
Compressible Fluid
Dynamics

∂

∂t
ρ +∇ · (ρv) = 0

∂

∂t
(ρv) +∇ · (ρvv) = −∇p

∂

∂t
(ρE) +∇ · ((ρE + p)v) = 0

Equations of
Hydrodynamics
• Density, momentum, and

energy equations

• Supplemented by an equation
of state - pressure as a
function of dens, energy

Discretizing
Derivatives

• Done by finite differencing the
discretized values

• Implicitly or explicitly involves
interpolating data and taking
derivative of the interpolant

• More accuracy - larger
‘stencils’

i-2 i-1 i i+1 i+2

+1 -2 +1

d2Q

dx2

∣∣∣∣
i

≈ Qi+1 − 2Qi + Qi−1

∆x2

Discretizing
Derivatives

• Explicit hydrodynamics: only
need information from as far
away as the stencil reaches

• Nearest few neighbors

• Locality galore!
i-2 i-1 i i+1 i+2

+1 -2 +1

∂Q

∂t
= f

(
∂Q

∂x

)

∂Q(n)

∂t

∣∣∣∣
i

≈ Q(n+1)
i −Q(n)

i

∆t

dQ(n)

dx

∣∣∣∣
i

≈
Q(n)

i+1 −Q(n)
i−1

∆x

Q(n+1)
i = Q(n)

i + ∆tf

(
Q(n+1)

i −Q(n)
i

∆t

)

Guardcells
• How to deal with boundaries?

• Because stencil juts out, need
information on cells beyond
those you are updating

• Pad domain with ‘guard cells’
so that stencil works even for
the 0th point in domain

• Fill guard cells with values
such that the required
boundary conditions are met

Global Domain

0 1 2 3 4 5 6 7

ng = 1
loop from ng, N - 2 ng

Guardcells
• Impose BCs before each

timestep

• Our hydro code - 3 common
boundary conditions

• ‘outflow’, reflect, and periodic

• Outflow (-1)- cell 0 just gets
value from 1

• Reflect (-2); mirror the values

• Periodic(-3); copy values from
other side (cell 0 gets values
from cell 6)

Global Domain

0 1 2 3 4 5 6 7

ng = 1
loop from ng, N - 2 ng

∂

∂t
ρ +∇ · (ρv) = 0

∂

∂t
(ρv) +∇ · (ρvv) = −∇p

∂

∂t
(ρE) +∇ · ((ρE + p)v) = 0

Equations of
Hydrodynamics
• Density, momentum, and

energy equations

• Supplemented by an equation
of state - pressure &
temperature as a function of
dens, energy

Conservation
Law form

• Conservation of mass,
momentum, energy

• These are important
properties, want numerical
solver to maintain them

∂

∂t
ρ +∇ · (ρv) = 0

∂

∂t
ρ +

∂

∂x
(ρvx) = 0

∫ xR

xL

∂

∂t
ρdx = −

∫ xR

xL

∂

∂x
(ρvx)

∂

∂t
Mass = − (ρvx)R + (ρvx)L

(ρvx) (ρvx)Mass

Change in mass =
-outflux + influx

Finite Volume
Method

• Conservative; very well suited
to high-speed flows with
shocks

• At each timestep, calculate
fluxes using interpolation/finite
differences, and update cell
quantities.

• Use conserved variables -- eg,
momentum, not velocity.

Fx

Fy

Flux
Calculations

• Compressible flows: common
to use Godunov-based
schemes

• At cell interfaces, a Riemann
problem is solved -- exact
solution to a fluid jump

• Expensive, but does a great
job of dealing with shocks

Frank Timmes,
http://cococubed.asu.edu/code_pages/exact_riemann.shtml

http://cococubed.asu.edu/code_pages/exact_riemann.shtml
http://cococubed.asu.edu/code_pages/exact_riemann.shtml

Flux
Calculations

• We’re using a ‘central scheme’
or ‘Kurganov scheme’

• No Riemann solve; average
over possible waves

• Averaging means shocks are
smeared out compared to
Riemann solvers; but much
faster, simpler to code
(particularly for RHD, MHD)

Del Zanna, Bucciantini (2002) A&A 390:1177

Dimensional
Splitting

• Strang Splitting: Operators
(including X and Y hydro
operators) can be done
separately, at cost of limiting
time accuracy to .

• Not at all obvious that should
work as well as it does.

• Makes code much easier - get a
1d solver working, build 3d
solver trivially

Fx

Fy

Fx

Fy

=

+

?

∆t2

Hydrodynamics
• Finite volume dimensionally

split central scheme

• Need only local info (+/- 2
zones in each dimension)

• Implemented with dimensional
splitting; sweep in x, then y
(then y, then x)

Fx

Fy

+

Other
Hydrodynamic

approaches
• Finite difference approaches;

don’t work in fluxes. Easier
to incorporate some types of
physics with high time
accuracy.

• Parallelization issues same as
finite volume codes.

Richard Günther, University of Tübingen.
http://www.tat.physik.uni-tuebingen.de/~rguenth/

http://www.tat.physik.uni-tuebingen.de/~rguenth/
http://www.tat.physik.uni-tuebingen.de/~rguenth/

Other
Hydrodynamic

approaches
• Incompressible flows

• Additional complexity:
elliptical solver (implicit
scheme)

• What we have here + CG

• Or Multigrid: also mostly
guardcell filling

Mike Zingale, SUNY Stony Brook
http://www.astro.sunysb.edu/mzingale/pyro/

http://www.tat.physik.uni-tuebingen.de/~rguenth/
http://www.tat.physik.uni-tuebingen.de/~rguenth/

Other
Hydrodynamic

approaches
• SPH: no grid at all. Fluid parcels.

• Hard to do highly accurate
schemes, but arguably better
suited for some problems.

• Gadget-2

• Some of the same parallelization
issues as N-body gravity (Thurs)

Single-Processor
hydro code

• cd ~/pca/src/hydro

• make

• ./fixed_dt_singleproc

• Takes options:
• --help

• --nooutput

• --simulation={0,1}

• --npts=N

• --{x,y}boundary={1,2,3}

• --dt=X

• Set initial conditions

• Apply boundary conditions,
EOS

• Loop, calling kl_timestep() and
maybe some output routines
(domain_plot() - contours;
domain_output_ppm() - images)

• Domain and all variables
stored in a structure d.

fixed_dt_singleproc.c line 94

Single-Processor
hydro code

Domain
structure

• d contains size, coordinate
information, and variables
dens, ener, momx, momy
(conserved vars) and pres,
temp (related to others by
EOS)

domain.h

ics.c line 87

domain.h

domain.h

ics.c line 87

domain.h

Nx NguardNguard

0 1 2 3 4 5 6
q

7

d->dens[2][3];
d->momx[2][3];
d->momy[2][3];
d->ener[2][3];

Timestep
routine

• For each row,

• extract it

• Do 1d hydro (X sweep)

• For each column

• extract it

• Do 1d hydro (Y sweep)

• Apply boundary conditions, EOS

• Y sweep, X sweep

• kl_row_rk2(): main 1d hydro
routine, black box kurganovlevy_timestep.c

line 23-67

Timestep
routine

• After first X,Y sweep, boundary
conditions and the equation of
state is applied;

• (can’t be before all sweeps are
done)

• Same with the second X, Y sweep

• All rows must be completed
before the columns start and vice
versa

kurganovlevy_timestep.c
line 23-67

Timestep
routine

• All the work is being done in
these nice big work-intensive
loops.

• Just makes you want to OpenMP
them!

• Remember: easiest to declare
private variables in parallel section.

kurganovlevy_timestep.c
line 23-67

• cp kurganovlevy_timestep.c kurganovlevy_timestep_omp.c

• Add a line to the makefile
kurganovlevy_timestep_omp.o: kurganovlevy_timestep_omp.c

 $(OMPCC) $(CFLAGS) -c $<

• And copy the 2 lines for the ‘fixed_dt_singleproc’ target, but call it
fixed_dt_omp, use the new _omp.c, and add -lgomp on the link line:
fixed_dt_omp: fixed_dt_singleproc.o kurganovlevy.o
kurganovlevy_timestep_omp.o domain.o domain_output.o row.o eos.o
reconstruction.o boundary_conds.o ics.o $(UTILS)

 ${LD} -o $@ -g fixed_dt_singleproc.o kurganovlevy.o
kurganovlevy_timestep_omp.o domain.o domain_output.o row.o eos.o
reconstruction.o boundary_conds.o ics.o $(UTILS) $(LDFLAGS) $
(PGPLIBS) -lgomp

MPIing the
code

• Domain decomposition

• Lots of data - ensures locality

• How are we going to handle
getting non-local information
across processors?

Guardcells
• Works for parallel

decomposition!

• Job 1 needs info on Job 2s 0th
zone, Job 2 needs info on Job
1s last zone

• Pad array with ‘guardcells’ and
fill them with the info from the
appropriate node by message
passing or shared memory

• Hydro code: need guardcells 2
deep

n-4 n-3 n-2 n-1 n

-1 0 1 2 3

Global Domain

Job 1

Job 2

Guard cell fill
• When we’re doing boundary

conditions.

• If BC = -1,-2,-3, fill guardcells
with usual BC stuff

• if BC = +P, then our neighbor
is P; swap GC with P.

1 2

1: dens[nx:nx+ng-1][ng:ng+ny-1]
→ 2: dens[0:ng-1][ng:ng+ny-1]

2:dens[ng:2*ng-1][ng:ng+ny-1]
→ 1: dens[nx+ng:nx+2*ng-1][ng:ng+ny-1]

ny*ng values to swap

Cute way for
Periodic BCs

• Actually make the
decomposed mesh periodic;

• Make the far ends of the mesh
neighbors

• Don’t know the difference
between that and any other
neighboring grid

1 2

Implementing in
MPI

• No different in principle than
diffusion

• Just more values

• And more variables: dens,
ener, temp....

• Simplest way: copy all the
variables into an
NVAR*Ny*ng sized buffer

1 2

1: dens[nx:nx+ng-1][ng:ng+ny-1]
→ 2: dens[0:ng-1][ng:ng+ny-1]

2:dens[ng:2*ng-1][ng:ng+ny-1]
→ 1: dens[nx+ng:nx+2*ng-1][ng:ng+ny-1]

ny*ng values to swap

Implementing in
MPI

• No different in principle than
diffusion

• Just more values

• And more variables: dens,
ener, temp....

• Simplest way: copy all the
variables into an
NVAR*Ny*ng sized buffer

1

2

Implementing in
MPI

• No different in principle than
diffusion

• Just more values

• And more variables: dens,
ener, temp....

• Simplest way: copy all the
variables into an
NVAR*Ny*ng sized buffer

Implementing in
MPI

• This approach is simple, but
introduces extraneous copies

• Memory bandwidth is already
a bottleneck for these codes

• It would be nice to just point
at the start of the guardcell
data and have MPI read it
from there.

1

2

Implementing in
MPI

• Let me make one
simplification for now; copy
whole stripes

• This isn’t necessary, but will
make stuff simpler at first

• Only a cost of 2xNg2 = 8
extra cells (small fraction of
~200-2000 that would
normally be copied)

1

2

Implementing in
MPI

• Recal how 2d memory is laid
out in C

• x gcs or boundary values
contiguous

i

j

Implementing in
MPI

• Creating MPI Data types.

• MPI_Type_contiguous:
simplest case. Lets you build
a string of some other type.

1

 MPI_Datatype xbctype;

ierr = MPI_Type_contiguous(Nguard*(Ny+2*Nguard), MPI_DOUBLE, &xbctype);
 ierr = MPI_Type_commit(&xbctype);

 MPI_Send(&(d->dens[nx][0]), 1, xbctype,)

ierr = MPI_Type_free(&xbctype);

Count OldType &NewType

Implementing in
MPI

• Not super exciting; could
just as easily done this
without fancy types...

 MPI_Send(&(d->dens[nx][0]), Nguard*(Ny+2*Nguard), MPI_DOUBLE,)

i

j

Implementing in
MPI

• But how do we do
something like this for the y
boundary conditions?

• Not contiguous - jumps
around. Ng zones every
(Ny+2*Ng)

i

j

Implementing in
MPI

i

jint MPI_Type_vector(
 int count,
 int blocklen,
 int stride,
 MPI_Datatype old_type,
 MPI_Datatype *newtype)

stride = ny+2ng

blocklen = ng

count = nx+2ng

Implementing in
MPI

i

j

stride = ny+2ng

blocklen = ng

count = nx+2ng

ierr = MPI_Type_vector((nx+2*ng),
 ng, (ny+2*ng), MPI_DOUBLE,
 &ybctype);
ierr = MPI_Type_commit(&ybctype);

ierr = MPI_Send(&(d->dens[0][ny]), 1, ybctype,)

ierr = MPI_Type_free(&ybctype);

Implementing in
MPI

i

j

stride = ny+2ng

blocklen = ng

count = nx+2ng

• Check: total amount of data =
blocklen*count = ng(nx+2ng)

• Skipped over stride*count =
(nx+2 ng) (ny+2 ng)

Implementing in
MPI

• So we could do this once
per variable and send
NVARS messages.

• NVARS * latency hit.

• However, I know something
about how the memory is
laid out...

Implementing in
MPI

Dens Ener Pres Temp Mlomx

Implementing in
MPI

• So this makes extending the
previous type to include all
variable straightforward.

• One call, no memory copies,
but a little thinking.

MPI Hydro code
• cd ~pca/src/hydro/

completedexecutables

• mpirun -np 3 varying_dt_mpi
--nxproc=3

• Takes options:
• --nxproc=N

• --nyproc=N

• Better timestepping; takes largest
possible stable timestep - limited
by the zone that allows the
smallest timestep.

MPI-IO
• When you run the parallel

code, you get one file that has
the sum of the domain

• At no time does one node
have the whole domain

• How do we do this?

Homework
• OMP the hydro code

• Start with kurganovlevy_timestep:

• cp kurganovlevy_timestep.c
kurganovlevy_timestep_omp.c

• Add OMP pragmas

• make fixed_dt_omp

Homework
• MPI the hydro code

• Fill in the MPI pieces for varying_dt_mpi (search for HW
in boundary_conds_mpi.c, varying_dt_mpi.c)

• Do one of the GC-filling - copy into a buffer or use
MPI_Vector type (2 separate routines: mpi_bc or
mpi_bc_vector). Make sure apply_bc calls the right one
(line 278, boundary_conds_mpi.c)

• Make an MPI call to find the minimum of all allowed
timesteps in varying_dt_mpi.c

Timings
• use --nooutput --nsteps=50 as a standard test problem

for timing.

• Time OpenMP on one and two threads on desktop

• Time MPI version on 1,2,4,8 cores on single node, and up
to 32 cores using same qsub script from yesterday. How
many zones per core are there at 32? What happens if
you increase the problem size? (Don’t forget to reduce
the timestep if you haven’t implemented varying
timestep.)

