
Welcome!

Introduction to Parallel
Computing

Course Overview, and The ‘Big Picture’

The Course

Main Goal

• Students arriving with scientific computing
background should be able to leave and
immediately start parallelizing their codes.

Parallel Computing is
Necessary

• As computing capacity goes up, bar rises for
cutting edge simulation work (higher
resolution, more physics, longer runs)

• Modern experiments or observations with
bigger instruments - vastly more data to be
processed

• Modern simulations or data processing
requires parallel computation

• Parallel programming used to be needed
only for the very largest computations or
data sets

• Now, most laptops have two computing
cores - independent (more or less) CPUs

• Modern simulations or data processing
requires parallel computation

Parallel Computing is
Everywhere

“Increasingly, we are discussing how to scale performance to
core counts that we aren’t yet shipping (but in some cases
we’ve hinted heavily that we’re heading in this direction).
Dozens, hundreds, and even thousands of cores are not unusual
design points around which the conversations meander.”

 --Anwar Ghuloum, June 30, 2008,

http://blogs.intel.com/research/2008/06/unwelcome_advice.php

http://blogs.intel.com/research/2008/06/unwelcome_advice.php
http://blogs.intel.com/research/2008/06/unwelcome_advice.php

Why multicore?
• Moore’s Law didn’t promise us

clock speed.

• More transistors but getting
hard to push clock speed up

• So more cores at fixed clock
speed

There are real
engineering
reasons why

CPU speed has
flatlined

Parallel Computing:

• it’s Necessary

• it’s Everywhere

• it’s Only Going to Get Worse

Schedule

OpenMP 2 Map
Making

NBody I Other
approaches

s
GPU

C,
OpenMP 1

MPI Hydro NBody 2 Resources

Hands On

Hands On

Lunch

Mon Tues Wed Thurs Fri

Intro to
course

What will we be doing here

• This is a short course on parallel
programming

• After (or during!) each lecture session
there will be a hands on session where you
will work on projects to help build skills
with OpenMP, MPI.

Parallel Computing
I: Concurrency, Amdahl’s Law, and Locality

Why Parallel
Computing?

• Faster:

• At any given time, there is a
limit as to how fast one
computer can compute.

• So use more computers!

Why Parallel
Computing?

• Bigger:

• At any given time, there is a
limit as to how much
memory, disk space, etc can be
put on one computer.

• So use more computers!

Why Parallel
Computing?

• More:

• You have a program that runs
in reasonable time one one
processor but you want to
run it thousands of times.

• So use more computers!

Concurrency
• Must be something for the

‘more computers’ to do.

• Must be able to find
concurrency in your problems

• Many Tasks

• Order Unimportant

http://flickr.com/photos/splorp/

http://flickr.com/photos/splorp/
http://flickr.com/photos/splorp/

Data Dependancies Limit
Concurrency

Parameter Study:
Ideal case

• Want to know all results as
model parameter varies

• Can run serial code on up to
as many processors as
parameter sets

• ‘More’

µ = 1 µ = 2 µ = 3 µ = 4

Answer Answer Answer Answer

Throughput =
Tasks/Time

• How long it takes to process
the N tasks you want done

• For completely independent
tasks, P processors can increase
throughput by factor P!

vs

throughput =
N

time

Scaling with P
• How a problem scales: how

throughput behaves as
processor number increases

• In this case, the throughput
scales linearly with the
number of processors

• This is the best case

• `Perfect scaling’

0

2

4

6

8

P=1 2 3 4 5 6 7 8

Ta
sk

s
pe

r
U

ni
t T

im
e

Scaling with P
• Another way to look at it:

time it takes to get some fixed
amount of work done

• More usual (and more
important!)

• Perfect scaling: time to
completion ~ 1/P

• P procesors - P times faster

0

2

4

6

8

P=1 2 3 4 5 6 7 8
T

im
e

Pe
r T

as
k

Parameter Study:
‘Embarrassingly

Parallel’
• Scales perfectly up to P=N

• Speedup = P: ‘linear scaling’,
ideal case.

µ = 1 µ = 2 µ = 3 µ = 4

Answer Answer Answer Answer

Problems Differ in
amount of

Concurrency
• Integrate (or some other

simple processing) tabulated
experimental data

• Integration of different regions
can be summed by each
processor

• But first need to get data to
processor, then bring together
all the sums

Region
1

Region
2

Region
3

Region
4

Reduction

Answer

Partition Data

Region
1

Region
2

Region
3

Region
4

Reduction

Answer

Partition Data

Parallel Portion:
Perfectly Parallel (as

long as there is
enough work)

T ~ 1/P

Region
1

Region
2

Region
3

Region
4

Reduction

Answer

Partition Data

Serial Portion:
Sum has to be

done; if done on one
processor, just same

as serial:
T ~ const

Answer

Region
1

Region
2

Region
3

Region
4

Reduction

Partition Data

Parallel Overhead:
Data has to be sent to

appropriate processor, a
cost of the parallel

implementation

T const (best case)
or increasing fn of P

Total Time: Serial
+ Parallel

• Ignoring data-moving costs
(for now):

• Typically linear in P (sum)

• Eventually, as problem
becomes increasingly scaled
up, serial term dominates

Answer

Region
1

Region
2

Region
3

Region
4

Reduction

Partition Data

time(N, P) =
⌊

N

P

⌋
Twork + Treduction(P)

Timing of
simple case

• Ignore data transfer costs; say:

• 100 s in integration work

• 5 s in assembling the parts

• How does this behave on
many processors?

More processors per
run don’t always help

• Given timing data, how do we
choose P to run on if we have N
programs to run?

• Ideal case, timing goes down 1/P
- doesn’t matter

• Serial part (5%!) becomes a
bottleneck

• Can improve throughput by
running on fewer processors

Note: t(50) = 7s
t(25) = 9s

Can run 2 jobs on 25 procs each
in about same time as one on 50!

Speedup: How
much faster

with P procs?
• An important concept is the

speedup of a given parallel
implementation

speedup =
t(N, P)

t(N, P = 1)

Efficiency:
Speedup should

be ~ P
• Related concept: Parallel

Efficiency (compared to serial
code)

Efficiency =
t(N, P)

Pt(N, P = 1)

Amdahl’s Law
• Any serial part of

computation will
eventually dominate

• If serial fraction is f, even if
parallel component goes to
zero, speedup can only be 1/f

time(N, P) ∼
(

f +
1− f

P

)

Speedup =
1(

f + 1−f
P

)

lim
P→∞

Speedup =
1
f

lim
P→∞

Efficiency = 0

(perfectly)
parallel fraction

serial
fraction

Amdahl’s Law
• Any serial part of

computation will
eventually dominate

• If serial fraction is f, even if
parallel component goes to
zero, speedup can only be 1/f

Avoiding
Amdahl

• In some cases, may not matter.

• If will run in reasonable time
on some small number of
processor, asymptotic
arguments may not matter.

Answer

Region
1

Region
2

Region
3

Region
4

Reduction

Partition Data

Trying to Beat
Amdahl, #1

• Rewrite serial portions to
take into account parallelism

• eg, many reductions can be
done in parallel that will cost
log2(P) (not 1, but much better
than serial = P...)

Answer

Region
1

Region
2

Region
3

Region
4

Partition Data

Trying to Beat
Amdahl, #1

• Redo approach to avoid serial
portions wherever possible.

• Means some models don’t
scale well - serial bottleneck

• Master task does disk I/O

• Master task assigns work to
workers. (But SETI@Home?)

Workers

Master
Task
List

Big Lesson #1

Optimal Serial Algorithm for your problem
may not be the P→1 limit of your optimal

Parallel algorithm

Consequences of BL#1
• P=1 parallel code will be slower than best serial code

• May be cheaper to re-compute values than send them
(Time to send a float ~4-1000x time to multiply a float)

• As long as overhead is a small fraction of serial time for
any reasonable N and doesn’t depend on P, you’re ok.

• (If cost ~ P, might as well be serial!)

Trying to Beat Amdahl, #2 -
Upsize

• Desktop problem isn’t a
supercomputer problem!

• Reason to run on big machines is
size as well as speed

• Amdahl’s law assumes constant
size problem

• More work; f goes down.

• Gustafson’s law: any sufficiently
large problem can be efficiently
parallelized.

Weak Scaling
• How does problem behave if

you expand problem size as
number of processors?

• Strong Scaling - on how many
processors can you efficiently
run given problem

• Weak Scaling - how large a
problem can you efficiently
run

More on
Concurrency

• Most problems are not pure
concurrency

• Some level of synchronization,
exchange of information
needed between tasks

• This needs to be minimized

• Increases Amdahl’s ‘f ’

• Are themselves costly

µ = 1 µ = 2 µ = 3 µ = 4

Synchronization

Synchronization

Synchronization

Concurrency
• Makes possible lots of wasted

time (‘load balancing’, about
which more later)

µ = 1 µ = 2 µ = 3 µ = 4

Synchronization

Synchronization

Synchronization

Locality
• Information needed by the task

should be as local as possible.

• When tasks do need to interact,
best that those interactions be as
local as possible, and with as few
others as possible

• Communications cost lower

• Fewer processes have are locked
up during the necessary

µ = 1

Big Lesson #2

Parallel code design is about finding as much
concurrency as possible, and arranging it in a

way that maximizes locality.

Finding
Concurrency

• Identify tasks that can be done
independently, order doesn’t
matter

• Our tasks - some options
fairly clear

• Hydro: parts of domain

• Mapmaking: parts of map

• N-body: particles (or
interactions)

Maintaining
Locality

• Now have to lump the
concurrent bits into tasks

• Choosing that re-aggregation
can greatly effect locality.

p = 9L

p = 4L

Example: 1d
integration

• Integrate a 1d function with
(say) Simpson’s rule, with N
points.

• Concurrency: can do each of
the points indepandently, then
sum.

• Locality: have each do a chunk
CPU1

CPU2
CPU3

Example: 1d
integration

• Each processor gets N/P
points to do

• Total compute time for one
process:

• Now how to do sums? CPU1

CPU2
CPU3

Tcomp =
(

N

P

)
NSRCcomp

Example: 1d
integration

• Each processor sends partial
sums to others, then all can do
total

• Each processor sends its
result (P-1) times and receives
(P-1) results

sum1
sum2
sum3

sum1
sum2
sum3

sum1
sum2
sum3

CPU1 CPU2 CPU3

total total total

+ + +

Tcomm = 2(P − 1)Ccomm

Integration
with parallel

costs:

N = 10000, Nsr=4,
Ccomm/Ccomp = 100

• Can actually get worse with P!

• Communication cost increases
with P

Integration
with parallel

costs:

N = 10000, Nsr=4,
Ccomm/Ccomp = 100

• Can actually get worse with P!

• Communication cost increases
with P

Communication
-to-

Computation ratio
• We want this to be (ideally)

constant in P, or at least grow
slowly; otherwise as we scale
up, we spend more time
sending messages than
computing.

If NSR ~ 4, Ccomm ~ 1000 Ccomp,
N = 10000, then

Tcomm/Tcomp ~ 1.2 for P=16

Tcomm

Tcomp
=

2(P − 1)Ccomm
N
P NSRCcomp

=
2P (P − 1)

N

1
NSR

Ccomm

Ccomp

∼ P 2

Better
Summing

• Pairs of processors; send
partial sums

• Total messages log2(P)

• Messages per proc; log2(P)/P

• Can repeat to send total back

sum1

CPU1 CPU2 CPU3

sum2

sum1
+sum2

sum3

CPU4

sum4

sum3
+sum4

sum1
+sum2
+sum3
+sum4
=total

Reduction; works for
a variety of operators

(+,*,min,max...)

Tcomm = 2 log2(P)Ccomm

Speedup with
reduction

• Very good! Efficiency still
falling off past 20 or so
processors

• (But integrating 10,000
numbers...)

Speedup with
reduction

• with 1,000,000 numbers...

Communication
-to-

Computation ratio
• Much better!

• As number of processors goes
up, relative cost of
communications goes up only
logarithmically.

If NSR ~ 4, Ccomm ~ 100 Ccomp, N
= 10000, then

Tcomm/Tcomp ~ 0.08 for P=16

Tcomm

Tcomp
=

2 log2(P)Ccomm
N
P NSRCcomp

=
2P log2(P)

N

1
NSR

Ccomm

Ccomp

∼ P log2(P)

Parallel Computing
II: Parallel Computers

Top500.org:

List updated every
6 months of the
worlds 500 largest
supercomputers.

Info about
architecture, ...

1 Petaflop (1015 flop/s);
126,600 cores

Computer
Architectures

• How the computers work
shape how best to progam
them

• Shared Memory vs
Distributed Memory.

• Vector computers...

Distributed
Memory:
Clusters

• Simplest type of parallel
computer to build

Distributed
Memory:
Clusters

• Simplest type of parallel
computer to build

http://flickr.com/photos/eurleif/

• Take existing powerful
standalone computers

http://flickr.com/photos/eurleif/
http://flickr.com/photos/eurleif/

Distributed
Memory:
Clusters

• Simplest type of parallel
computer to build

http://flickr.com/photos/eurleif/

• Take existing powerful
standalone computers

• And network them

+

http://flickr.com/photos/eurleif/
http://flickr.com/photos/eurleif/

Each Node is
Independent

• Parallel code consists of
programs running on separate
computers, communicating
with each other

• Could be entirely different
programs

CPU1

CPU2

CPU3

CPU4

Each node has
independent

memory
• Locally stores its own portion

of problem

• Whenever it needs
information from another
region, requests it from
appropriate CPU

• Usual model: ‘message passing’

CPU1

CPU2

CPU3

CPU4

Memory

Clusters
+Message
Passing

• HW: Easy to build (harder to
build well)

• HW: Can build larger and
larger clusters relatively easily

• SW: Every communication has
to be hand coded -- hard to
program

CPU1

CPU2

CPU3

CPU4

Memory

Latency Bandwidth

GigE

Infiniband

~10 µs
1 Gb/s

(~60 ns/double)

~2 µs
2-10 Gb/s

(~10 ns/double)

Processor speed: 1 FLOP ~ few ns or less

Shared Memory
• One large bank of memory,

different computing cores
acting on it. All ‘see’ same data

• Any coordination done
through memory.

• Could do like before, but why?

• Each core is assigned a thread
of execution of a single program
that acts on the data

Core1

Core2

Core3

Memory

Thread Vs.
Process

• Processes: Independant tasks
with their own memory,
resources

• Threads: Threads of execution
within one process, ‘seeing’
the same memory, etc.

MPI
Procs

OMP
Threads

Shared
Memory:NUMA

• Complicating things: each core
typically has some of its own
memory

• Non-Uniform Memory Access

• Locality still matters

• Cores have cache, too.

• Keeping this memory coherent
is extremely challenging

Memory

Coherency
• The different levels of memory

imply multiple copies of some
regions

• Multiple cores mean can
update unpredictably

• Very expensive hardware

• Hard to scale up to lots of
processors, very $$$

• Very simple to program!!

x[20] = 3

x[20] = ?

Latency Bandwidth

GigE

Infiniband

NUMA
Shared Mem

~10 µs
1 Gb/s

(~60 ns/double)

~2 µs
2-10 Gb/s

(~10 ns/double)

~0.1 µs
10-20 Gb/s

(~4 ns/double)

Processor speed: 1 FLOP ~ ns or less

Big Lesson #3

The best approach to parallelizing your
problem will depend on both details of your

problem and of the hardware available.

Distributed
Shared Memory
• Several attempts at making

cluster memories look like a big
shared memory

• Coherence much harder

• Large overhead

• Hides performance cost of going
`off-box’

Hybrid
Architectures

• Almost all of the biggest
computers are now clusters of
shared memory nodes

• Generally just use message
passing across all cores, but as P
(1 node) goes up, hybrid
approaches start to make sense.

Hands On I
• Due by start of this

afternoon

• ‘Submit’ by leaving files in a
subdirectory ‘hw1’ on the
cluster

• mkdir ~/hw1

• Calculate the speedup as a function of
P,N for the better summation example.
Put in ‘speedup. txt’

• Where would you expect performance
to turn over on a modern machine using
Infiniband? Shared memory? GigE?

• cd ~/pca/src/gettingstarted/ and make
omp_hello_world and run it

• make mpi_hello_world and run it

• qsub -I -X into your reserved node and
ensure this works

• Put all outputs in the hw1 directory.

