
Compressible Fluid 
Dynamics
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Equations of 
Hydrodynamics
• Density, momentum, and 

energy equations

• Supplemented by an equation 
of state - pressure as a 
function of dens, energy



Discretizing 
Derivatives

• Done by finite differencing the 
discretized values

• Implicitly or explicitly involves 
interpolating data and taking 
derivative of the interpolant

• More accuracy - larger 
‘stencils’
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Discretizing 
Derivatives

• Explicit hydrodynamics: only 
need information from as far 
away as the stencil reaches

• Nearest few neighbors

• Locality galore!
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Guardcells
• How to deal with boundaries?

• Because stencil juts out, need 
information on cells beyond 
those you are updating

• Pad domain with ‘guard cells’ 
so that stencil works even for 
the 0th point in domain

• Fill guard cells with values 
such that the required 
boundary conditions are met

Global Domain
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ng = 1
loop from ng, N - 2 ng



Guardcells
• Impose BCs before each 

timestep

• Our hydro code - 3 common 
boundary conditions

• ‘outflow’, reflect, and periodic

• Outflow (-1)- cell 0 just gets 
value from 1

• Reflect (-2); mirror the values

• Periodic(-3); copy values from 
other side (cell 0 gets values 
from cell 6)

Global Domain

0 1 2 3 4 5 6 7

ng = 1
loop from ng, N - 2 ng
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Equations of 
Hydrodynamics
• Density, momentum, and 

energy equations

• Supplemented by an equation 
of state - pressure & 
temperature as a function of 
dens, energy



Conservation 
Law form

• Conservation of mass, 
momentum, energy

• These are important 
properties, want numerical 
solver to maintain them
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Finite Volume 
Method

• Conservative; very well suited 
to high-speed flows with 
shocks

• At each timestep, calculate 
fluxes using interpolation/finite 
differences, and update cell 
quantities.

• Use conserved variables -- eg, 
momentum, not velocity.
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Flux 
Calculations

• Compressible flows: common 
to use Godunov-based 
schemes

• At cell interfaces, a Riemann 
problem is solved -- exact 
solution to a fluid jump

• Expensive, but does a great 
job of dealing with shocks 

Frank Timmes,
http://cococubed.asu.edu/code_pages/exact_riemann.shtml

http://cococubed.asu.edu/code_pages/exact_riemann.shtml
http://cococubed.asu.edu/code_pages/exact_riemann.shtml


Flux 
Calculations

• We’re using a ‘central scheme’  
or ‘Kurganov scheme’ 

• No Riemann solve; average 
over possible waves

• Averaging means shocks are 
smeared out compared to 
Riemann solvers;  but much 
faster, simpler to code 
(particularly for RHD, MHD)

Del Zanna, Bucciantini (2002) A&A 390:1177



Dimensional 
Splitting

• Strang Splitting: Operators 
(including X and Y hydro 
operators) can be done 
separately, at cost of limiting 
time accuracy to       .

• Not at all obvious that should 
work as well as it does.

• Makes code much easier - get a 
1d solver working, build 3d 
solver trivially
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Hydrodynamics
• Finite volume dimensionally 

split central scheme

• Need only local info (+/- 2 
zones in each dimension)

• Implemented with dimensional 
splitting; sweep in x, then y 
(then y, then x)
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Other 
Hydrodynamic 

approaches
• Finite difference approaches; 

don’t work in fluxes.   Easier 
to incorporate some types of 
physics with high time 
accuracy.

• Parallelization issues same as 
finite volume codes.

Richard Günther,  University of Tübingen. 
http://www.tat.physik.uni-tuebingen.de/~rguenth/

http://www.tat.physik.uni-tuebingen.de/~rguenth/
http://www.tat.physik.uni-tuebingen.de/~rguenth/


Other 
Hydrodynamic 

approaches
• Incompressible flows

• Additional complexity: 
elliptical solver (implicit 
scheme)

• What we have here + CG

• Or Multigrid: also mostly 
guardcell filling

Mike Zingale, SUNY Stony Brook
http://www.astro.sunysb.edu/mzingale/pyro/

http://www.tat.physik.uni-tuebingen.de/~rguenth/
http://www.tat.physik.uni-tuebingen.de/~rguenth/


Other 
Hydrodynamic 

approaches
• SPH: no grid at all.   Fluid parcels.

• Hard to do highly accurate 
schemes, but arguably better 
suited for some problems.

• Gadget-2 

• Some of the same parallelization 
issues as N-body gravity (Thurs)



Single-Processor 
hydro code

• cd ~/pca/src/hydro

• make

• ./fixed_dt_singleproc

• Takes options:
• --help

• --nooutput

• --simulation={0,1} 

• --npts=N  

• --{x,y}boundary={1,2,3}

• --dt=X



• Set initial conditions

• Apply boundary conditions, 
EOS

• Loop, calling kl_timestep() and 
maybe some output routines 
(domain_plot() - contours; 
domain_output_ppm() - images)

• Domain and all variables 
stored in a structure d.

fixed_dt_singleproc.c line 94

Single-Processor 
hydro code



Domain 
structure

• d contains size,  coordinate 
information, and variables 
dens, ener, momx, momy 
(conserved vars) and pres, 
temp (related to others by 
EOS)

domain.h

ics.c line 87

domain.h



domain.h

ics.c line 87

domain.h

Nx NguardNguard

0 1 2 3 4 5 6
q

7

d->dens[2][3];
d->momx[2][3];
d->momy[2][3];
d->ener[2][3];



Timestep 
routine

• For each row,

• extract it

• Do 1d hydro (X sweep)

• For each column

• extract it

• Do 1d hydro (Y sweep)

• Apply boundary conditions, EOS

• Y sweep, X sweep

• kl_row_rk2(): main 1d hydro 
routine, black box kurganovlevy_timestep.c 

line 23-67



Timestep 
routine

• After first X,Y sweep, boundary 
conditions and the equation of 
state is applied; 

• (can’t be before all sweeps are 
done)

• Same with the second X, Y sweep

• All rows must be completed 
before the columns start and vice 
versa

kurganovlevy_timestep.c 
line 23-67



Timestep 
routine

• All the work is being done in 
these nice big work-intensive 
loops.

• Just makes you want to OpenMP 
them!

• Remember: easiest to declare 
private variables in parallel section.

kurganovlevy_timestep.c 
line 23-67





• cp kurganovlevy_timestep.c kurganovlevy_timestep_omp.c 

• Add a line to the makefile
kurganovlevy_timestep_omp.o: kurganovlevy_timestep_omp.c

        $(OMPCC) $(CFLAGS) -c $< 

• And copy the 2 lines for the ‘fixed_dt_singleproc’ target, but call it 
fixed_dt_omp, use the new _omp.c,  and add -lgomp on the link line:
fixed_dt_omp: fixed_dt_singleproc.o kurganovlevy.o 
kurganovlevy_timestep_omp.o domain.o domain_output.o row.o eos.o 
reconstruction.o boundary_conds.o ics.o $(UTILS)

        ${LD} -o $@ -g fixed_dt_singleproc.o kurganovlevy.o 
kurganovlevy_timestep_omp.o domain.o domain_output.o row.o eos.o 
reconstruction.o boundary_conds.o ics.o $(UTILS) $(LDFLAGS)  $
(PGPLIBS) -lgomp



MPIing the 
code

• Domain decomposition

• Lots of data - ensures locality

• How are we going to handle 
getting non-local information 
across processors?



Guardcells
• Works for parallel 

decomposition!

• Job 1 needs info on Job 2s 0th 
zone, Job 2 needs info on Job 
1s last zone

• Pad array with ‘guardcells’ and 
fill them with the info from the 
appropriate node by message 
passing or shared memory

• Hydro code: need guardcells 2 
deep

n-4 n-3 n-2 n-1 n

-1 0 1 2 3

Global Domain

Job 1

Job 2



Guard cell fill
• When we’re doing boundary 

conditions.

• If BC = -1,-2,-3, fill guardcells 
with usual BC stuff

• if BC = +P, then our neighbor 
is P; swap GC with P.

1 2

1: dens[nx:nx+ng-1][ng:ng+ny-1]
→ 2: dens[0:ng-1][ng:ng+ny-1]

2:dens[ng:2*ng-1][ng:ng+ny-1]
→ 1: dens[nx+ng:nx+2*ng-1][ng:ng+ny-1]

ny*ng values to swap



Cute way for 
Periodic BCs

• Actually make the 
decomposed mesh periodic;

• Make the far ends of the mesh 
neighbors

• Don’t know the difference 
between that and any other 
neighboring grid

1 2



Implementing in 
MPI

• No different in principle than 
diffusion 

• Just more values

• And more variables: dens, 
ener, temp....

• Simplest way: copy all the 
variables into an 
NVAR*Ny*ng sized buffer

1 2

1: dens[nx:nx+ng-1][ng:ng+ny-1]
→ 2: dens[0:ng-1][ng:ng+ny-1]

2:dens[ng:2*ng-1][ng:ng+ny-1]
→ 1: dens[nx+ng:nx+2*ng-1][ng:ng+ny-1]

ny*ng values to swap



Implementing in 
MPI

• No different in principle than 
diffusion 

• Just more values

• And more variables: dens, 
ener, temp....

• Simplest way: copy all the 
variables into an 
NVAR*Ny*ng sized buffer

1

2



Implementing in 
MPI

• No different in principle than 
diffusion 

• Just more values

• And more variables: dens, 
ener, temp....

• Simplest way: copy all the 
variables into an 
NVAR*Ny*ng sized buffer



Implementing in 
MPI

• This approach is simple, but 
introduces extraneous copies

• Memory bandwidth is already 
a bottleneck for these codes

• It would be nice to just point 
at the start of the guardcell 
data and have MPI read it 
from there.

1

2



Implementing in 
MPI

• Let me make one 
simplification for now; copy 
whole stripes

• This isn’t necessary, but will 
make stuff simpler at first

• Only a cost of 2xNg2 = 8 
extra cells (small fraction of 
~200-2000 that would 
normally be copied)

1

2



Implementing in 
MPI

• Recal how 2d memory is laid 
out in C

• x gcs or boundary values 
contiguous

i

j



Implementing in 
MPI

• Creating MPI Data types.

• MPI_Type_contiguous: 
simplest case.  Lets you build 
a string of some other type.

1

          MPI_Datatype xbctype;

ierr = MPI_Type_contiguous(Nguard*(Ny+2*Nguard), MPI_DOUBLE, &xbctype);
          ierr = MPI_Type_commit(&xbctype);

          MPI_Send(&(d->dens[nx][0]), 1, xbctype, ....)

ierr = MPI_Type_free(&xbctype);

Count OldType &NewType



Implementing in 
MPI

• Not super exciting; could 
just as easily done this 
without fancy types...

          MPI_Send(&(d->dens[nx][0]), Nguard*(Ny+2*Nguard), MPI_DOUBLE, ....)

i

j



Implementing in 
MPI

• But how do we do 
something like this for the y 
boundary conditions?

• Not contiguous - jumps 
around.   Ng zones every 
(Ny+2*Ng)

i

j



Implementing in 
MPI

i

jint MPI_Type_vector( 
        int count, 
        int blocklen, 
        int stride, 
        MPI_Datatype old_type, 
        MPI_Datatype *newtype )

stride = ny+2ng

blocklen = ng

count = nx+2ng



Implementing in 
MPI

i

j

stride = ny+2ng

blocklen = ng

count = nx+2ng

ierr = MPI_Type_vector((nx+2*ng),
        ng, (ny+2*ng), MPI_DOUBLE,
        &ybctype);
ierr = MPI_Type_commit(&ybctype);

ierr = MPI_Send(&(d->dens[0][ny]), 1, ybctype, ....)

ierr = MPI_Type_free(&ybctype);



Implementing in 
MPI

i

j

stride = ny+2ng

blocklen = ng

count = nx+2ng

• Check: total amount of data = 
blocklen*count = ng(nx+2ng)

• Skipped over stride*count = 
(nx+2 ng) (ny+2 ng)



Implementing in 
MPI

• So we could do this once 
per variable and send 
NVARS messages.

• NVARS * latency hit.

• However, I know something 
about how the memory is 
laid out... 



Implementing in 
MPI

Dens Ener Pres Temp Mlomx



Implementing in 
MPI

• So this makes extending the 
previous type to include all 
variable straightforward.

• One call, no memory copies, 
but a little thinking.



MPI Hydro code
• cd ~pca/src/hydro/

completedexecutables

• mpirun -np 3 varying_dt_mpi 
--nxproc=3

• Takes options:
• --nxproc=N

• --nyproc=N

• Better timestepping; takes largest 
possible stable timestep - limited 
by the zone that allows the 
smallest timestep. 



MPI-IO
• When you run the parallel 

code, you get one file that has 
the sum of the domain

• At no time does one node 
have the whole domain

• How do we do this?





Homework
• OMP the hydro code

• Start with kurganovlevy_timestep: 

• cp kurganovlevy_timestep.c 
kurganovlevy_timestep_omp.c

• Add OMP pragmas

• make fixed_dt_omp



Homework
• MPI the hydro code

• Fill in the MPI pieces for varying_dt_mpi (search for HW 
in boundary_conds_mpi.c, varying_dt_mpi.c)

• Do one of the GC-filling - copy into a buffer or use 
MPI_Vector type (2 separate routines: mpi_bc or 
mpi_bc_vector).  Make sure apply_bc calls the right one 
(line 278, boundary_conds_mpi.c)

• Make an MPI call to find the minimum of all allowed 
timesteps in varying_dt_mpi.c



Timings
• use --nooutput --nsteps=50 as a standard test problem 

for timing.

• Time OpenMP on one and two threads on desktop

• Time MPI version on 1,2,4,8 cores on single node, and up 
to 32 cores using same qsub script from yesterday.  How 
many zones per core are there at 32?   What happens if 
you increase the problem size?  (Don’t forget to reduce 
the timestep if you haven’t implemented varying 
timestep.)


