
Welcome!



Introduction to Parallel 
Computing

Course Overview, and The ‘Big Picture’



The Course



Main Goal

• Students arriving with scientific computing 
background should be able to leave and 
immediately start parallelizing their codes.



Parallel Computing is 
Necessary

• As computing capacity goes up, bar rises for 
cutting edge simulation work (higher 
resolution, more physics, longer runs)

• Modern experiments or observations with 
bigger instruments - vastly more data to be 
processed

• Modern simulations or data processing 
requires parallel computation



• Parallel programming used to be needed 
only for the very largest computations or 
data sets

• Now, most laptops have two computing 
cores - independent (more or less) CPUs

• Modern simulations or data processing 
requires parallel computation

Parallel Computing is 
Everywhere



“Increasingly, we are discussing how to scale performance to 
core counts that we aren’t yet shipping (but in some cases 
we’ve hinted heavily that we’re heading in this direction).  
Dozens, hundreds, and even thousands of cores are not unusual 
design points around which the conversations meander.”

                           --Anwar Ghuloum, June 30, 2008,

http://blogs.intel.com/research/2008/06/unwelcome_advice.php

http://blogs.intel.com/research/2008/06/unwelcome_advice.php
http://blogs.intel.com/research/2008/06/unwelcome_advice.php


Why multicore?
• Moore’s Law didn’t promise us 

clock speed.

• More transistors but getting 
hard to push clock speed up

• So more cores at fixed clock 
speed



There are real 
engineering 
reasons why 

CPU speed has 
flatlined



Parallel Computing:

• it’s Necessary

• it’s Everywhere

• it’s Only Going to Get Worse



Schedule

OpenMP 2 Map 
Making

NBody I Other 
approaches
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course



What will we be doing here

• This is a short course on parallel 
programming

• After (or during!) each lecture session 
there will be a hands on session where you 
will work on projects to help build skills 
with OpenMP, MPI.



Parallel Computing
I: Concurrency,  Amdahl’s Law, and Locality



Why Parallel 
Computing?

• Faster: 

• At any given time, there is a 
limit as to how fast one 
computer can compute.

• So use more computers!



Why Parallel 
Computing?

• Bigger: 

• At any given time, there is a 
limit as to how much 
memory, disk space, etc can be 
put on one computer.

• So use more computers!



Why Parallel 
Computing?

• More: 

• You have a program that runs 
in reasonable time one one 
processor but you want to 
run it thousands of times.

• So use more computers!



Concurrency
• Must be something for the 

‘more computers’ to do.

• Must be able to find 
concurrency in your problems

• Many Tasks

• Order Unimportant

http://flickr.com/photos/splorp/

http://flickr.com/photos/splorp/
http://flickr.com/photos/splorp/


Data Dependancies Limit 
Concurrency



Parameter Study: 
Ideal case

• Want to know all results as 
model parameter varies

• Can run serial code on up to 
as many processors as 
parameter sets

• ‘More’

µ = 1 µ = 2 µ = 3 µ = 4

Answer Answer Answer Answer



Throughput = 
Tasks/Time

• How long it takes to process 
the N tasks you want done

• For completely independent 
tasks, P processors can increase 
throughput by factor P!

vs

throughput =
N

time



Scaling with P
• How a problem scales: how 

throughput behaves as 
processor number increases

• In this case, the throughput 
scales linearly with the 
number of processors

• This is the best case

• `Perfect scaling’
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Scaling with P
• Another way to look at it: 

time it takes to get some fixed 
amount of work done

• More usual (and more 
important!)

• Perfect scaling: time to 
completion ~ 1/P

• P procesors - P times faster
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Parameter Study: 
‘Embarrassingly 

Parallel’
• Scales perfectly up to P=N

• Speedup = P: ‘linear scaling’, 
ideal case.

µ = 1 µ = 2 µ = 3 µ = 4

Answer Answer Answer Answer



Problems Differ in 
amount of 

Concurrency
• Integrate (or some other 

simple processing) tabulated 
experimental data

• Integration of different regions 
can be summed by each 
processor

• But first need to get data to 
processor, then bring together 
all the sums 

Region
1

Region
2

Region 
3

Region 
4

Reduction

Answer

Partition Data



Region
1

Region
2

Region 
3

Region 
4

Reduction

Answer

Partition Data

Parallel Portion:
Perfectly Parallel (as 

long as there is 
enough work)

T ~ 1/P



Region
1

Region
2

Region 
3

Region 
4

Reduction

Answer

Partition Data

Serial Portion:
Sum has to be 

done; if done on one 
processor, just same 

as serial:
T ~ const



Answer

Region
1

Region
2

Region 
3

Region 
4

Reduction

Partition Data

Parallel Overhead:
Data has to be sent to 

appropriate processor, a 
cost of the parallel 

implementation

T const (best case)
or increasing fn of P



Total Time: Serial 
+ Parallel

• Ignoring data-moving costs 
(for now):

• Typically linear in P (sum)

• Eventually, as problem 
becomes increasingly scaled 
up, serial term dominates

Answer

Region
1

Region
2

Region 
3

Region 
4

Reduction

Partition Data

time(N, P ) =
⌊

N

P

⌋
Twork + Treduction(P )



Timing of 
simple case

• Ignore data transfer costs; say:

• 100 s in integration work

• 5 s in assembling the parts

• How does this behave on 
many processors?



More processors per 
run don’t always help

• Given timing data, how do we 
choose P to run on if we have N 
programs to run?

• Ideal case, timing goes down 1/P 
- doesn’t matter

• Serial part (5%!) becomes a 
bottleneck

• Can improve throughput by 
running on fewer processors

Note: t(50) = 7s
t(25) = 9s

Can run 2 jobs on 25 procs each
in about same time as one on 50!



Speedup: How 
much faster 

with P procs?
• An important concept is the 

speedup of a given parallel 
implementation

speedup =
t(N, P )

t(N, P = 1)



Efficiency: 
Speedup should 

be ~ P
• Related concept: Parallel 

Efficiency (compared to serial 
code)

Efficiency =
t(N, P )

Pt(N, P = 1)



Amdahl’s Law
• Any serial part of 

computation will 
eventually dominate

• If serial fraction is f, even if 
parallel component goes to 
zero, speedup can only be 1/f

time(N, P ) ∼
(

f +
1− f

P

)

Speedup =
1(

f + 1−f
P

)

lim
P→∞

Speedup =
1
f

lim
P→∞

Efficiency = 0

(perfectly)
parallel fraction

serial
fraction



Amdahl’s Law
• Any serial part of 

computation will 
eventually dominate

• If serial fraction is f, even if 
parallel component goes to 
zero, speedup can only be 1/f



Avoiding 
Amdahl

• In some cases, may not matter.

• If will run in reasonable time 
on some small number of  
processor, asymptotic 
arguments may not matter.

Answer

Region
1

Region
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Reduction

Partition Data



Trying to Beat 
Amdahl, #1

• Rewrite serial portions to 
take into account parallelism

• eg, many reductions can be 
done in parallel that will cost 
log2(P) (not 1, but much better 
than serial = P...)

Answer

Region
1

Region
2

Region 
3

Region 
4

Partition Data



Trying to Beat 
Amdahl, #1

• Redo approach to avoid serial 
portions wherever possible.

• Means some models don’t 
scale well - serial bottleneck

• Master task does disk I/O

• Master task assigns work to 
workers.  (But SETI@Home?)

Workers

Master
Task
List



Big Lesson #1

Optimal Serial Algorithm for your problem 
may not be the P→1 limit of your optimal 

Parallel algorithm



Consequences of BL#1
• P=1 parallel code will be slower than best serial code

• May be cheaper to re-compute values than send them 
(Time to send a float ~4-1000x time to multiply a float)

• As long as overhead is a small fraction of serial time for 
any reasonable N and doesn’t depend on P,  you’re ok.

• (If cost ~ P, might as well be serial!)



Trying to Beat Amdahl, #2 - 
Upsize

• Desktop problem isn’t a 
supercomputer problem!

• Reason to run on big machines is 
size as well as speed

• Amdahl’s law assumes constant 
size problem

• More work; f goes down.

• Gustafson’s law: any sufficiently 
large problem can be efficiently 
parallelized.



Weak Scaling
• How does problem behave if 

you expand problem size as 
number of processors? 

• Strong Scaling - on how many 
processors can you efficiently 
run given problem

• Weak Scaling - how large a 
problem can you efficiently 
run



More on 
Concurrency

• Most problems are not pure 
concurrency 

• Some level of synchronization, 
exchange of information 
needed between tasks

• This needs to be minimized

• Increases Amdahl’s ‘f ’

• Are themselves costly

µ = 1 µ = 2 µ = 3 µ = 4

Synchronization

Synchronization

Synchronization



Concurrency
• Makes possible lots of wasted 

time (‘load balancing’, about 
which more later)

µ = 1 µ = 2 µ = 3 µ = 4

Synchronization

Synchronization

Synchronization



Locality
• Information needed by the task 

should be as local as possible.

• When tasks do need to interact, 
best that those interactions be as 
local as possible, and with as few 
others as possible

• Communications cost lower

• Fewer processes have are locked 
up during the necessary 

µ = 1



Big Lesson #2

Parallel code design is about finding as much 
concurrency as possible, and arranging it in a 

way that maximizes locality.



Finding 
Concurrency

• Identify tasks that can be done 
independently, order doesn’t 
matter 

• Our tasks - some options 
fairly clear

• Hydro: parts of domain

• Mapmaking: parts of map

• N-body: particles (or 
interactions)



Maintaining 
Locality

• Now have to lump the 
concurrent bits into tasks

• Choosing that re-aggregation 
can greatly effect locality.

p = 9L

p = 4L



Example: 1d 
integration

• Integrate a 1d function with 
(say) Simpson’s rule, with N 
points.

• Concurrency: can do each of 
the points indepandently, then 
sum.

• Locality: have each do a chunk
CPU1

CPU2
CPU3



Example: 1d 
integration

• Each processor gets N/P 
points to do 

• Total compute time for one 
process:

• Now how to do sums? CPU1

CPU2
CPU3

Tcomp =
(

N

P

)
NSRCcomp



Example: 1d 
integration

• Each processor sends partial 
sums to others, then all can do 
total

• Each processor sends its 
result (P-1) times and receives 
(P-1) results 

sum1
sum2
sum3

sum1
sum2
sum3

sum1
sum2
sum3

CPU1 CPU2 CPU3

total total total

+ + +

Tcomm = 2(P − 1)Ccomm



Integration 
with parallel 

costs:

N = 10000, Nsr=4, 
Ccomm/Ccomp = 100

• Can actually get worse with P!

• Communication cost increases 
with P



Integration 
with parallel 

costs:

N = 10000, Nsr=4, 
Ccomm/Ccomp = 100

• Can actually get worse with P!

• Communication cost increases 
with P



Communication
-to-

Computation ratio
• We want this to be (ideally) 

constant in P, or at least grow 
slowly; otherwise as we scale 
up, we spend more time 
sending messages than 
computing.

If NSR ~ 4, Ccomm ~ 1000 Ccomp, 
N = 10000, then

Tcomm/Tcomp ~ 1.2 for P=16

Tcomm

Tcomp
=

2(P − 1)Ccomm
N
P NSRCcomp

=
2P (P − 1)

N

1
NSR

Ccomm

Ccomp

∼ P 2



Better 
Summing

• Pairs of processors; send 
partial sums 

• Total messages log2(P)

• Messages per proc; log2(P)/P

• Can repeat to send total back

sum1

CPU1 CPU2 CPU3

sum2

sum1
+sum2

sum3

CPU4

sum4

sum3
+sum4

sum1
+sum2
+sum3
+sum4
=total

Reduction; works for
a variety of operators 

(+,*,min,max...)

Tcomm = 2 log2(P )Ccomm



Speedup with 
reduction

• Very good!  Efficiency still 
falling off past 20 or so 
processors

• (But integrating 10,000 
numbers...)



Speedup with 
reduction

• with 1,000,000 numbers...



Communication
-to-

Computation ratio
• Much better!

• As number of processors goes 
up, relative cost of 
communications goes up only 
logarithmically.

If NSR ~ 4, Ccomm ~ 100 Ccomp, N 
= 10000, then 

Tcomm/Tcomp ~ 0.08 for P=16

Tcomm

Tcomp
=

2 log2(P )Ccomm
N
P NSRCcomp

=
2P log2(P )

N

1
NSR

Ccomm

Ccomp

∼ P log2(P )



Parallel Computing
II: Parallel Computers



Top500.org:

List updated every
6 months of the
worlds 500 largest
supercomputers.

Info about 
architecture, ...

1 Petaflop (1015 flop/s); 
126,600 cores



Computer 
Architectures

• How the computers work 
shape how best to progam 
them

• Shared Memory vs 
Distributed Memory.

• Vector computers...



Distributed 
Memory: 
Clusters

• Simplest type of parallel 
computer to build



Distributed 
Memory: 
Clusters

• Simplest type of parallel 
computer to build

http://flickr.com/photos/eurleif/

• Take existing powerful 
standalone computers

http://flickr.com/photos/eurleif/
http://flickr.com/photos/eurleif/


Distributed 
Memory: 
Clusters

• Simplest type of parallel 
computer to build

http://flickr.com/photos/eurleif/

• Take existing powerful 
standalone computers

• And network them

+

http://flickr.com/photos/eurleif/
http://flickr.com/photos/eurleif/


Each Node is 
Independent

• Parallel code consists of 
programs running on separate 
computers, communicating 
with each other 

• Could be entirely different 
programs

CPU1

CPU2

CPU3

CPU4



Each node has 
independent 

memory
• Locally stores its own portion 

of problem

• Whenever it needs 
information from another 
region, requests it from 
appropriate CPU

• Usual model: ‘message passing’

CPU1

CPU2

CPU3

CPU4

Memory



Clusters 
+Message 
Passing

• HW: Easy to build (harder to 
build well)

• HW: Can build larger and 
larger clusters relatively easily

• SW: Every communication has 
to be hand coded -- hard to 
program

CPU1

CPU2

CPU3

CPU4

Memory



Latency Bandwidth

GigE

Infiniband

~10 µs
1 Gb/s

(~60 ns/double)

~2 µs
2-10 Gb/s

(~10 ns/double)

Processor speed: 1 FLOP ~ few ns or less



Shared Memory
• One large bank of memory, 

different computing cores 
acting on it.  All ‘see’ same data

• Any coordination done 
through memory.

• Could do like before, but why?

• Each core is assigned a thread 
of execution of a single program 
that acts on the data

Core1

Core2

Core3

Memory



Thread Vs. 
Process

• Processes: Independant tasks 
with their own memory, 
resources

• Threads: Threads of execution 
within one process, ‘seeing’ 
the same memory, etc.

MPI
Procs

OMP
Threads



Shared 
Memory:NUMA

• Complicating things: each core 
typically has some of its own 
memory

• Non-Uniform Memory Access

• Locality still matters

• Cores have cache, too.

• Keeping this memory coherent 
is extremely challenging

Memory



Coherency
• The different levels of memory 

imply multiple copies of some 
regions

• Multiple cores mean can 
update unpredictably

• Very expensive hardware

• Hard to scale up to lots of 
processors, very $$$

• Very simple to program!!

x[20] = 3

x[20] = ?



Latency Bandwidth

GigE

Infiniband

NUMA 
Shared Mem

~10 µs
1 Gb/s

(~60 ns/double)

~2 µs
2-10 Gb/s

(~10 ns/double)

~0.1 µs
10-20 Gb/s

(~4 ns/double)

Processor speed: 1 FLOP ~ ns or less



Big Lesson #3

The best approach to parallelizing your 
problem will depend on both details of your 

problem and of the hardware available.



Distributed 
Shared Memory
• Several attempts at making 

cluster memories look like a big 
shared memory

• Coherence much harder

• Large overhead 

• Hides performance cost of going 
`off-box’



Hybrid 
Architectures

• Almost all of the biggest 
computers are now clusters of 
shared memory nodes

• Generally just use message 
passing across all cores, but as P
(1 node) goes up, hybrid 
approaches start to make sense.



Hands On I
• Due by start of this 

afternoon

• ‘Submit’ by leaving files in a 
subdirectory ‘hw1’ on the 
cluster

•  mkdir ~/hw1

• Calculate the speedup as a function of 
P,N for the better summation example.   
Put in ‘speedup. txt’

• Where would you expect performance 
to turn over on a modern machine using 
Infiniband?   Shared memory?   GigE? 

• cd  ~/pca/src/gettingstarted/ and make 
omp_hello_world and run it

• make mpi_hello_world and run it

• qsub -I -X into your reserved node and 
ensure this works

• Put all outputs in the hw1 directory.


