'
Es
elcom
" W

Introduction to Parallel
Computing

Course Overview, and The ‘Big Picture’

|

Sciet

The Course

SciNet Parallel Scientific Computing Course
Aug 31 - Sept 4, 2009

Main Goal

® Students arriving with scientific computing
background should be able to leave and
immediately start parallelizing their codes.

-

Sciet

Parallel Computing is
Necessary

® As computing capacity goes up, bar rises for
cutting edge simulation work (higher
resolution, more physics, longer runs)

® Modern experiments or observations with
bigger instruments - vastly more data to be
processed

® Modern simulations or data processing
requires parallel computation

n

SCiet

Parallel Computing is
Everywhere

® Parallel programming used to be needed
only for the very largest computations or
data sets

® Now, most laptops have two computing
cores - independent (more or less) CPUs

Modern simulations or data processing

-“Wires parallel computation

SCiet

':;Q/:' :"E:' l:G:J L:}’C:J l:ﬂ‘:’ (l_n http: / /blogs.intel.com/research/ By v LGk Q)

Research@Intel

Pushing the boundaries of possibility

| Research@inte j Recent Posts Archives About this Blog Meet the Bloggers m
=2 9 J

UT'I":"\ ety Research @ Intel Day
posted by Anwar Ghuloum (B3E3E) on June 30, 2008 Photostream
wwe| “Increasingly, we are discussing how to scale performance to
Some of]
~='l core counts that we aren’t yet shipping (but in some cases
w1 we've hinted heavily that we're heading in this direction).
Continu
.| Dozens, hundreds, and even thousands of cores are not unusual
“1 design points around which the conversations meander.”
Prevg
Dews --Anwar Ghuloum, June 30,2008,
. . .

. http://blogs.intel.com/research/2008/06/unwelcome_advice.php

SC:‘Net

http://blogs.intel.com/research/2008/06/unwelcome_advice.php
http://blogs.intel.com/research/2008/06/unwelcome_advice.php

1000000

100000

10000

Why multicore? -

100

* Moore’s Law didn’t promise us
clock speed.

10

* More transistors but getting
hard to push clock speed up

1 -
+ *+ Clock Speed [MHz)

5 Transistors [000)

1971 1975 19743 1923 1987 1391 1335 1993 2003 2007

e So more cores at fixed clock
speed

Figure 1: Intel CPU Introductions (sources: Intel, Wikipedia)

SCiflet

There are real

® °
10000
englneerlng ~N Sun’s Surface —Pp
h §1000 Rocket Nozzle).
reasons W y E Nuclear Reactor —p
w 100 =
CPU speed has ¢ { con
§ 10 BOO4 Bgeeﬁ"{ot?{a{ear; T .
flatlined 2 | | s PO
1970 1980 1990 2000 2010

Year
Source: S. Borkar (Intel)

"

SCilet

Parallel Computing:

® it's Necessary
® it's Everywhere

® it's Only Going to Get Worse

|

Sciet

Schedule

Mon Tues Wed Thurs Fri
Map Other
Intro o | OPEM 2 Making NBody | approaches
course
Hands On GPU
Lunch
OpeSI:'IP | MPI Hydro NBody 2 | Resources
Hands On

.

Scilet

VVhat will we be doing here

® This is a short course on parallel
programming

® After (or during!) each lecture session
there will be a hands on session where you
will work on projects to help build skills

with OpenMP, MPI.

,

Scilet

Parallel Computing

l: Concurrency, Amdahl’s Law, and Locality

L

Sciet

————————————————

Why Parallel == & =

""""""

"""""""

Computing? o W

e Faster: ——

— e — w— — —

.....
.....

e At any given time, there is a z.
limit as to how fast one e ey I R e
computer can compute. |

* So use more computers! - ,T',lf,_,,_,ummp

" -———

——

-y T "] |)

\
;
!

I

SciNet Parallel Scientific Computing Course
Aug 31 - Sept 4, 2009

Why Parallel === -
Computing!? =

» x
=
££

 Bigger:

e At any given time, there is a
limit as to how much
memory, disk space, etc can be
put on one computer.

q- So use more computers!

-

Why Parallel == -
Computing!? =

£

e More:

* You have a program that runs
in reasonable time one one
processor but you want to
run it thousands of times.

q- So use more computers!

Concurrency

* Must be something for the
‘more computers’ to do.

* Must be able to find
concurrency in your problems

* Many Tasks

* Order Unimportant

SciNet Parallel Scientific Computing Course
Aug 31 - Sept 4, 2009

http://flickr.com/photos/splorp/
http://flickr.com/photos/splorp/

Data Dependancies Limit
Concurrency

CHSNS) = Evil_Lair_Construction.omniplan O
¥ E Task Effort 2009 Qtr 4 2009 0

1) Scout Location ow — : }l

e 2) Building Plans 4w ¢

e 3) Kill Architect 1d)5

e 4) HR: Place ads for Minions: MQ, Home Minon.. 1d

e 5) Hiring process; must willing to relocate dy ?(S

e 6) Training: Death Rays 3w SE—

e 7) Training: Funny Uniforms Sw e H

e &) Training: Missing at Point Blank Range 1w -C)

e 9) Construction: Steal, Move supplies 1w

e 10) Build Moat, install death alligators 1w

e 11) Foundation 2w *

e 12) Outer missile defence grid 2w

e 13) Exterior work 4w sew— b

e 14) Install Supercomputer 1w

e 15) Install Radar Installation 1w

e 16) Install Satellite-reprogramming facility 2w

e 17) Train Minions in MPI, OpenMP 1w

e 18) Take over the world 1w o)

SciNet Parallel Scientific Computing Course
Aug 31 - Sept 4, 2009

Parameter Study:
ldeal case v=1lu=2lu=3|lu=4

e Want to know all results as

model parameter varies

e Can run serial code on up to
as many processors as

parameter sets —
.| ..‘More,

S_Gi’Net

Throughput =
Tasks/Time

* How long it takes to process
the N tasks you want done

N

time

VS

throughput =

* For completely independent
1 tasks, P processors can increase
throughput by factor P!

SCilet

Scaling with P

8
()
* How a problem scales: how S 6
throughput behaves as §)
processor nhumber increases g
e In this case, the throughput < 2
scales linearly with the i 0
number of processors P=I 2 3 4 5 6 7 8

e This is the best case

q|° “Perfect scaling’

Sciet

Scaling with P

* Another way to look at it: 8
time it takes to get some fixed
amount of work done

* More usual (and more
important!)

Time Per Task
=

* Perfect scaling: time to
completion ~ |/P 0

* P procesors - P times faster

i

Sciet

Parameter Study:
‘Embarrassingly
Parallel’ =1l lu=2llu=3]||p=4

e Scales perfectly up to P=N

e Speedup = P:‘linear scaling’,
ideal case.

"

SG-FNet

Problems Differ in
amount of
Concurrency

* Integrate (or some other
simple processing) tabulated
experimental data

* Integration of different regions
can be summed by each
processor

e But first need to get data to
processor, then bring together

.|| all the sums

v V

Partition Data

v)

Region

v)

Region

_ I J

v

Pfeductlon

Parallel Portion:
Perfectly Parallel (as
long as there is

enough work)
T~ 1/P

.

Partition Data

N

Region

v)

Region

v)

Region

_ I J

Pfeductlon

v

Serial Portion:
Sum has to be
done; if done on one
processor, just same
as serial:

T ~ const

.

Partition Data

Region

v)

Region

v)

Region

_ I J

Pfeductlon

v

Parallel Overhead:
Data has to be sent to
appropriate processor, a
cost of the parallel
implementation

T const (best case)
or increasing fn of P

.

Partition Data

Region

v)

Region

v)

Region

_ I J

v

Pfeductlon

Total Time: Serial
+ Parallel

* |gnoring data-moving costs
(for now):

time(N, P)

N
= Twor Tre uction P
LDJ k + Lreduction (P)

* Typically linear in P (sum)

e Eventually, as problem
becomes increasingly scaled
up, serial term dominates

‘I[',h

Partition Data

v)

Region

v)

Region

_ I J I J

v

Pfeductlon

120

Timing of | s
Ideal
° I 80 (_
simple case : _| |
£
* Ignore data transfer costs; say: 10 | 1
|00 s in integration work 20 & .
* 55 in assembling the parts 0 T
10 20 30 40 50 60 70 80 90 100
e How does this behave on Number of Processors

many processors!?

Sciet

More processors per o,
run don’t always help |

100 | Time = (100 S)/P + 5

Ideal

* Given timing data, how do we
choose P to run on if we have N
programs to run?

Time (s)

* |deal case, timing goes down |/P
- doesn’t matter

1 10 100
e Serial part (5%!) becomes a Number of Processors

bottleneck Note: t(5()) _
 Can improve throughput by '
running on fewer processors t(25) = s

' Can run 2 jobs on 25 procs each
. . in about same time as one on 50!

Sciet

Speedup: How

O T Speedup SN PR PT) ——
|deal
much faster
with P procs? | «
* An important concept is the
speedup of a given parallel
implementation 1 e
d t(N, P) 1 10 100
speeaup = umber of Processors
|9, P t(N, D — 1) Number of P

|

Sciet

Efficiency:
Speedup should

be ~ P

= 0.6 -

* Related concept: Parallel 0a |

Efficiency (compared to serial

0.2
code) L
t(N P) 10 20 30 40 50 60 70 80 90 100
EfﬁCienC — 7 Number of Processors
» T PHN,P=1)

|

Sciet

serial (perfectly)

: fraction parallel fraction
Amdahl’s Law /
. 1 —f
e Any serial part of time(N, P) ~ \f = >
computation will |
eventually dominate Speedup =
e If serial fraction is f, even if (f | 11_3f)
parallel component goes to 1
zero, speedup can only be | /f Pli_{noo Speedup = 7
0

V lim Efficiency =
1 P—oo

SCiflet

Amdahl’s Law

e Any serial part of
computation will
eventually dominate

Speedup

¢ |f serial fraction is f, even if
parallel component goes to
zero, speedup can only be |/f

100
90

80

70

60

50
40
30
20
10

f= 1% — _

f= 5%

f=10% —

f=25%

f=50%
|deal

]

10 20 30 40 50 60 70 80 90 100

Number of Processors (P)

Sciet

4 o o
{ Partition Data)
4 ¢ \ [¢ N\ [/ ¢ N\ [/ ¢ N

Avoiding
Amdahl

* |n some cases, may not matter. Region| (Region| Region| [Region

e |f will run in reasonable time
on some small number of
processor, asymptotic
arguments may not matter.

_ I J I J

(* Pfeductljn *)

.“"h @

S__G-i’Net

Trying to Beat
Amdahl, #|

e Rewrite serial portions to
take into account parallelism

* eg, many reductions can be
done in parallel that will cost

log2(P) (not I, but much better
than serial = P...)

. -

Partition Data

N (O

(i

\ N\ /7 VY N\ (VY)
Region| |Region| |Region
I 2 3
_ J | L | J

~
<
J

Region

)

==

1}@

SCI’Net

Trying to Beat
Amdahl, #1

Master
 Redo approach to avoid serial ~ Task

portions wherever possible. List - L

e Means some models don’t \
scale well - serial bottleneck

e Master task does disk I/O

Workers

* Master task assigns work to
workers. (But SETI@Home?)

'ilw,, ﬁ

SCiflet

Big Lesson #1

Optimal Serial Algorithm for your problem

may not be the P— | limit of your optimal
Parallel algorithm

|

Sciet

Consequences of BL#|

 P=]| parallel code will be slower than best serial code

* May be cheaper to re-compute values than send them
(Time to send a float ~4-1000x time to multiply a float)

* As long as overhead is a small fraction of serial time for
any reasonable N and doesn’t depend on P, you're ok.

e (If cost ~ P, might as well be serial!)

A -

SCiet

Trying to Beat Amdahl, #2 -
Upsize

 Desktop problem isn’t a
supercomputer problem!

e Reason to run on big machines is
size as well as speed

e Amdahl’s law assumes constant
size problem

Latitude, degrees North

e More work; f goes down.

e Gustafson’s law: any sufficiently
large problem can be efficiently
parallelized.

120 90 60

17’ ~ Longitude, degrees West

Weak Scaling

* How does problem behave if
you expand problem size as 0 |

I I
work/proc)

Ideal

I
Time (fixed

number of processors!?
120

e Strong Scaling - on how many

100

processors can you efficiently
run given problem

Time (s)

80 |-

* Weak Scaling - how large a
problem can you efficiently 60 |

r u n 10 20 30 40 50 60 70 80 90

Number of Processors (P)

Sciet

More on
Concurrency

* Most problems are not pure
concurrency

* Some level of synchronization,
exchange of information
needed between tasks

¢ This needs to be minimized

* Increases Amdahl’s f’
.“0 Are themselves costly

| o

-

J

|

J

N/ \/

" Synchronization

' e Y N
\ —_ J y
(Synchronization)
4 ¢ f ¢ N (¢ N ¢ A
____ D R S N
(¥ Synthronizition ¥)

S__G-i’Net

Concurrency

Synchronization

N/ \/

* Makes possible lots of wasted
time (‘load balancing’, about
which more later)

N/ \(

Synchronization

{ ‘[{][{][{]
) G
¥ Synthronizition ¥)

—\(

A -

Sciet

Locality

* |Information needed by the task
should be as local as possible.

e When tasks do need to interact,
best that those interactions be as
local as possible, and with as few
others as possible

¢ Communications cost lower

* Fewer processes have are locked
up during the necessary

.

—
)

F G Pum—

—
)

— U UN~—___J U

SCiet

Big Lesson #2

Parallel code design is about finding as much
concurrency as possible, and arranging it in a
way that maximizes locality.

|

Sciet

Finding
Concurrency

* |dentify tasks that can be done
independently, order doesn’t
matter

* Our tasks - some options
fairly clear

* Hydro: parts of domain
 Mapmaking: parts of map

e N-body: particles (or

interactions)
\ _

Maintaining
Locality

* Now have to lump the
concurrent bits into tasks

|||||| |

mE -
T

Scifet

e Choosing that re-aggregation
can greatly effect locality.

A

Example: | d

integration R
* Integrate a |d function with 7Z o

(say) Simpson’s rule, with N \
points. — v \

e Concurrency: can do each of -
the points indepandently, then

q| sum. CPUO <—>

* | ocality: have each do a chunk
CPU?2 ,
CPU3

Example: | d
Integration

e Each processor gets N/P
points to do

* TJotal compute time for one
process:
N

Tcomp — (F) NSRCcomp

qr Now how to do sums!

S*cos(x)+3

CPUI CPU2 CPU3

Example: | d
Integration

sum | ~

* Each processor sends partial o / sum D
sums to others, then all can do+ sl + + | sum3
total total total total

e Each processor sends its
result (P-1) times and receives
(P-1) results

Tcomm — 2(P —]-)Ccomm

. -

SCiet

Integration o -
o
with parallel : = :
é 25000 f |
costs: 2 om)
- 15000 |
e Can actually get worse with P! 10000 |
¢ Communication cost increases 5000 S R R
with P 10 20 30 40 50 60 70 80 90 100

Number of processors

N = 10000, N.=4,
Ccomm/Ccomp = 100

Sciet

Integration
with parallel
COSts:

e Can actually get worse with P!

Speedup

e Communication cost increases
with P

|

| | | | | | | | |

10 20 30 40 50 60 70 80 90 100

Number of processors

N = 10000, N.=4,
Ccomm/Ccomp = |00

Sciet

Communication

to 1 comm L 2(P . 1)Ccomm
. jjcomp % NSR C(com]p
Computation ratio OP(P=1) 1 Coomu

* We want this to be (ideally) B N Nsr, Ccomp

constant in P, or at least grow N P2

slowly; otherwise as we scale

up, we spend more time If Nsr ~ 4, Ccomm ~ 1000 Ccomp,

sending messages than N = 10000. then

l“ COMmBHHNS. Teomm/Tcomp ~ 1.2 for P=16

SGFN-_:—:t

Better
Summing

* Pairs of processors; send
partial sums

e Total messages logy(P)
* Messages per proc;logy(P)/P

e Can repeat to send total back

Tcomm = 2 1ng(f))cfcomm

.

CPUI CPU2

OO GO

sum/

sum?2

sum |
+sum?2

CPU3

CPU4

sum3

sum4

sum3
+sum4

—-

sum |

+sum?2
+sum3
+sum4
=total

Reduction; works for
a variety of operators
(+,*,min,max...)

SCiet

Speedup with

reduction

* Very good! Efficiency still
falling off past 20 or so
processors

e (But integrating 10,000
numbers...)

-

Speedup

35

| | | | | | | | |

10 20 30 40 50 60 70 80 90 10C

Number of processors

SCiflet

100 [[[[[[[[[

Speedup with

reduction
e with 1,000,000 humbers...

Speedup

0 | | | | | | | | |
10 20 30 40 50 60 70 80 90 10C

Number of processors

SciNet Parallel Scientific Computing Course
Aug 31 - Sept 4, 2009

Communication Zeomm 210g5(P)Ceomm

—tO— Tcomp %NSRCcomp
. . ~ 2Plogy(P) 1 Ceomm
Computation ratio = N Nsn Ceomp
e Much better! ~ Plogy(P)

e As number of processors goes
up, relative cost of
communications goes up only If Nsg ~ 4, Ccomm ~ 100 Ccomp, N
logarithmically. = 10000, then

q‘ Tcomm/Tcomp ~ 008 fOI’ P= I 6

SGFN-_:—:t

Parallel Computing

ll: Parallel Computers

SciNet Parallel Scientific Computing Course
Aug 31 - Sept 4, 2009

500 E/ /’WW“ @"’W’ Top500.0rg:

List updated every
6 months of the
R 810 R vl are i Tiops. Formore detalls about v s, check e Torsoo sescvion. WOl 500 largest

- Supercomputers.

Power data in KW for entire system

! i Se 20C8~ " 129600 110500 145670 248347 Info abOUt
IBM ho
- iedSllas i e T 00 1381.40 6950.60 arc IteCtu re’ oo
g Cray Inc.
C e g e e | Petaflop (1015 flop/s);

126,600 cores
Scifet

————————————————

Computer == o =

"""""""

Architectures po—/———

— e — w— — —

e How the computers work ——
shape how best to progam S B P
them

ooooo
.....
-

e Shared Memory vs
Distributed Memory.

Hrrx

L ' N !

< ol ‘ ,/’ A A A A
fl* Vector computers... 1

d | : o/

SciNet Parallel Scientific Computing Course
Aug 31 - Sept 4, 2009

Distributed
Memory:
Clusters

e Simplest type of parallel
computer to build

L

Sciet

http://flickr.com/photos/eurleif/

Distributed
Memory:
Clusters

e Simplest type of parallel
computer to build

e Take existing powerful
standalone computers

SciNet Parallel Scientific Computing Course
Aug 31 - Sept 4, 2009

http://flickr.com/photos/eurleif/
http://flickr.com/photos/eurleif/

http://flickr.com/photos/eurleif/

Distributed
Memory:
Clusters

e Simplest type of parallel
computer to build

e Take existing powerful
standalone computers

e And network them

http://flickr.com/photos/eurleif/
http://flickr.com/photos/eurleif/

Each Node is
Independent

* Parallel code consists of
programs running on separate
computers, communicating
with each other

e Could be entirely different

q| programs

CPU

U2
A GPU3
I
CPUA4

Each node has
independent Memory
CPU
memory

* |ocally stores its own portion
of problem

* Whenever it needs
information from another
region, requests it from
appropriate CPU

q° Usual model:‘message passing’

Clusters

4 Memory
Mes.sage o
Passing

 HWV: Easy to build (harder to
build well)

e HW: Can build larger and
larger clusters relatively easily

* SW: Every communication has
to be hand coded -- hard to

q irogram

Latency Bandwidth
' | Gb/s
GIgE 10 pis (~60 ns/double)
Infiniband ~2 us 2-10 Gb/s

(~10 ns/double)

Processor speed: | FLOP ~ few ns or less

)

Sciflet

Corel

Shared Memory

* One large bank of memory,
different computing cores
acting on it. All ‘see’ same data
8 Core2

* Any coordination done
through memory.

* Could do like before, but why?

<

e Each core is assigned a thread
of execution of a single program
i that acts on the data

SciNet Parallel Scientific Computing Course

Aug 31 - Sept 4, 2009

Thread Vs. Threads

Process

* Processes: Independant tasks
with their own memory,
resources

* Threads: Threads of execution
within one process, ‘seeing’
the same memory, etc.

3 Ijdursi@gps
File Edit View Terminal Tabs Help
top - 17:27:34 up 2 days, 1:48, 1 user, load average: 1.81, 8.56, 9.20

Tasks: 142 total, 3 running, 139 sleeping, B stopped, 8 zombie
Cpu{s): 95.9%us, 3I.0%sy, 0.0%ni, ©6.0%id, O6.0%wa, 0.1%hi, 1.0%si, @.0%

Mem: 16411872k total, 27/830BK used, 13633504K Tree, 256K butters
SwWap: Bk total, Bk used, Dk free, 2265652K cached

USER SCPU SMEM TIME+ COMMAMND

18121 1jdursi 25 D 89536 1676 B40 R 779.8 0.0 0:29.01 diffusion-omp
17193 root 15 B 35386 25880 6B S 15.6 0.8 8:81.57 pbs mom
1714 roant 15 B 35308 3216 695 R 6.8 0.8 g:88.48 pbs_mom
15 B 1a344 748 612 5 0.0 0.0 B:01.45 init
OMP AT -5] 2 g5 .6 B.9 g:08.00 migration/Q
4 19 3 o BG5S 0.0 6.8 G:00.00 kKsoftirgd/so
aT 5 i} i} GBS 9.6 0.8 g:08.00 watchdog/8
iT -5 3] g B s 0.8 B.0 8:88.01 migration/1
4 19 i o @S 0.0 0.8 g:08.01 ksoftirgds1
AT 5 2] d B s 0.8 0.8 0:00.00 watchdog/1
g8 root RT -5 a a B s 0.8 6.0 G:08.00 migrations2
9 root 34 19 i} 0 B SsS 9.0 0.8 0:00.00 ksoftirgd/2
10 root RT -5 3] i B 5% B.0 B.9 B:00.00 watchdogs2
11 root RT -5 a a s /6.8 6.4 g:08.00 migration/3

= ljdursi@gg

File Edit View Terminal Tabs Help

top - 17:33:58 up 2 days, 1:47, 1 user, load average: 0.88, 8.31, 8.17
Tasks: 158 total, 9 running, 141 sleeping, B stopped, 8 zombie
Condsy10a Atug, B.0%sy, 0.0%n1, 0.0%id, 0.0%wa, 06.0%hi, ©0.0%si, 0.6
« total, 2801172K used, 13G61l0700K Tree, 256K buffers
M PI ¢ total, Ok used, Ok free, 2268568k cached

PR NI

%CPU SMEM TIME+ COMMAND

L

I:) 25 a 187m 5584 3484 R lee.2 8.8 B:05.45 diTTusion-mpi
rocs 25 @ 187m 5512 3492 R 1e6.2 8.0 @:85.46 diffusion-mpi
] 25 a 187m 5588 3488 R lée.2 8.8 B:05.46 diTTusion-mpl
18292 ljdursi 25 @ 187m 5588 3556 R 99.9 0.0 0:05.40 diffusion-mpi
18394 1jdursl 25 a l18ym 5584 3488 R 99.9 6.8 8:05.45 ditTTuslon-mpl
18396 ljdursi 25 @ 187m 5512 3492 R 99.9 0.0 9:85.45 diffusion-mpi
18398 1ljdursi 25 8 18/m 5088 3480 R 99.9 8.8 8:02.43 diffusion-mpl
18399 ljdursi 25 @ 187m 5512 3492 R 99.9 0.0 9:05.46 diffusion-mpi
1 root 15 g 18344 f48 6l2 5 6.8 6.8 8:81.45 1mlit

2 root RT -5 o 3 85 0.8 6.8 0:00.88 migration/0

3 root 34 19 3] e 8 sS 8.8 0.8 0:00.00 ksoftirgd/o

4 root RT -5 e e e s 0.8 0.9 9.00.80 watchdogs/9

5 root RT -5 (4] 2] @5 8.0 0.8 ©0:00.0]1 migration/1

B root 34 19 o o 5 9.8 0.9 0:00,.01 ksoftirgd/1

e B WL
h Pard x

Hag SHTMEEE L omrang

Shared
Memory:NUMA

e Complicating things: each core
typically has some of its own
memory

* Non-Uniform Memory Access
e Locality still matters
e Cores have cache, too.

e Keeping this memory coherent
is extremely challenging

SciNet Parallel Scientific Computing Course

Aug 31 - Sept 4, 2009

x[20] = 3

Coherency

* The different levels of memory

imply multiple copies of some
regions

e Multiple cores mean can
update unpredictably

* Very expensive hardware

* Hard to scale up to lots of
Bl processors, very $$%

* Very simple to program!!

SciNet Parallel Scientific Computing Course

Aug 31 - Sept 4, 2009

Latency Bandwidth
. | Gb/s
GigE 10 ps (~60 ns/double)
| 2-10 Gb/s
Infiniband 2651 (~10 ns/double)
NUMA 0.1 us 10-20 Gb/s
Shared Mem ' (~4 ns/double)

Processor speed: | FLOP ~ ns or less

"

SCiflet

Big Lesson #3

The best approach to parallelizing your
problem will depend on both details of your
problem and of the hardware available.

|

Sciet

Distributed

e Several attempts at making
cluster memories look like a big
shared memory

e Coherence much harder
e Large overhead

* Hides performance cost of going
“off-box’
A a8

SCilet

Hybrid
Architectures

e Almost all of the biggest
computers are now clusters of
shared memory nodes

e Generally just use message
passing across all cores, but as P
(I node) goes up, hybrid

1 approaches start to make sense.

Sciflet

Hands On |

e Due by start of this
afternoon

e ‘Submit’ by leaving files in a
subdirectory ‘nw1’ on the
cluster

mkdir ~/hwl

Calculate the speedup as a function of
PN for the better summation example.
Put in ‘speedup. txt’

Where would you expect performance
to turn over on a modern machine using
Infiniband? Shared memory? GigE!?

cd ~/pcalsrc/gettingstarted/ and make
omp hello world and run it

make mpi hello world and run it

qsub -l -X into your reserved node and
ensure this works

Put all outputs in the hwl directory.

SCiet

