.00      0.41     0.00        1     0.00     0.00  free2d (mat-vec-mult.c:144 @ 400cd0)
  0.00      0.41     0.00        1     0.00     0.00  get_options (mat-vec-mult.c:177 @ 
400a30)



Then can compare to 
source

• Code is spending 
most time deep in 
loops

• #1 - multiplication
• #2 - I/O (old way)

...



gprof pros/cons

• Exists everywhere
• Easy to script, put in batch jobs
• Low overhead
• Works well with multiple processes - 

thread data all gets clumped together
• 1 file per proc (good for small #s, but hard 

to compare)



Open|Speedshop

• GUI containing several different ways of doing 
performance experiments

• Includes pcsamp (like gprof - by function), 
usertime (by line of code and callgraph), I/O 
tracing, MPI tracing.

• Can run either in a sampling mode, or 
instrumenting/tracing (‘online’ mode - 
automatically instruments the binary).



Open|Speedshop



$ module load openspeedshop
$ openss
launches an experiment wizard



There are different experiments that 
you can run -- pcsamp is like gprof



It will show top functions (or 
statements) by default; double-
clicking takes to source line.





It will also let you compare 
experiments.   Here we try two ways 
of doing the matrix multiplication; the 
first (line 82) requires .06 seconds, 
the second (line 74) requires only 
0.01 -- a 6x speedup!





Cache Thrashing

• Memory bandwidth is 
key to getting good 
performance on 
modern systems

• Main Mem - big, slow
• Cache - small, fast

• Saves recent 
accesses, a line of 
data at a time Main mem

Cache

Array



Cache Thrashing

• When accessing 
memory in order, 
only one access to 
slow main mem for 
many data points

• Much faster

Main mem

Cache

Array



Cache Thrashing

• When accessing 
memory in order, 
only one access to 
slow main mem for 
many data points

• Much faster

Main mem

Cache

Array



Cache Thrashing

• When accessing 
memory in order, 
only one access to 
slow main mem for 
many data points

• Much faster

Main mem

Cache

Array



Cache Thrashing

• When accessing 
memory in order, 
only one access to 
slow main mem for 
many data points

• Much faster

Main mem

Cache

Array



Cache Thrashing

• When accessing 
memory in order, 
only one access to 
slow main mem for 
many data points

• Much faster

Main mem

Cache

Array



Cache Thrashing

• When accessing 
memory in order, 
only one access to 
slow main mem for 
many data points

• Much faster

Main mem

Cache

Array



Cache Thrashing

• When accessing 
memory out of 
order, much worse

• Each access is new 
cache line (cache 
miss)- slow access to 
main memory

Main mem

Cache

Array

x

x



Cache Thrashing

• When accessing 
memory out of 
order, much worse

• Each access is new 
cache line (cache 
miss)- slow access to 
main memory

Main mem

Cache

Array

x

x



Cache Thrashing

• When accessing 
memory out of 
order, much worse

• Each access is new 
cache line (cache 
miss)- slow access to 
main memory

Main mem

Cache

Array

x
y

y



Cache Thrashing

• When accessing 
memory out of 
order, much worse

• Each access is new 
cache line (cache 
miss)- slow access to 
main memory

Main mem

Cache

Array

x
y

y



kcachegrind viewing output of
$ module load valgrind
$ valgrind --tool=cachegrind ./mvm --matsize=2500
$ kcachegrind cachegrind.out.20275



Cache Trashing

• In C, cache-friendly 
order is to make last 
index most quickly 
varying

Good

Bad



Cache Trashing

• In Fortran, cache-
friendly order is to 
make first index 
most quickly 
varying...

• or in this case, just 
use matmul

Good

Bad



gpc-f103n084-$ export OMP_NUM_THREADS=1
gpc-f103n084-$ ./mvm-omp --matsize=2500 --transpose --binary
Timing summary:
! Init:  0.00947 sec
! Calc:  0.00811 sec
! I/O :  0.14881 sec

gpc-f103n084-$ export OMP_NUM_THREADS=2
gpc-f103n084-$ ./mvm-omp --matsize=2500 --transpose --binary
Timing summary:
! Init:  0.00986 sec
! Calc:  0.00445 sec
! I/O :  0.01558 sec

Once cache thrashing is fixed (by 
transposing the order of the loops), 
OpenMPing the loop works fairly 
well -- but now initialization is a 
bottleneck.  (Amdahl’s law)
Tuning is iterative!



Under Load Balance Overview, can also give top lines 
and their min/average/max time spent by thread.

Good measure of load balance -- underused threads?
Here, all #s equal -- very good load balance



Open|Speedshop

• Also has very powerful UNIX command line 
tools “openss -f `./mvm --transpose’ pcsamp” 
and python scripting interface.

• Experiments: pcsamp (gprof), usertime 
(includes call graph), iot (I/O tracing - find out 
where I/O time is being spent), mpit (MPI 
tracing)



Game of Life
• Simple MPI 

implementation of 
Conway game of life

• Live cell with 2,3 
neighbours lives; 
0-1starves; 4+ dies of 
overcrowding

• Empty cell w/ 3 
neighbours becomes 
live



IPM
• Integrated Performance Monitor
• Integrates a number of low-overhead 

counters for performance measurements of 
parallel codes (particularly MPI)

• Only installed for gcc+openmpi for now

$ module load ipm
$ export LD_PRELOAD=${SCINET_IPM_LIB}/libipm.so
$ mpirun ./gameoflife --infilename=bigin.txt 
[generates big file with ugly name]
$ export LD_PRELOAD=
$ ipm_parse -html [uglyname]



Overview: global stats, % of MPI time by call, buffer size

(Hardware counters
coming soonish)



Load balance view:
Are all tasks doing same

amount of work?



Distribution of
time, # of calls
by buffer size

(here -- all very
small messages!)



Communications
patterns, total
switch traffic
(I/O + MPI)



MPE/Jumpshot
• More detailed view of MPI calls
• Rather than just counting, actually logs every 

MPI call, can then be visualized.
• Higher overhead - more detailed data.

$ module load mpe
$ mpecc -mpilog -std=c99 gol.c -o gol
$ mpirun -np 8 ./gol 
$ clog2TOslog2 gol.clog2
$ jumpshot gol.slog2





Overlapping communication & Computation:
Much less synchronized (good); but shows poor load 

balance



Scalasca - Analysis
• Low-level automated instrumentation of 

code.
• High-level analysis of that data.
• Compile, run as normal, but prefix with:

• compile: scalasca -instrument
• run: scalasca -analyze

• Then scalasca -examine the resulting 
directory.



Game of life: can take a look at data sent, received



Can also see load imbalance -- by function, process



MVM - can show where threads are idle

(Thread 0 doing way too much work!)



Coming Soon:

• Intel Trace Analyzer/Collector -- for MPI, like 
jumpshot + IPM.    A little easier to use

• Intel Vtune -- good thread performance 
analyzer



Summary

• Use output .o files, or time, to get overall 
time - predict run time, notice if anything big 
changes

• Put your own timers in the code in important 
sections, find out where time is being spent
• if something changes, know in what section



Summary

• Gprof, or openss, are excellent for profiling 
serial code

• Even for parallel code, biggest wins often 
come from serial improvements

• Know important sections of code
• valgrind good for cache performance, 

memory checks.  



Summary

• Basically all MPI codes should be run with IPM
• Very low overhead, gives overview of MPI 

performance
• See communications structure, message 

statistics



Summary

• OpenMP/pthreads code - Open|SpeedShop 
good for load balance issues

• MPI or OpenMP - Scalasca gives very good 
overview, shows common performance 
problems.


