
Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Scientific data formats and
visualization of large datasets

Compute Ontario Summer School, May 2013

Alex Razoumov
razoumov@sharcnet.ca

SHARCNET/UOIT

copy of these slides in
http://razoumov.sharcnet.ca/paraview.pdf

data and sample C++, Fortran, Python codes in
http://razoumov.sharcnet.ca/visualization.tar.gz
(two directories inside: code/ and data/)

(SHARCNET/UOIT) winter 2011 1 / 61

http://razoumov.sharcnet.ca/paraview.pdf
http://razoumov.sharcnet.ca/visualization.tar.gz

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Visualization in different fields

FIELD VISUALIZATION TYPE

computational fluid dynamics 2D/3D flows, density, temperature, tracers

climate, meteorology, oceanography fluid dynamics, clouds, chemistry, etc.

quantum chemistry wave functions

molecular dynamics (phys, chem, bio) particle/molecular data

bio-informatics networks, trees, sequences

astrophysics gravitational fields, 2D/3D fluids, ≤6D ra-
diation field, magnetic fields, particle data

geographic information systems digital elevation, rivers, etc.

medical imaging MRI, CT scans, ultrasound

info-vis abstract data

(SHARCNET/UOIT) winter 2011 2 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

1D plotting vs. 2D/3D visualization

1D plotting: plotting functions of one variable, 1D tabulated data
• something as simple as gnuplot or pgplot
• highly recommend: Python’s Matplotlib library, other Python libraries

2D/3D visualization: displaying multidimensional datasets, typically
data on 2D/3D structured grids or on unstructured meshes (that have
some topology in 2D/3D)

Whatever you do, try to avoid proprietary tools, unless those tools
provide a clear advantage (most likely not)
• large $$
• limitations on where you can run them, which machines/platforms, etc.
• cannot get help from open-source community, user base usually smaller

than for open-source tools
• once you start accumulating scripts, you lock yourself into using these tools

forever, and consequently paying $$ on a regular basis
• there is nothing you cannot do with open-source tools
• examples of closed proprietary tools: IDL, Matlab

(SHARCNET/UOIT) winter 2011 3 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Matplotlib example
Adaptive Simpson integration

from pylab import ∗
from adaptive import basicSimpson , p a r t i t i o n , simpsonAdaptive
def f (x) :

re turn s i n (1 . / x)

simpsonAdaptive (f , 0 . 1 , 5 . , 1 . e−5)

(SHARCNET/UOIT) winter 2011 4 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Adaptive Simpson integration (cont.)

Driver script that calls partition (next page) and plots the function
and the grid points used in integration

def simpsonAdaptive (f , a , b , maxError) :
g loba l k , x , in tegra lArray , errorArray
k = 0
x = zeros (1 0 0 0)
in te gr a lA rr ay = zeros (1 0 0 0)
errorArray = zeros (1 0 0 0)
p a r t i t i o n (f , a , b , maxError)
x [k] = b
p r i n t ’number of i n t e r v a l s = ’ , k
p r i n t ’ t o t a l i n t e g r a l = ’ , sum(i n t eg ra l Ar ra y [0 : k +1])
p r i n t ’ t o t a l e r r o r <= ’ , sum(errorArray [0 : k +1])
xmesh = x [0 : k+1]
ymesh = f (xmesh)
p l o t (xmesh , ymesh , ’ ro ’)
p l o t (xmesh , ymesh−ymesh , ’ kx ’)
xx = l i n s p a c e (a , b , 1 0 0 0)
yy = f (xx)
p l o t (xx , yy , ’ b− ’)
re turn

(SHARCNET/UOIT) winter 2011 5 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Adaptive Simpson integration (cont.)

def p a r t i t i o n (f , a , b , maxError) :
g loba l k , x , in tegra lArray , errorArray
i n t e g r a l , e r r o r = basicSimpson (f , a , b)
i f abs (e r r o r) > maxError :

midpoint = 0 . 5∗ (a+b)
p a r t i t i o n (f , a , midpoint , maxError)
p a r t i t i o n (f , midpoint , b , maxError)

e l s e :
p r i n t ’ i n t e r v a l = ’ , a , b , ’ −−> ’ , i n t e g r a l , e r r o r
x [k] = a
in te g r a l Arr ay [k] = i n t e g r a l
errorArray [k] = e r r o r
k += 1

return

def basicSimpson (f , a , b) :
quar ter = 0 . 2 5∗ (b−a)
x1 = a
x2 = x1 + quarter
x3 = x2 + quarter
x4 = x3 + quarter
x5 = b
f1 = f (x1) ; f2 = f (x2) ; f3 = f (x3) ; f4 = f (x4) ; f5 = f (x5)
s = (b−a)∗ (f1 +4.∗ f3+f5) / 6 .
e r r o r = 4 . / 4 5 . ∗ (b−a) ∗ abs (f1+f5 −4.∗(f2+f4)+6 .∗ f3)
re turn s , e r r o r

>>> from pylab import ∗
>>> def f (x) :
. . . re turn 1 . / ((x−0.3)∗∗2+0.01) + 1 . / ((x−0.9)∗∗2+0.04)
. . .

>>> basicSimpson (f , 0 . , 1 .)
(22 .196078431372545 , 20 .292951775304719)

(SHARCNET/UOIT) winter 2011 6 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Python Imaging Library (PIL) example
Edge detection using numerical differentiation

(SHARCNET/UOIT) winter 2011 7 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Edge detection using numerical differentiation (cont.)

import Image as im
a = im . open (" f i g u r e s / f u j i 1 . png ") # load image data from f i l e
from pylab import ∗
nx = shape (a) [0]
ny = shape (a) [1]

c = a . load ()
b_array = zeros ((nx , ny) , dtype= i n t)
f o r i in range (0 , nx) :

f o r j in range (0 , ny) :
b_array [i , j] = c [i , j] [2] # s t o r e blue p i x e l s in a 2D matrix

gr = gradient (b_array) # use only the blue band f o r edge d e t e c t i o n
p r i n t shape (gr)
p r i n t shape (gr [0]) , shape (gr [1])
gradientNormSquared = gr [0]∗∗2 + gr [1]∗∗2

f o r i in range (0 , nx) :
f o r j in range (0 , ny) :

value = i n t (gradientNormSquared [i , j])
value = min (value , 2 5 5)
c [i , j] = (255−value ,255−value ,255−value)

a . show () # display image

(SHARCNET/UOIT) winter 2011 8 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Matplotlib gallery contains hundreds of examples

http://matplotlib.sourceforge.net/gallery.html
click on any plot to get its source code

(SHARCNET/UOIT) winter 2011 9 / 61

http://matplotlib.sourceforge.net/gallery.html

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Other Python graphics and visualization libraries

For more examples, see http://python.org, search for “visualization”

Few other notable examples:

PACKAGE DESCRIPTION

MayaVi2 scientific data 3D visualizer (Python + VTK)

yt analysis and visualization toolkit for astrophysical simula-
tions, focusing on AMR data from Enzo, Orion, FLASH, etc.

neuronvisio GUI for NEURON simulator enviroment

VPython 3D graphics library

PyVisfile storing data in a variety of scientific visualization file formats

PyVTK tools for manipulating VTK files in Python

ScientificPython various Python modules for scientific computing and
visualization

chaco interactive 2D plotting

(SHARCNET/UOIT) winter 2011 10 / 61

http://python.org

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

2D/3D visualization packages

http://www.sharcnet.ca/my/software

Open-source, multi-platform, and general-purpose:
• visualize scalar and vector fields
• structured and unstructured meshes in 2D and 3D, particle data, polygonal

data, irregular topologies
• ability to handle very large datasets (GB-TB)
• support for scripting, common data formats, parallel I/O (optional)
• iteractive manipulation

(1) OpenDX 4.4.4 – used to be installed on vizN-site (until few months ago)

(2) VisIT 2.2.2 – installed on vizN-site

(3) ParaView 3.6 - 3.8 (latest is 3.10.1) – installed on rainbow, vizN-site
(SHARCNET/UOIT) winter 2011 11 / 61

http://www.sharcnet.ca/my/software

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

OpenDX = Open Visualization Data Explorer

http://www.opendx.org

Started in 1991 at IBM, released
as open source in 1999, latest
v4.4.4 from 2006-Aug . . .

Windows/Linux binaries free,
need to compile on Mac
(available in darwinports/fink)

Based on the Motif widget
toolkit on top of X11

Interactive Visual Program
Editor http://www.research.ibm.com

(SHARCNET/UOIT) winter 2011 12 / 61

http://www.opendx.org
http://www.research.ibm.com

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

VisIT

http://wci.llnl.gov/codes/visit

Developed by the Department of Energy (DOE) Advanced Simulation and Computing
Initiative (ASCI) to visualize results of terascale simulations

v2.6.2 available as source and binary for Linux/Mac/Windows
Over 60 visualization features (contour, mesh, slice, volume, molecule, ...)
Reads over 60 different file formats
Interfaces with C++, Python, and Java

Lawrence Livermore National Laboratory

(SHARCNET/UOIT) winter 2011 13 / 61

http://wci.llnl.gov/codes/visit

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

ParaView

http://www.paraview.org

Developed jointly by Sandia National Labs + Los Alamos National Lab +
Kitware Inc.
Latest binary release 3.98.1 (2013-Feb), available for Linux/Mac/Windows

To visualize extremely large datasets on distributed memory machines
Both interactive and Python scripting
ParaView is based on VTK (Visualization Toolkit); not the only VTK-based open-source
scientific visualizer, e.g. also see MayaVi (written in Python + numpy + scipy + VTK); note
that VTK can be used from C++, Tcl, Java, Python as a standalone renderer

(SHARCNET/UOIT) winter 2011 14 / 61

http://www.paraview.org

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Why ParaView for this course?

A lot of interest in ParaView among HPC users

In my experience, ParaView is less buggy and more feature-rich than
VisIT

Wide binary availability, active development

Tight integration with VTK (developed by the same folks)

Support for over 130 input file formats

Comes with many filters and plugins, including a Mobile Remote plugin
to control ParaView from an iOS device (KiwiViewer)

Not that I discourage you from using VisIT or other open-source
packages

(SHARCNET/UOIT) winter 2011 15 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Online resources

ParaView on SHARCNET
http://www.sharcnet.ca/my/software/show/67
https://www.sharcnet.ca/help/index.php/ParaView

ParaView official documentation
http://www.paraview.org/OnlineHelpCurrent

ParaView wiki http://www.paraview.org/Wiki/ParaView

ParaView/Python batch scripting
http://www.paraview.org/Wiki/ParaView/Python_Scripting

VTK tutorials http://www.itk.org/Wiki/VTK/Tutorials

(SHARCNET/UOIT) winter 2011 16 / 61

http://www.sharcnet.ca/my/software/show/67
https://www.sharcnet.ca/help/index.php/ParaView
http://www.paraview.org/OnlineHelpCurrent
http://www.paraview.org/Wiki/ParaView
http://www.paraview.org/Wiki/ParaView/Python_Scripting
http://www.itk.org/Wiki/VTK/Tutorials

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

ParaView architecture

Three logical units of ParaView – these units can be embedded in the same
application on the same computer, but can also run on different machines:

Data Server – The unit responsible for data reading, filtering, and
writing. All of the pipeline objects seen in the pipeline browser are
contained in the data server. The data server can be parallel.

Render Server – The unit responsible for rendering. The render server
can also be parallel, in which case built in parallel rendering is also
enabled.

Client – The unit responsible for establishing visualization. The client
controls the object creation, execution, and destruction in the servers, but
does not contain any of the data, allowing the servers to scale without
bottlenecking on the client. If there is a GUI, that is also in the client. The
client is always a serial application.

(SHARCNET/UOIT) winter 2011 17 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Two major workflow models

standalone mode

client-server mode: pvserver on a parallel machine

(SHARCNET/UOIT) winter 2011 18 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

User interface

Pipeline Browser: reading and filtering of data
Object Inspector: view and change parameters of the current pipeline object (properties -
display - information)
View window

Find the following in the toolbar: “Connect”, “Disconnect”, “Toggle Color Legend Visibility”,
“Edit Colour Map”, “Rescale to Data Range”

(SHARCNET/UOIT) winter 2011 19 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Data sources

Generate data with a Source object
Read data from a file

Somewhat incomplete list of file readers:
http://paraview.org/OnlineHelpCurrent/ParaViewReaders.html

(SHARCNET/UOIT) winter 2011 20 / 61

http://paraview.org/OnlineHelpCurrent/ParaViewReaders.html

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Example: reading raw (binary) data

Show f (x, y, z) = (1− z)
[
(1− y) sin(πx) + y sin(2πx)2]

+z
[
(1− x) sin(πy) + x sin(2πy)2] in x, y, z ∈ [0, 1] sampled at 163

1 File: data/raw/simpleData.raw – load it as RAW BINARY
2 Describe the dataset in properties:

• Data Scalar Type = float
• Data Byte Order = Little Endian
• File Dimensionality = 3
• Data Extent: 1 to 16 in each dimension
• Scalar Array Name = density

3 Try different views: outline, points, wireframe, ...
4 Depending on the view, can set:

• Rescale to Data Range
• Edit Color Map

5 Try saving data as paraview data type (*.pvd), deleting the object, and
reading back from *.pvd – file now contains full description of dataset

(SHARCNET/UOIT) winter 2011 21 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

VTK = Visualization Toolkit

Open-source software system for 3D computer graphics, image
processing and visualization

Bindings to C++, Tcl, Java, Python

ParaView is based on VTK⇒ supports all standard VTK file formats

VTK file formats
http://www.vtk.org/VTK/img/file-formats.pdf
• legacy serial format (*.vtk): ASCII header lines + ASCII/binary data
• XML formats (newer, much preferred, supports parallel file I/O, extension

depends on data type): XML tags + ASCII/binary/compressed data

(SHARCNET/UOIT) winter 2011 22 / 61

http://www.vtk.org/VTK/img/file-formats.pdf

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

VTK 3D data: 6 major dataset (discretization) types

Image Data/Structured Points: *.vti, points on a
regular rectangular lattice, scalars or vectors at
each point

Rectilinear Grid: *.vtr, same as Image Data, but
spacing between points may vary, need to
provide steps along the coordinate axes, not
coordinates of each point

Structured Grid: *.vts, regular topology and
irregular geometry, need to indicate coordinates
of each point

(SHARCNET/UOIT) winter 2011 23 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

VTK 3D data: 6 major dataset (discretization) types

Particles/Unstructured Points: *.particles

Polygonal Data: *.vtp, unstructured topology
and geometry, point coordinates, 2D cells only
(i.e. no polyhedra), suited for maps

Unstructured Grid: *.vtu, irregular in both
topology and geometry, point coordinates,
2D/3D cells, suited for finite element analysis,
structural design

(SHARCNET/UOIT) winter 2011 24 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

VTK 3D data: dataset attributes

Each VTK file can store a number of datasets, each with one of the
following attributes

• Scalars: single valued, e.g. density, temperature, pressure

• Vectors: magnitude and direction, e.g. velocity

• Normals: direction vectors (|n| = 1) used for shading

• LookupTable: each entry in the lookup table is a red-green-blue-alpha array
(alpha is opacity: alpha=0 is transparent); if the file format is ASCII, the
lookup table values must be float values in the range [0,1]

• TextureCoordinates: used for texture mapping

• Tensors: 3× 3 real-valued symmetric tensors, e.g. stress tensor

• FieldData: array of data arrays

(SHARCNET/UOIT) winter 2011 25 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Example: reading legacy VTK

1 File: data/vtk/legacy/volume.vtk
• simple example (Structured Points): 3× 4× 6 dataset, one scalar field, one

vector field

2 File: data/vtk/legacy/density.vtk
• another simple example (Structured Grid): 2× 2× 2 dataset, one scalar field

3 File: data/vtk/legacy/cube.vtk
• more complex example (Polygonal Data): cube represented by six polygonal

faces. A single-component scalar, normals, and field data are defined on all
six faces (CELL_DATA). There are scalar data associated with the eight
vertices (POINT_DATA). A lookup table of eight colors, associated with the
point scalars, is also defined.

(SHARCNET/UOIT) winter 2011 26 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Exercise: visualizing 3D data with legacy VTK

If you have your own 3D scalar data ⇒ try writing it from
C/C++/Fortran/etc as a VTK ASCII legacy file (*.vtk) in structured
points format using volume.vtk as a template

If not ⇒ try visualizing a 3D “cylinder”
function

f (x, y, z) = e−[(r−0.4)2]0.5

where r =
√
(x− 0.5)2 + (y− 0.5)2,

or some other function of your choice,
inside the unit cube

In either case, try sampling it at some moderate resolution, e.g. 303, since
we are dealing with ASCII

(SHARCNET/UOIT) winter 2011 27 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Writing XML VTK from C++

You can write directly in legacy VTK using VTK libraries for C/C++

Here is an example: code/SGrid.C and code/Makefile, generates
the file data/vtk/xml/halfCylinder.vts
This example shows how to manually create a structured grid, set grid
coordinates, fill the grid with a scalar and a vector, and write it in XML
VTK to a *.vts file.

To run it, you need an installed VTK library (either standalone or pulled
from ParaView) – check code/Makefile to see which library files are
needed

export LD_LIBRARY_PATH=/path/to/vtk/ l i b : $LD_LIBRARY_PATH
cd code
make SGrid
./ SGrid

(SHARCNET/UOIT) winter 2011 28 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

NetCDF and HDF5

VTK is incredibly versatile format, can describe many different data types

More often than not, in science one needs to simply store and visualize
multidimensional arrays

Problem: how do you store a 20003 array of real numbers (30GB of data)?
• ASCII – forget about it

• raw binary – possible, but many problems

• VTK – probably an overkill, lacks some of the features below

Scientific data formats come to rescue, two popular scientific data
formats are NetCDF and HDF5
• binary (of course!)
• self-descriptive (include metadata)
• portable (cross-platform): universal datatypes, bit order in a byte (little vs.

big endian), etc.
• support parallel I/O
• optionally support compression

(SHARCNET/UOIT) winter 2011 29 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

NetCDF and HDF5 support in ParaView

NetCDF supported natively in ParaView (more about it in a minute)

No native support for HDF5, however, ParaView supports a container
format XDMF which uses HDF5 for actual data

Also support for a number of file formats generated by third-party
software that in turn use HDF5 underneath

(SHARCNET/UOIT) winter 2011 30 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

XDMF = eXtensible Data Model and Format

only briefly mention it, details at http://www.xdmf.org

XDMF = XML for light data + HDF5 for heavy data

• data type (float, integer, etc.), precision, rank, and dimensions completely
described in the XML layer (as well as in HDF5)

• the actual values in HDF5, potentially can be enormous

single XML wrapper can reference multiple HDF5 files (e.g. written by
each node on a cluster)

don’t need HDF5 libraries to perform simple operations

C++ API is provided to read/write XDMF data

also available from Python, Tcl, Java, Fortran through C++ calls

in Fortran can generate XDMF files with HDF5 calls + plain text for the
XML wrapper http://www.xdmf.org/index.php/Write_from_Fortran

(SHARCNET/UOIT) winter 2011 31 / 61

http://www.xdmf.org
http://www.xdmf.org/index.php/Write_from_Fortran

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

NetCDF

code/writeNetCDF.c (Fortran version code/writeNetCDF.f90)
writes a 303 volume with a doughnut shape at the centre in NetCDF

C example
module load netcdf/ i n t e l /4.2
i c c writeNetCDF . c −o writeNetCDF $CPPFLAGS $LDFLAGS −l n e t c d f
./ writeNetCDF

f90 example
module load netcdf/ i n t e l /4.2
i f o r t writeNetCDF . f90 −o writeNetCDF $CPPFLAGS $LDFLAGS −l n e t c d f f −l n e t c d f
./ writeNetCDF

(SHARCNET/UOIT) winter 2011 32 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Recap of input file formats

Now you know how to import data from your code:

Raw binary data

VTK legacy format (*.vtk) with ASCII data, looked at:

• Structured Points

• Structured Grid

• Polygonal Data

VTK XML formats from C++ writing binary data with VTK libraries,
looked at:

• Structured Grid (*.vts)

• other formats can be written using the respective class, e.g. vtkPolyData,
vtkRectilinearGrid, vtkStructuredGrid, vtkUnstructuredGrid

HDF5 files via XDMF, native NetCDF

(SHARCNET/UOIT) winter 2011 33 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Filters

Many interesting features about a dataset cannot be determined by simply
looking at its surface – a lot of useful information is on the inside, or can be
extracted from a combination of variables

Volumetric view - available only for Structured Points (regularly spaced grid)
among all VTK datasets.

Filters are functional units that process the data to generate, extract, or derive
additional features. The filter connections form a visualization pipeline.

Over 80 filters are currently available.

Check out “Filters” in the menu; some are found in the toolbar.

(SHARCNET/UOIT) winter 2011 34 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Toolbar filters

Calculator evaluates a user-defined expression on a per-point or per-cell basis.

Contour extracts user-defined points, isocontours, or isosurfaces from a scalar field.

Clip removes all geometry on one side of a user-defined plane.

Slice intersects the geometry with a plane. The effect is similar to clipping except that all
that remains is the geometry where the plane is located.

Threshold extracts cells that lie within a specified range of a scalar field.

Extract Subset extracts a subset of a grid by defining either a volume of interest or a
sampling rate.

Glyph places a glyph on each point in a mesh. The glyphs may be oriented by a vector and
scaled by a vector or scalar.

Stream Tracer seeds a vector field with points and then traces those seed points through the
steady state vector field.

Warp By Vector displaces each point in a mesh by a given vector field.

Group Datasets combines the output of several pipeline objects into a single multi-block
dataset.

Extract Level extracts one or more items from a multi-block dataset.

(SHARCNET/UOIT) winter 2011 35 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Calculator

Load one of the datasets, e.g. data/other/disk_out_ref.ex2 (load
temperature, velocity, pressure), and try to visualize individual variables:
Pres, Temp, V

In “Object Inspector” > “Display” use “Rescale to Data Range” and “Edit
Color Map ...” to see the data range

Now try to apply Calculator filter to display the following variables:
Pres/Temp, log10(Temp), mag(V) - pay attention to the data range

Dropdown menus “Scalars” and “Vectors” will help you enter variables

“?” button is surprisingly useful

You can change visibility of each object in the pipeline browser by
clicking on the eyeball icon next to it

(SHARCNET/UOIT) winter 2011 36 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Contour

Delete Calculator from the pipeline browser, load Contour

Create an isosurface where the temperature is 400 K

Try different views (Surface, Wireframe, ...)

(SHARCNET/UOIT) winter 2011 37 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Creating a visualization pipeline

You can apply one filter to the data generated by another filter

Delete all previous filters, start with the original data from
data/other/disk_out_ref.ex2, or just press “Disconnect” and reload
the data

1 apply Clip filter to the data: rotate, move the clipping plane, select
variables to display, make sure there are data points inside the object
(easy to see with points/wireframe, uncheck “Show Plane”)

2 delete Clip, now apply Filters→ Alphabetical→ Extract Surface, and
then add Clip to the result of Extract Surface⇒ the dataset is now
hollow (use wireframe/surface)

(SHARCNET/UOIT) winter 2011 38 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Multiview: several variables side by side

Start with original data (data/other/disk_out_ref.ex2), load all variables
Add the Clip filter, uncheck “Show Plane” in the object inspector, click
“Apply”
Color the surface by pressure by changing the variable chooser in the
toolbar from “Solid Color” to “Pres”
Press “Split horizontal”, make sure the view in the right is active (has a
blue border around it)
Turn on the visibility of the clipped data by clicking the eyeball next to
Clip in the pipeline browser
Color the surface by temperature by changing the toolbar variable
chooser from “Solid Color” to “Temp”
Can reset (fit/reposition) the view in either column by clicking “Reset”
To link the two views, right click on one of the views and select “Link
Camera...”, click in a second view, and try moving the object in each view
Can add colourbars to either view by clicking “Toggle Color Legend
Visibility”, try moving colourbars around

(SHARCNET/UOIT) winter 2011 39 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Vector visualization: streamlines and glyphs

Start with the original data from data/other/disk_out_ref.ex2,
load velocity, Temp
Add the Stream Tracer filter, play with Seed Type (“Point Source”, “Line
Source”), other parameters
Add shading and depth cues to streamlines: Filters→ Alphabetical→
Tube (could be also called Generate Tubes)
Add glyphs to streamlines to show the orientation and magnitude:
• select StreamTracer in the pipeline browser
• add the Glyph filter to StreamTracer
• in the object inspector, change the Vectors option (second from the top) to

“V”
• in the object inspector, change the Glyph Type option (third from the top) to

“Cone”
• hit “Apply”
• color the glyphs with the “Temp” variable

Now try displaying “V” glyphs directly from data, can colour them using
different variables (“Temp”, “V”)

(SHARCNET/UOIT) winter 2011 40 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Exercise: vectors
Load data/vtk/xml/halfCylinder.vts and display the velocity field as
arrows, colouring them by density – try to reproduce the view below

(SHARCNET/UOIT) winter 2011 41 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Word of caution

Many visualization filters transform stuctured grid data into
unstructured data (e.g. Clip, Slice)

Memory footprint and CPU load can grow very quickly, e.g. clipping
4003 to 150 million cells can take ∼ 1 hour on a single CPU ⇒ might
want to run in distributed mode

(SHARCNET/UOIT) winter 2011 42 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Volume Rendering

How can we do volumetric rendering of datasets where it’s not
available?
• “Volume” view is available only for Structured Points (regularly spaced

grid) and Unstructured Grid (3D “polygons”)

What about Structured Grid – try loading halfCylinder.vts and
doing volumetric rendering of density

(SHARCNET/UOIT) winter 2011 43 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Text Annotation

Select Sources→ Text, type in the text edit box of the object inspector, hit
“Apply”, edit Display properties
Sources→ 3D Text

(SHARCNET/UOIT) winter 2011 44 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Batch scripting for automating visualization

One can automate mundane or repetitive tasks or use ParaView without
GUI, complete documentation at
http://www.paraview.org/Wiki/ParaView/Python_Scripting

Tools→ Python Shell

[/usr/bin/ /usr/local/bin/ /Applications/paraview.app/Contents/bin/]
pvpython will give you a Python shell connected to a ParaView server
(local or remote) without the GUI

[/usr/bin/ /usr/local/bin/ /Applications/paraview.app/Contents/bin/]
pvbatch pythonScript.py is a serial (on some machines parallel) application
using local server

• great for making movies!

(SHARCNET/UOIT) winter 2011 45 / 61

http://www.paraview.org/Wiki/ParaView/Python_Scripting

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

First script

Bring up Tools→ Python Shell
“Run Script” code/displaySphere.py

displaySphere.py

from paraview . simple import ∗

sphere = Sphere () # c r e a t e a sphere p i p e l i n e o b j e c t

p r i n t sphere . ThetaResolut ion # p r i n t one of the a t t r i b u t e s of the sphere
sphere . ThetaResolut ion = 16

Show () # turn on v i s i b i l i t y of the o b j e c t in the view
Render ()

Can always get help from the command line

help (paraview . simple)
help (sphere)
help (Sphere)

(SHARCNET/UOIT) winter 2011 46 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Using filters

“Run Script” code/displayWireframe.py

displayWireframe.py

from paraview . simple import ∗

sphere = Sphere (ThetaResolut ion =36 , PhiResolut ion =18)

wireframe = ExtractEdges (Input=sphere) # apply E x t r a c t Edges to sphere

Show () # turn on v i s i b i l i t y of the l a s t o b j e c t in the view
Render ()

Now try replacing Show() with Show(sphere)

(SHARCNET/UOIT) winter 2011 47 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Reading from files

“Run Script” code/readDiskOutRef.py (change the path!)

readDiskOutRef.py

from paraview . simple import ∗
path = ’/ Users/razoumov/Dropbox/ v i s u a l i z a t i o n /data/other / ’
reader = ExodusIIReader (FileName=path + ’ d i s k _ ou t _ r e f . ex2 ’)
Show ()
Render ()

With VTK file formats can use something like:
reader = XMLStructuredGridReader(FileName=’/Users/.../vtk/xml/halfCylinder.vts’)

Starting with ParaView 3.8, can load correct reader automatically using
file extension:

reader = OpenDataFile(’/Users/.../vtk/xml/halfCylinder.vts’)

(SHARCNET/UOIT) winter 2011 48 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Querying field attributes: readStructuredGrid.py

from paraview . simple import ∗

path = ’/ Users/razoumov/Dropbox/ v i s u a l i z a t i o n /data/vtk/xml/ ’ # e d i t the path accordingly
reader = OpenDataFile (path + ’ ha l fCyl inder . vts ’)

Show ()
Render ()

p r i n t ’ p r i n t a l l v a r i a b l e s ’
p r i n t reader . PointData [:]

p r i n t ’ get a handle to PointData and p r i n t a l l point f i e l d s ’
pd = reader . PointData
p r i n t pd . keys ()

p r i n t ’ get some i n f o about indiv idua l f i e l d s ’
p r i n t pd [’ density ’] . GetNumberOfComponents ()
p r i n t pd [’ density ’] . GetRange ()
p r i n t pd [’ v e l o c i t y ’] . GetNumberOfComponents ()

p r i n t ’ run through a l l arrays and p r i n t the ranges of a l l components ’
f o r a i in pd . values () :

p r i n t a i . GetName () , a i . GetNumberOfComponents () ,
f o r i in xrange (a i . GetNumberOfComponents ()) :

p r i n t a i . GetRange (i) ,
p r i n t

(SHARCNET/UOIT) winter 2011 49 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Trace tool

Generate Python code
from GUI operations

Start/stop trace at any
time

Older ParaView: Tools
→ Python Shell→
Trace→ [Start | Stop |
Show Trace]

Newer ParaView:
Tools→ [Start Trace |
Stop Trace]

(SHARCNET/UOIT) winter 2011 50 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

More complex example generated via trace
“Run Script” code/writeImage.py – draws vector field in half-cylinder
from paraview . simple import ∗

path = ’/ Users/razoumov/Dropbox/ v i s u a l i z a t i o n /data/vtk/xml/ ’ # e d i t the path accordingly
t e s t _ v t s = XMLStructuredGridReader (FileName =[path + ’ ha l fCyl inder . vts ’])

DataRepresentat ion1 = Show () # turn on o u t l i n e
DataRepresentat ion1 . Representat ion = ’ Outline ’
DataRepresentat ion1 . EdgeColor = [0 . 0 , 0 . 0 , 0 . 5]

s e t camera p o s i t i o n
RenderView = GetRenderView ()
RenderView . CameraViewUp = [−0.25 , 0 . 8 2 , −0.51]
RenderView . CameraFocalPoint = [0 . , 0 . 5 , 0 .]
RenderView . CameraClippingRange = [2 . 9 1 , 9 . 5 5]
RenderView . CameraPosition = [1 . 8 5 , 3 . 7 9 , 4 . 4 0]

Glyph2 = Glyph (GlyphType="Arrow")
Glyph2 . S c a l a r s = [’ POINTS ’ , ’ density ’]
Glyph2 . S e t S c a l e F a c t o r = 0 . 2
Glyph2 . Vectors = [’ POINTS ’ , ’ v e l o c i t y ’]
Glyph2 . S e t S c a l e F a c t o r = 0 . 2

DataRepresentat ion2 = Show () # turn on v e c t o r s
DataRepresentat ion2 . EdgeColor = [0 . 0 , 0 . 0 , 0 . 5]
DataRepresentat ion2 . ColorAttr ibuteType = ’POINT_DATA’
DataRepresentat ion2 . ColorArrayName = ’ density ’

s e t colour t a b l e
a1_densi ty_PiecewiseFunct ion = CreatePiecewiseFunct ion (Points =[−15.70 , 0 . 0 , −5.7 , 0 . 0 , −4.23 , 0 . 0 , −4.07 , 0 . 1 , −3.21 , 0 . 9 7 , 0 . 0 , 1 . 0])
a1_density_PVLookupTable = GetLookupTableForArray (" dens i ty " , 1 , RGBPoints = [1 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 1 . 6 4 , 0 . 9 0 , 0 . 0 , 0 . 0 , 1 . 7 3 , 0 . 9 0 , 0 . 3 2 4 , 0 . 0 , 1 . 7 4 , 0 . 9 0 , 0 . 3 6 , 0 . 0 , 1 . 8 0 , 0 . 9 0 , 0 . 9 0 , 0 . 0 , 2 . 0 , 1 . 0 , 1 . 0 , 1 . 0] , VectorMode= ’Magnitude ’ , ColorSpace = ’RGB’ , S c a l a r R a n g e I n i t i a l i z e d =1.0)
DataRepresentat ion2 . LookupTable = a1_density_PVLookupTable

WriteImage (’/ Users/razoumov/Desktop/output . png ’)
Render ()

try generating similar script from GUI and run/modify it(SHARCNET/UOIT) winter 2011 51 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Working with pipeline objects

GetSources() - get a list of objects
GetActiveSource() - get the active object
SetActiveSource - change the active object
GetRepresentation() - return the view representation for the active
pipeline object and the active view

the following two scripts produce identical results
(see getRepresentation.py):

from paraview.simple import * from paraview.simple import *
test_vts = XMLStructuredGridReader(FileName=[’halfCylinder.vts’]) test_vts = XMLStructuredGridReader(FileName=[’halfCylinder.vts’])
DataRepresentation = Show() Show()

handle = GetRepresentation()
DataRepresentation.Representation = ’Surface’ handle.Representation = ’Surface’
DataRepresentation.DiffuseColor = [0, 0, 1] handle.DiffuseColor = [0, 0, 1]
DataRepresentation.SpecularColor = [1, 1, 1] handle.SpecularColor = [1, 1, 1]
DataRepresentation.SpecularPower = 200 handle.SpecularPower = 200
DataRepresentation.Specular = 1 handle.Specular = 1
Render() Render()

(SHARCNET/UOIT) winter 2011 52 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Animation

1 Use ParaView’s built-in animation capabilities

• animate any property of any pipeline object
• in Animation View: select object, select property, create a new track with

“+”, double-click the track to edit it, press “play”
• lets you create snazzy animations, but very limited in what you can do

2 Script your animation in Python

• steep learning curve, but very powerful
• typical usage scenario: generate one frame per input file
• we’ll try a simpler exercise without input files: write a script that

- imports Sources→ Cone

- sets the cone’s resolution to 6 + i, where i = 0, . . . , 20

- saves each frame to a file called “cone”+str(i)+”.png”

- (optionally we can make a movie from these frames)

(SHARCNET/UOIT) winter 2011 53 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Visualizing remote dataset

What we’ve covered so far: working with standalone ParaView on your
desktop

Let’s say, your dataset is on cluster.consortium.ca
⇒ fundamentally there are three options:

1 download data to your desktop and visualize it locally (limited by dataset
size and your desktop’s CPU/memory)

2 in SHARCNET can work through a visualization workstation

yourDesktop
ssh/NX/VNC
−−−−−−−−→ vizN-site running ParaView mounting /work/user

3 work in a client-server mode connecting to cluster.consortium.ca directly
ParaView client on yourDesktop
 ParaView server on remote cluster

- currently not used in SHARCNET but possible to set up if necessary

- setup details depend on the consortium

(SHARCNET/UOIT) winter 2011 54 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Data partitioning

Scalable parallel distributed rendering – load balancing is handled
automatically by ParaView for structured data:

Structured Points
Rectilinear Grid
Structured Grid

Unstructured data must be passed through D3 (Distributed Data
Decomposition) filter for better load balancing:

Particles/Unstructured Points
Polygonal Data
Unstructured Grid

(SHARCNET/UOIT) winter 2011 55 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Best strategies for large datasets

Working with structured data (Structured Points, Rectilinear Grid,
Structured Grid): one processor core per 10-20 million cells ← according
to ParaView documentation

Unstructured data (Unstructured Points, Polygonal Data, Unstructured
Grid): one processor core per 0.5-1 million cells ← according to ParaView
documentation

In practice, memory is the main issue, e.g. with structured data can do:

• ∼ 10003 on a notebook with 4 GB memory, single/dual core

• ∼ 20003 on a viz workstation with 50 GB memory, dual/quad core

Rainbow: 20 compute nodes, 4 cores / 8 GB memory per node

Always do a scaling study before attempting to visualize large datasets

It is important to understand memory requirements of filters

(SHARCNET/UOIT) winter 2011 56 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Working with large datasets

Some filters should not be used with structured data:
they write unstructured data, can be heavy on memory usage

Append Datasets
Append Geometry
Clean
Clean to Grid
Connectivity
D3
Delaunay 2D/3D
Extract Edges
Linear Extrusion
Loop Subdivision

Reflect
Rotational Extrusion
Shrink
Smooth
Subdivide
Tessellate
Tetrahedralize
Triangle Strips
Triangulate

use these with caution: Clip, Decimate, Extract Cells by Region, Extract
Selection, Quadric Clustering, Threshold

(SHARCNET/UOIT) winter 2011 57 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

VTK composite datasets: vtkMultiBlockDataSet

vtkMultiBlockDataSet is a dataset comprising of blocks. Each block can be either
a leaf (non-composite), or an instance of vtkMultiBlockDataSet itself – this makes
is possible to build trees

Study MultiBlock.C (adapted from from VTK/Examples/MultiBlock): loads
three separate structured grid datasets, each from its own file, and writes them as a single
multi-block *.vtm dataset (XML-based file format)

(SHARCNET/UOIT) winter 2011 58 / 61

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

VTK composite datasets: vtkHierarchicalBoxDataSet

vtkHierarchicalBoxDataSet is used for AMR datasets, comprises of refinement
levels and uniform grid datasets at each refinement level

prototype code hierarchicalBoxDataWriter.C (does not assign scalars yet, need to sort out
cell centers vs. cell edges) – writes multiple grids as a single hierarchical *.vtm dataset

more on composite datasets
http://www.itk.org/Wiki/Composite_Datasets_in_VTK
http://www.itk.org/Wiki/VTK/Composite_Data_Redesign

(SHARCNET/UOIT) winter 2011 59 / 61

http://www.itk.org/Wiki/Composite_Datasets_in_VTK
http://www.itk.org/Wiki/VTK/Composite_Data_Redesign

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Further resources

extended ParaView tutorial and sample data in many different formats
http://www.cmake.org/Wiki/The_ParaView_Tutorial

ParaView F.A.Q. http://www.itk.org/Wiki/ParaView:FAQ

VTK for C++/Python/etc. code examples
http://www.itk.org/Wiki/VTK/Examples

VTK file formats http://www.vtk.org/VTK/img/file-formats.pdf

generate XDMF files in Fortran with
(1) either HDF5 calls + plain text for the XML,
(2) or Fortran calling C functions with XDMF
http://www.xdmf.org/index.php/Write_from_Fortran

(SHARCNET/UOIT) winter 2011 60 / 61

http://www.cmake.org/Wiki/The_ParaView_Tutorial
http://www.itk.org/Wiki/ParaView:FAQ
http://www.itk.org/Wiki/VTK/Examples
http://www.vtk.org/VTK/img/file-formats.pdf
http://www.xdmf.org/index.php/Write_from_Fortran

Python tools Gen-purpose Arch GUI Importing data Working with PV Scripting Anim Large data Multigrid Exercises

Exercises

Which file format would work best for your dataset?

• VTK: versatile, support for many different data types (arrays, curvilinear
grids, polygons, irregular topologies, particles)

• NetCDF: best for multidimensional arrays (data on regular grids)

• HDF5:

- if your code already outputs HDF5 ⇒ easy to add XML metadata
http://www.xdmf.org

- ParaView understands HDF5 output of several third-party packages

More complex animation: loading a sequence of data files

(SHARCNET/UOIT) winter 2011 61 / 61

http://www.xdmf.org

	Python tools
	Gen-purpose
	Arch
	GUI
	Importing data
	Working with PV
	Scripting
	Anim
	Large data
	Multigrid
	Exercises

