Scientific Computing Ill. High
Performance Scientific Computing
(Phys 2109/Ast 3100H)

Lecture 1: Parallel Programming & OpenMP

SciNet HPC Consortium, University of Toronto
February 10, 2012

Scilet

Why Parallel Programming?

cSél?\let

CANADA

Why Parallel Programming?

1. Faster
There's a limit to how fast
1 computer can compute.

Scilet

Why Parallel Programming?

. Faster

There's a limit to how fast
1 computer can compute.

. Bigger

There's a limit to how
much memory, disk, etc,
can be put on 1 computer.

Scilet

Why Parallel Programming?

. Faster

There's a limit to how fast
1 computer can compute.

. Bigger

There's a limit to how
much memory, disk, etc,
can be put on 1 computer.

. More

Want to do the same thing
that was done on 1
computer, but thousands of
times.

Sciflet

Why Parallel Programming?

. Faster

There's a limit to how fast
1 computer can compute.

. Bigger

There's a limit to how
much memory, disk, etc,
can be put on 1 computer.

. More

Want to do the same thing
that was done on 1
computer, but thousands of
times.

So use more
computers!

cSei?\let

AAAAAA

Why is it necessary?

» Big Data: Modern experiments and observations yield vastly
more data to be processsed than in the past.

» Big Science: As more computing resources become available
(SciNet), the bar for cutting edge simulations is raised.

» New Science: which before could not even be done, but now
becomes reachable.

cSeﬁ\let

AAAAAA

Why is it necessary?

» Big Data: Modern experiments and observations yield vastly
more data to be processsed than in the past.

» Big Science: As more computing resources become available
(SciNet), the bar for cutting edge simulations is raised.

» New Science: which before could not even be done, but now
becomes reachable.

However:

cSeﬁ\let

AAAAAA

Why is it necessary?

» Big Data: Modern experiments and observations yield vastly
more data to be processsed than in the past.

» Big Science: As more computing resources become available
(SciNet), the bar for cutting edge simulations is raised.

» New Science: which before could not even be done, but now
becomes reachable.

However:

» Advances in clock speeds, bigger and faster memory and disks
have been lagging as compared to e.g. 10 years ago.
Can no longer “just wait a year” and get a better computer.

» So more computing resources here means: more cores running
concurrently.

» Even most laptops now have 2 or more cpus.

» So parallel computing is necessary. ﬁéﬁ\let

AAAAAAA

Wait, what about Moore's Law?
CPU Transistor Counts 1971-2008 & Moore’s Law

2,000,000,000 —
1,000,000,000 —

100,000,000 —

10,000,000 —

1,000,000 —{

Transistor count

100,000 —

10,000 —

2,300 —

(source: Transistor Count and Moore’s Law - 2008.svg, by Wgsimon, wikipedia)

e ltanium Tukwil
DuakCore tanium2 @ § 2 Core ttantum Tulewia

RELET

e ohvrro
Htanium 2 with SMB cache @ /l
Core 2o #1510
numze - BEZ
'41@
o 7" eBaton gpom
L]
Curve shows ‘Moore’s Law': .
transistor count doubling il
every two years Z o
.~ ®Pentium
Y e
386 ¢~
2860 0
waose
L% 8080
4004 @ # 8008
1971 1980 1990 2000 2008

Date of introduction

Scilet

) compute ca\cu\

Wait, what about Moore's Law?

CPU Transistor Counts 1971-2008 & Moore’s Law

0 Dual-Core ltanium 2 @
Moore's law jo—] A

@ Quad-Core Itanium Tukwila
0GT200

o ®RV770

approximately every two years.

. describes a long-term trend in the history of
computing hardware. The number of transistors that can
be placed inexpensively on an integrated circuit doubles

(source: Moore's law, wikipedia)

= e
100,000 ’
m

10,000
% woeo

2,300 —! 4000 g8 e

1971 1980 1990 2000

Date of introduction

(source: Transistor Count and Moore’s Law - 2008.svg, by Wgsimon, wikipedia)

2008

Scilet

) compute ca\cu\

Wait, what about Moore's Law?
CPU Transistor Counts 1971-2008 & Moore’s Law

0 DustCor i 2@ § QU-Cora i Tuta
Moore's law FQ N N i
. describes a long-term trend in the history of
computing hardware. The number of transistors that can

be placed inexpensively on an integrated circuit doubles
approximately every two years.

(source: Moore's law, wikipedia)

= s 9
But. . 100,000 —{

» Moores Law didn’t promise us clock speed.

» More transistors but getting hard to push clockspeed up.
Power density is limiting factor.

» So more cores at fixed clock speed.

Date of introduction M
et

) compute ca\cu\

(source: Transistor Count and Moore’s Law - 2008.svg, by Wgsimon, wikipedia)

Concurrency

» Must have something to do
for all these cores.

» Find parts of the program
that can done
independently, and
therefore concurrently.

» There must be many such
parts.

» There order of execution
should not matter either.

» Data dependencies limit
concurrency.

(source: http://flickr.com/photos/splorp)

cSél?\let

AAAAAA

Parameter study: best case scenario

> Aim is to get results
from a model as a
parameter varies. n=1 n=2

» Can run the serial
program on each

processor at the same
time.

» Get “more” done.

chNet

AAAAA

Throughput
» How many tasks can you do per time unit?
th hput = H N
roughput = H = —
ghp T

» Maximizing H means that you can do as much as possible.

» Independent tasks: using P processors increases H by a factor P

" 000¢

T=NT; = NT;/P Scin
H = I/Tl H - P/Tl (’ compute « S\Eu\

AAAAAA

Scaling — Throughput

» How a problem’s throughput scales as processor number
increases (“strong scaling”).

> In this case, linear scaling:
HxP

» This is Perfect scaling.

Tasks per unit time

O = N W H 1O N ©

1 2 3 4 5 6 7 8
b Scilet

) compute ca\cu\

Scaling — Speedup

» How much faster the problem is solved as processor number

increases.
» Measured by the serial time divided by the parallel time
S — Tserial
T(P)
» For embarrasingly parallel applications, S oc P: Linear speed
up.
8
7
6
g 5
] 4
(0]
& 3
2 L
|
0

1 2 3 4 5 6 7 8 5ﬁﬁ\let

AAAAAA

Non-ideal cases

» Say we want to (Partition data)

integrate some
tabulated

experimental data.

> Integration can be
split up, so different
regions are summed
by each processor.

region 1| |region 2| [region 3| [region 4

» Non-ideal:

> First need to get
data to processor

> Ar_ld at the end Reduction
bring together all
the sums:

“reduction”

cScfl?\let

AAAAAA

Non-ideal cases

Parallel region =

C

Partition data

)

/\

region 1

\/

/\

region 2| |region 3

\/

/*\

region 4

L/

Reduction

)

Scilet

Non-ideal cases

Parallel region =

Perfectly Parallel
(for large N)

C

Partition data

)

/*\

region 1

\/

/\

region 2| |region 3

\/

/*\

region 4

L/

Reduction

)

Scilet

Non-ideal cases

Parallel region =

Perfectly Parallel
(for large N)

Serial portion

C

Partition data

)

/*\

region 1

\/

/\

region 2| |region 3

\/

/*\

region 4

L/

~C

Reduction

)

Scilet

Non-ideal cases

Parallel overhead = C

Parallel region =-

Perfectly Parallel
(for large N)

Serial portion

,

Partition data

)

/\

region 1

\/

region 2| |region 3

\/

/*\

region 4

L/

=

Reduction

)

Scilet

Non-ideal cases

Parallel overhead = C Partition data)

region 1| |region 2| [region 3| [region 4

A DI

Serial portion = C Reduction)

Parallel region =-

Perfectly Parallel
(for large N)

Suppose non-parallel part const: Ty

Scilet

Amdahl's law
Speed-up (without parallel overhead):

_ Tserial _ NTl + Ts
T(P) NP+,

or, calling f = Ts/(Ts + NTy) the serial fraction,

1

M I Gy

2 4 6 8 10 12 14 16 (f‘orfzs%)

Scilet

Amdahl's law
Speed-up (without parallel overhead):

_ Tserial _ NTl + Ts
T(P) NP+,

or, calling f = Ts/(Ts + NTy) the serial fraction,

1 P—oo 1

S = > =

f+(1—f)/P f
16
14
12
10
8
6
4
2
0

2 4 6 8 10 12 14 16 (f‘orfzs%)

Scilet

Amdahl's law
Speed-up (without parallel overhead):

_ Tserial _ NTl + Ts
T(P) NP+,

or, calling f = Ts/(Ts + NTy) the serial fraction,

1 P—oo 1
S = > =
f+(1-f)/P f
16
14
12 Serial part dominates asymptotically.
10
8 Speed-up limited, no matter size of P.
6
4
2 e
0 Scilet

2 4 6 8 10 12 14 16 (f‘orf=5%) ()computeoca\cu\

CANADA

Scaling efficiency

Speed-up compared to ideal factor P:

- S
Efficiency = P

This will invariably fall off for larger P except for embarrasing
parallel problems.

1 oo
Efficiency ~ 20

You cannot get 100% efficiency in any non-trivial problem.
All you can aim for here is to make the efficiency as least low as
possible.

Scilet

Less ideal case of Amdahl’s law

We assumed reduction is constant.
But it will in fact increase with P,
from sum of results of all processors

Ts=PT,

Serial fraction now a function of P:

P
f(P) = —
(P) =
Amdahl:
1
S(P)

" f(P) + [1—f(P)]/P

Scilet

Less ideal case of Amdahl’s law

We assumed reduction is constant.
But it will in fact increase with P,
from sum of results of all processors

Ts=PT,

Serial fraction now a function of P:

P
f(P) = —
(P) =
Amdahl:
1
S(P)

~f(P) + [1 - f(P)]/P
Example: N = 100, T; = 1s. ..

Scilet

Less ideal case of Amdahl’s law

We assumed reduction is constant.
But it will in fact increase with P,
from sum of results of all processors

Ts=PT,

Serial fraction now a function of P:

P
f(P) = —
(P) =
Amdahl:
1
S(P)

~f(P) + [1 - f(P)]/P
Example: N = 100, T; = 1s. ..

Speed-up

Time (s)

5.5

4.5

3.5

25

1.5

100
920

70
60
50
40
30
20
10

5 10 15 20 25 30 35 40 45 50

5 10 15 20 25 30 35 40 50
Number of processors P et

Trying to beat Amdahl’s law #1

Scale up!
The larger N, the smaller
the serial fraction:

f(P) = :l

Speed-up

50

45 |
40 |
35 |
30 }
25 |
20 |
15 t
10 t
5.

5

10 15 20 25 30 35 40 45 50
Number of processors P

cSei?\let

AAAAAA

Trying to beat Amdahl’s law #1

ig [N=100 ——
Scal I N=1,000 ——
cale up: 40 I N=10,000 ——
o 357 N=100,000 ——
> 30} Ideal ——
The larger N, the smaller § 25 t
the serial fraction: & fg [S
P 10 - T
f(P) = — 51
N 0

5 10 15 20 25 30 35 40 45 50
Number of processors P

Weak scaling: Increase problem size while increasing P

Timeyeak(P) = Time(N =n x P, P)

Good weak scaling means this time approaches a constant for large P.

cSei?\let

AAAAAA

Trying to beat Amdahl's law #2
Parallel overhead = C Partition data)

A

region 1| |region 2| [region 3| [region 4

L/

Serial portion :>< Reduction)

Parallel region =-

Perfectly Parallel
(for large N)

Scilet

Trying to beat Amdahl's law #2
Parallel overhead = (Partition data)

A

region 1| |region 2| [region 3| [region 4

L/

Serial portion :>< Reduction)
Rewrite

Parallel region =-

Perfectly Parallel
(for large N)

Scilet

Trying to beat Amdahl's law #2
Parallel overhead = (Partition data)

A

region 1| |region 2| [region 3| [region 4

SIS

Serial portion = 3 3
Rewrite

Parallel region =-

Perfectly Parallel
(for large N)

Scilet

Trying to beat Amdahl's law #2
Parallel overhead = (Partition data)

A

region 1| |region 2| [region 3| [region 4

SIS

Serial portion = 3 3
Rewrite
x 2log P

Parallel region =-

Perfectly Parallel
(for large N)

Scilet

Trying to beat Amdahl's law #2

‘Serial’ fraction now different
function of P:

2logP
f(P) = N
Amdahl:
1
S(P) =

f(P) +[1—f(P)]/P

Scilet

Trying to beat Amdahl's law #2

‘Serial’ fraction now different
function of P:

2logP
f(P) = N
Amdahl:
1
S(P) =

f(P) +[1 —f(P)]/P
Example: N =100, T; = 1s...

Scilet

Trying to beat Amdahl’s law #2

‘Serial’ fraction now different
function of P:

Speed-up

f(P) = N

8
6
2logP ¢
2
0

5 10 15 20 25 30 35 40 45 50

Amdahl:

90 Time

1 70

f(P) + [1 —f(P)]/P
Example: N =100, T; = 1s... 20

)
3

S(P) =

Time (s,

5 1015202530354048097—3l
Number of processors P et

Trying to beat Amdahl's law #2

Weak scaling

Timeyeak(P) = Time(N = nxP, P)

Should approach constant for large P.
Let's see. ..

Scilet

Trying to beat Amdahl's law #2

Weak scaling
135 now ———
130 ideal
125
Timeyeak(P) = Time(N = nxP,P) 5 120
£ o
£
Should approach constant for large P. 105
Let's see. .. 100
H 95
Not quite! 5 10 15 20 25 30 35 40 45 50

Number of processors P

cSei?\let

AAAAAA

Trying to beat Amdahl's law #2

Weak scaling
135
now ——
130 ideal
125
Timeyeak(P) = Time(N = nxP,P) 5 120
£ o
E
Should approach constant for large P. 105
Let's see. .. 100
H 95
Not quite! 5 10 15 20 25 30 35 40 45 50
But much better than before. Number of processors P

cSei?\let

AAAAAA

Trying to beat Amdahl's law #2

Weak scaling
135
noow——
130 idelabl
125 before
Timeyeak(P) = Time(N = nxP,P) 5 120
.GEJ 115
= 110
Should approach constant for large P. 105
Let's see. .. 100
H 95
Not quite! 5 10 15 20 25 30 35 40 45 50
But much better than before. Number of processors P

cSeﬁ\let

AAAAAA

Trying to beat Amdahl's law #2

Weak scaling
135
noow——
130 ideabl
125 before
Timeyeak(P) = Time(N = nxP,P) & 120
@ 115
£
Should h for large P. = 11
ould approach constant for large P. 105
Let's see. .. 100
i 95
Not quite! 5 10 15 20 25 30 35 40 45 50
But much better than before. Number of processors P

Really not that bad.
& other algorithms can do better.

cSeﬁ\let

AAAAAA

Synchronization

» Most problems are not
purely concurrent.

» Some level of
synchronization or exchange
of information is needed
between tasks.

> While synchronizing,
nothing else happens:
increases Amdahl’s f.

» And synchronizations are
themselves costly.

Va

N\ N\ N\ [
i . Synchronization | l

N\ N\ [N\ [N
. J / / J
(Synchronization]
4 *) * N [* N\ [*)
(. — . A DA S /
(¥ Synthronizition Y)

ScCiet

compute « calcul
CANADA

Load balancing

» The division of calculations
among the processors may
not be equal.

Synchronization

» Some processors would
already be done, while
others are still going.

» Effectively using less than P R
. Synchronization
processors: This reduces

the efficiency. (v) v v v
» Aim for load balanced
algorithms. —
Synthronizdtion

Scilet

Locality

>

>

So far we neglected communication costs.

But communication costs are more expensive than
computation!

To minimize communication to computation ratio:

* Keep the data where it is needed.
* Make sure as little data as possible is to be communicated.
* Make shared data as local to the right processors as possible.

Local data means less need for syncs, or smaller-scale syncs.
Local syncs can alleviate load balancing issues.

Scilet

) compute ca\cu\

Locality
» So far we neglected communication costs.
» But communication costs are more expensive than
computation!
» To minimize communication to computation ratio:

* Keep the data where it is needed.
* Make sure as little data as possible is to be communicated.
* Make shared data as local to the right processors as possible.

v

Local data means less need for syncs, or smaller-scale syncs.

v

Local syncs can alleviate load balancing issues.

Example (PDE Domain decomposition)
wrong right

Scilet

) compute ca\cu\

Big Lesson

Parallel algorithm design is about finding as
much concurrency as possible, and arranging
it in a way that maximizes locality.

Scilet

) compute ca\cu\

Parallel Computers

Top500.org:

List of the worlds
500 largest
supercomputers.
Updated every 6
months,

Info on
architecture, etc.

SUPERCOMPUTER SITES

PROJECT | LISTS ‘ STATISTICS | RESOURCES | NEWS

Home ! Lists * November 2010
TOP500 List - November 2010 (1-100)

Rmax and Rpeak Values are in TFlops. For more details about other fields, check the TOP500 description.

Power data in KW for entire system

Rank

Site

National Supercomputing
Center in Tianjin
hina

DOE/SC/Oak Ridge
National Laboratory
United States

National Supercomputing
Centre in Shenzhen (NSCS)
China

GSIC Center, Tokyo
Institute of Technology
Japan

DOE/SC/ILBNL/NERSC
United States

Commissariat a IEnergie
Atomique (CEA)
France

Computer/Year Vendor

Tianhe-1A - NUDT TH MPP, X5670
2.93Ghz 6C, NVIDIA GPU, FT-1000

8C /2010
NUDT

Jaguar - Cray XT5-HE Opteron
6-core 2.6 GHz / 2009
Cray Inc.

Nebulae - Dawning TC3600 Blade,
Intel X5650, NVidia Tesla C2050
GPU /2010

Dawning

TSUBAME 2.0 - HP ProLiant
SL390s G7 Xeon 6C X5670, Nvidia
GPU, Linux/Windows /2010
NEC/HP

Hopper - Cray XE6 12-core 2.1
GHz /2010
Cray Inc.

Tera-100 - Bull bullx super-node
S$6010/S6030/ 2010
Bull SA

Cores

186368

224162

120640

73278

153408

138368

Rmax

2566.00

1759.00

1271.00

1192.00

1054.00

1050.00

Rpeak

4701.00

2331.00

2984 30

2287.63

1288.63

1254 .55

next

Power

4040.00

6950.60

2580.00

1398.61

2910.00

4590.00

t

zul

Supercomputer architectures

» Clusters, or, distributed memory machines
In essence a bunch of desktops linked together by a network
(“interconnect”). Easy and cheap.

» Multi-core machines, or, shared memory machines
These can see the same memory. Limited number of cores,
typically, and much more $%$.

» Vector machines.
These were the early supercomputers, and could do the same
operation on a large number of numbers at the same time.
Very $$$$$9%, especially at scale.
These days, most chips have some low-level, small size
vectorization, but you rarely need to worry about it (compiler
should do this).

Most supercomputers are a hybrid combo of these different

architectures. 5£ﬁ\let

AAAAAA

Distributed Memory: Clusters

Simplest type of parallel com-
puter to build

» Take existing powerful
standalone computers

» And network them

./ J' / ?\, 7
(source: http://flickr.com/photos/eurleif)
Sciflet

‘) compute «calcul
CANADA

Distributed Memory: Clusters

Each node is independent!

Parallel code consists of
programs running on sep-
qa&;omgﬂa&commu— CPU4
nicating with each other.
Could be entirely different
programs.

CPU3

CPU2

CPU1

Scilet

Distributed Memory: Clusters

Each node is independent!

Parallel code consists of
programs running on sep-
arate co ters, co -
I.’) m[_)u rs, commu CPU4
nicating with each other.

Could be entirely different
programs.

Each node has own memory! CPU3

Whenever it needs data
from another region, re-
quests it from that CPU.

CPU2

Usual model: “message passing” CPU1

Scilet

Clusters+Message Passing

Hardware:

Easy to build

(Harder to build well)
Can build larger and CPU4
larger clusters relatively
easily

Software: CPU3
Every communication
has to be hand-coded:
hard to program CPU?2

CPU1

Scilet

Shared Memory

One large bank of
memory, different
computing cores acting
on it. All ‘see’ same
data.

Core 3

Any coordination done

Core 2
through memory

Core 1

Could use message
passing, but no need.

Each code is assigned a
thread of execution of a
single program that acts

on the data. cSﬁ?\let

Threads versus Processes

Tjdursi@gpe-r102n0B1:~

Threads:

Threads of execution within
one process, with access to the
same memory etc.

Processes:
Independent tasks with their
own memory and resources

Fle Edt View Terminal Tabs Help
Ttop - 17:27:3¢ up 2 days, 1:40, 1 user, load average: 1.81, 0.56, 0.20
Tasks: 142 total, 3 running, 139 sleeping, 0O stopped, O zombie
Cpu(s): 95.9%us, 3.@%sy, ©.0%1, 0.0%d, 0.0%a, 0.1%01, 1.0%1, 0.0%s
Mem: 16411872k total, 2778368k used. 13633504k free, 256k butfers
Swap: ok total, ok used, Ok fres, 2265652k cached
PID USER VIRT SMEM TIME+ COMMAND
18121 ljoursi 25 0 89536 1076 840 R 779.0 0.0 0:29.01 Giffusion-omp
17193 root 15 035300 2580 60 5 15.0 0.8 0:01.57 pbs_mom
17192 root 15 035300 3216 636 R 6.0 0.0 ©0:00.48 pbs_mom
1 root 15 010344 740 6125 0.0 0.0 0:01.45 init
2 root RT -5 @ © @5 0.0 0.0 0:00.00 mgration/o
3 root 3419 6 0 85 0.0 6.0 0:00.00 Ksoftirqd/0
4 root RT -5 @ © ©5 0.0 0.0 0:00.00 watchdog/e
5 root RT -5 @ © @85 0.0 6.0 0:00.01 migration/1
6 root 34 19 6 0 85 0.0 6.0 0:00.01 ksoftirqd/l
7 root RT 5 @ @ 85 0.0 0.0 6:00.00 watchdog/1
8 root RT -5 8 0 B85 0.0 6.0 0:00.00 migration/2
9 root 34 19 @ 0 85 0.0 0.0 0:00.00 Ksoftirgd/2
10 root RT -5 © © 85 0.0 0.0 8:00.00 watcndog/2
11 root RT -5 © © ©5 0.0 0.0 0:00.00 migration/3

|jdursi Ggpe-r102n081:~

Ele EdR View Terminal Tebs Help
top - 17:33:58 up 2 days, 1:47, 1 user, load average
Tasks: 150 total, 9 running, 141 sleeping, O stoppes
:100.0%us, 0.6%y, ©.0%1, ©.6%id, 0.8%Wa
16411872K total, 2801172k used, 13610700k free
ok total ok used ok fre

=

18393 ljdursi 25 © 187m 5504 3484 o
18395 ljoursi 25 © 187m 5512 3492 0
18397 ljdursi 25 © 187n 5508 3488]
18302 ljoursi 25 © 187m 5580 3556 o
18394 Ujdursi 25 © 187n 5504 3488 o
18306 ljoursi 25 © 187m 5512 3492 o
18398 Ujdursi 25 © 187n 5508 3480]
18300 ljoursi 25 © 187m 5512 3492 0
1 root 15 010344 740 612 8:

2 root RT 5 o 0 o 6

3 root 3418 6 o o 6:

4 root RT 5 0 0 o 6

5 root RT 5 0 0o 0 6:

6 root 3 19 e o ® 6:

0

: .80, 0.31, 0.1
d, 0 zombie
owni, 6.0%si,
256K buffers
2268568k cached

0.0ust

5.45 diffusion-npi
:05.46 diffusion-mpi
5.46 diffusion-mpi
aiffusion-mpt
diftusion-mpi
aiffusion-mpt
diffusion-mpi
aiffusion-mpt
init
nigration/e
ksoftirgd/o
watcndog/e
migration/1
Ksoftirgd/1

Scilet

‘) compute «calcul
CANADA

Shared Memory: NUMA

Non-Uniform Memory Access

[]
o
» Each core typically has
some memory of its own.
» Cores have cache too.
> Keeping this memory
o
o

coherent is extremely
challenging.

Scilet

‘) compute «calcul
CANADA

Coherency

» The different levels of
memory imply multiple
copies of some regions

» Multiple cores mean can
update unpredictably

» Very expensive hardware

» Hard to scale up to lots of
processors, very $$$

» Very simple to program!!

Scilet

‘) compute «calcul
CANADA

Shared Memory Communication Cost

Latency Bandwidth
GigE 10 ps 1 Gb/s
(10,000 ns) | (60 ns/double)
Infiniband 2 ps 2-10 Gb/s
(2,000 ns) | (10 ns /double)
NUMA 0.1 ps 10-20 Gb/s
(shared memory) | (100 ns) (4 ns /double)

Processor speed: O(GFLOP) ~ few ns or less.

Scilet

Hybrid Architectures

» Multicore machines linked
together with an
interconnect

» Many cores have modest
vector capabilities.

» Machines with GPU: GPU
is multi-core, but the
amount of shared memory
is limited.

i B
i B

mun

e Shared memory: OpenMP
e Distributed memory: MPI
e Graphics computing: CUDA, OpenCL

Scilet

Using SciNet

Using SciNet

3780 nodes each with 2x 2.53GHz quad-core Intel
Xeon 5500 64-bit processors

30240 cores total
16GB RAM per node
No local hard disks

Gigabit ethernet network on all nodes
Used also for management, shared file system, boot, ...

InfiniBand network on 1/4 of the nodes
Only used for job communication

306 TFlops
#16 on the June 2009 TOP500 supercomputer sites

Before we start with OpenMP: Mini intro to SciNet

> Need to have an account

> If you don't: get it
(wiki.scinethpc.ca/wiki/index.php/Essentials)

> If you can't: email us.

» Read the SciNet Tutorial and the GPC quick start on the wiki.
(wiki.scinethpc.ca/wiki/index.php/GPC_Quickstart)

Access:

s ssh -X login.scinet.utoronto.ca
s ssh -X gpc01 (or gpc02, gpc03, gpc04)

You compile on gpc0{1,2,3,4}.

But to run do:
$ qsub -I -1 nodes=1:ppn=8,walltime=1:00:00

which gets a dedicated compute node for one hour.)
Alternatively, submit a job script. 5@H\let

OpenMP

» For shared memory systems.

» Add parallelism to T
functioning serial code. C_)PenMP

» http://openmp.org R— 2o

THE OPENMP AP SPECIFICATION FOR PARALLEL PROGRAMIING

20penMP at Mllcors Expa 11 - May 2 5 - San Joss, CA

e e MeEnery Comentian comer i Son
Specincations

About OpentP

Complers

Events oo e Sgeni o s e 9
* L »OpenMP specs
uaun-w:
enion Gontr in S3n Use
Vistus i ur aues o
e e o desa 1 e Cperu o ik e st Ope eterence

Papers (pa)

Inernations! Worksnop
on Opan. Juns 13 -
15,2011, Cricaga USA

Input Register
Alert the Openwp-org
products, vents,or

e s 0GP 13 g o ey ey | 2Using Openk - the
ren Opantapo Incee onres i ssird s o 25 &
T — : Sampis
Soarh “n | susing Openkp e

Ly oruen

Archives o

Haren 20

= Fabruary 2011

o Januany 2011

© iy 2010

Sine 20t T svocan s came, et st -
< soni 2009 " 5 bt Cpenhi
2 Capacky. Pl regita sopaolyfor ary sessin you e o paricipte. o o

Scilet

) compute-ca\cu\

OpenMP

> For shared memory systems.

» Add parallelism to ——
functioning serial code. C_)Penﬂ
B

OpenMP News

» http://openmp.org

» Compiler, run-time
environment does a lot of
work for us

» Divides up work

» But we have to tell it how
to use variables, where to
run in parallel,

» Mark parallel regions.

» Works by adding compiler
directives to code.

Invisible to non-openmp Met

com pilers. ’ compute - ca\cu\

OpenMP basic operations

In code:

» In C/C++, you add lines starting with #pragma omp.
This parallelizes the subsequent code block.

» These lines are skipped (often with a warning) by compilers
that do not support OpenMP.

When compiling;:

» To turn on OpenMP support in gcc and g+, add the
-fopenmp flag to the compilation (and link!) commands.

When running;:

» The environment variable OMP_NUM_THREADS determines how
many threads will be started in an OpenMP parallel block.

Scilet

OpenMP example

C:

#include <stdio.h>

#include <omp.h>
int main() {
printf("At start of program\n");
#pragma omp parallel
{
printf("Hello world from thread %d!\n",
}
}

omp_get_thread num()) ;

Scilet

) compute ca\cul

OpenMP example

@

gcc -std=c99 -Wall -02 -o omp-hello-world omp-hello-world.c -fopenmp

3

export OMP_NUM_THREADS=8
. /omp-hello-world

3

export OMP_NUM_THREADS=1
./omp-hello-world

©® .

export OMP_NUM_THREADS=32
$./omp-hello-world

@ .

Let's see what happens. ..

Scilet

’ compute ca\cu\

OpenMP example

$ gcc -Wall -02 -o omp-hello-world omp-hello-world.c -fopenmp
$ export OMP_NUM_THREADS=8

$./omp-hello-world

At start of program

Hello, world, from thread O!
Hello, world, from thread 6!
Hello, world, from thread 5!
Hello, world, from thread 4!
Hello, world, from thread 2!
Hello, world, from thread 1!
Hello, world, from thread 7!
Hello, world, from thread 3!
$ export OMP_NUM_THREADS=1

$./omp-hello-world

At start of program

Hello, world, from thread O!
$ export OMP_NUM_THREADS=32

$./omp-hello-world

At start of program

Hello, world, from thread 11!
Hello, world, from thread 1!
Hello, world, from thread 16!

Scilet

‘) compute «calcul
CANADA

So what happened precisely?

OMP_NUM_THREADS
threads were launched.

v

v

Each prints “Hello, world

v

In seemingly random order.

v

Only one "At start of
program”.

$ gcc -o omp-hello-world omp-hello-world.c
$ export OMP_NUM_THREADS=8

$./omp-hello-world

At start of program

Hello,
Hello,
Hello,
Hello,
Hello,
Hello,

thread 0!
thread 6!
thread 5!
thread 4!
thread 2!
thread 1!
Hello, thread 7!
Hello, world, thread 3!
$ export OMP_NUM_THREADS=1

$./omp-hello-world

At start of program

Hello, world, from thread 0!
$ export OMP_NUM_THREADS=32

$./omp-hello-world

At start of program

Hello, world, from thread 11!
Hello, world, from thread 1!
Hello, world, from thread 16!

world, from
world, from
world, from
world, from
world, from
world, from
world, from

from

et

oute « calcul
CANADA

So what happened precisely?

#include <stdio.h>
#include <omp.h>
int main() {
printf ("At start of program\n");
#pragma omp parallel
{
printf("Hello world from thread %d!\n", omp_get_thread num());
}
}

Scilet

’ compute ca\cu\

So what happened precisely?

Program starts normally (single threac

#include <stdio.h>
#include <omp.h>
int main() {
printf ("At start of prdgram\n");
#pragma omp parallel
{
printf("Hello world from thread %d!\n", omp_get_thread num());
}
}

Scilet

) compute ca\cul

So what happened precisely?

At start of parallel section, launching
OMP_NUM THREADS threads

#include <stdio.h> Each executes the same code!
#include <omp.h>

int main() {
printf ("At start of program\n");
#pragma omp parallel
{
printf("Hello world from th{}ad %d!'\n", omp_get_thread num());
}
}

SciNet

) compute ca\cul

So what happened precisely?

At end of parallel section,
threads join back up

#include <stdio.h> Execution continues serially.
#include <omp.h>

int main() {
printf ("At start of program\n");
#pragma omp parallel
{
printf("Hello world from th{}ad %d'\n", omp_get_thread num());
}
}

Scilet

) compute ca\cul

So what happened precisely?

SpeC|aI functlon to find number
OT carrent Iﬂl’ed(] kTIrSI U)

#include <stdio.h>
#include <omp.h>
int main() {
printf ("At start of program\n");
#pragma omp parallel
{
printf("Hello world from thread %d!\n", omp_get_thread num());
}
}

Scilet

) compute ca\cul

OpenMP functions (from omp.h)

#include <stdio.h>
#include <omp.h>
int main() {
printf ("At start of program\n");
#pragma omp parallel
{
printf("Hello world from thread %d of %d!\n",
omp_get_thread num(),
omp_get_num_threads());
}
}

omp_get_num_threads() called by all threads.
Let's see if we can fix that. ..

Scilet

’ compute ca\cu\

OpenMP functions (from omp.h)

#include <stdio.h>
#include <omp.h>
int main() {

printf ("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n",
omp_get_thread num()) ;

}

printf ("There were %d threads.\n", omp_get_num_threads());
}

What do you think, will this work?

Scilet

’ compute ca\cu\

OpenMP functions (from omp.h)

#include <stdio.h>
#include <omp.h>
int main() {

printf ("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n",
omp_get_thread num()) ;

}

printf ("There were %d threads.\n", omp_get_num_threads());
}

What do you think, will this work?
No:
Says 1 thread only!

Scilet

’ compute ca\cu\

OpenMP functions (from omp.h)

#include <stdio.h>
#include <omp.h>
int main() {

printf ("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n",
omp_get_thread num()) ;

;rintf("There were %d threads.\n", omp_get_num threads());
}
What do you think, will this work?
No:
Says 1 thread only!
Why?

Because that is true outside the parallel region!
Need to get the value from the parallel region somehow.

Scilet

) compute ca\cu\

Variables in OpenMP

Variables in parallel regions are a bit tricky.

#include <stdio.h>
#include <omp.h>
int main() {
int mythread, nthreads;
#pragma omp parallel default(none) shared(nthreads) private(mythread)
{
mythread = omp_get_thread num() ;
if (mythread == 0)
nthreads = omp_get_num_threads();
}
printf ("There were ’%d threads.\n", nthreads);
}

Scilet

’ compute ca\cu\

Variables in OpenMP

Variables in parallel regions are a bit tricky.

#include <stdio.h>
#include <omp.h> Variable declarations
int main() { /How used in parallel region
int mythread, nthreads;
#pragma omp parallel default(none) shared(nthreads) private(mythread)
{
mythread = omp_get_thread num();
if (mythread == 0)
nthreads = omp_get_num_threads();
}
printf ("There were ’%d threads.\n", nthreads);
}

Scilet

) compute ca\cul

Variables in OpenMP

Variables in parallel regions are a bit tricky.
#include <stdio.h>

#include <omp.h> Variable declarations
int main() { /HOW used in parallel region

int mythread, nthreads;
#pragma omp parallel default(none) shared(nthreads) private(mythread)
{
mythread = omp_get_thread num() ;
if (mythread == 0)
nthreads = omp_get_num_threads();

}
printf ("There were ’%d threads.\n", nthreads);

}

» default(none) can save you hours of debugging!
» shared: each thread sees it and can modify (be careful!).
Preserves value.
> private: each thread gets it own copy, invisible for others
Initial and final val defined!
nitial and final value undefine Met

’ compute ca\cu\

Variables in OpenMP

Variables in parallel regions are a bit tricky.

#include <stdio.h>
#include <omp.h>
int main() {
int mythread, nthreads;
#pragma omp parallel default(none) shared(nthreads) private(mythread)
{
mythread = omp_get_thread num() ;
if (mythread == 0)
nthreads = omp_get_num_threads();
}
printf ("There were ’%d threads.\n", nthreads);
}

» Program runs, lauches threads.
» Each thread gets copy of mythread.
> Only thread O writes to nthreads.

Scilet

) compute ca\cu\

Variables in OpenMP

Variables in parallel regions are a bit tricky.

#include <stdio.h>
#include <omp.h>
int main() {
int mythread, nthreads;
#pragma omp parallel default(none) shared(nthreads) private(mythread)
{
mythread = omp_get_thread num() ;
if (mythread == 0)
nthreads = omp_get_num_threads();
}
printf ("There were ’%d threads.\n", nthreads);

}

Program runs, lauches threads.
Each thread gets copy of mythread.
Only thread 0 writes to nthreads.

vV v v v

Good idea to declare mythread locally!

Scilet

) compute ca\cu\

(avoids many bugs)

Variables in OpenMP

Variables in parallel regions are a bit tricky.

#include <stdio.h>
#include <omp.h>
int main() {
int nthreads;
#pragma omp parallel default(none) shared(nthreads)
{
int mythread = omp_get_thread num();
if (mythread == 0)
nthreads = omp_get_num_threads();
}
printf ("There were ’%d threads.\n", nthreads);

}

Program runs, lauches threads.
Each thread gets copy of mythread.
Only thread 0 writes to nthreads.

vV v v v

Good idea to declare mythread locally!

Scilet

) compute ca\cu\

(avoids many bugs)

Single Execution in OpenMP

#include <stdio.h>
#include <omp.h>
int main() {

int nthreads;
#pragma omp parallel default(none) shared(nthreads)

{
int mythread =
if (mythread == 0)

nthreads = omp_get_num_threads();

omp_get_thread num() ;

}
printf ("There were %d threads.\n", nthreads);

}

» Do we care that it's thread 0 in particular that updates

nthreads?
» Often, we just want the first thread to go through, do not

care which one.
SciNet

) compute ca\cu\

Single Execution in OpenMP

#include <stdio.h>
#include <omp.h>
int main() {
int nthreads;
#pragma omp parallel default(none) shared(nthreads)
#pragma omp single
nthreads = omp_get_num_threads();
printf ("There were %d threads.\n", nthreads);
}

Scilet

) compute ca\cul

Loops in OpenMP

Take one of your openmp programs and add a loop.

Scilet

Loops in OpenMP

Take one of your openmp programs and add a loop.

#include <stdio.h>
#include <omp.h>
int main() {
int i, mythread;
#pragma omp parallel default(none) XXXX(i) XXXX(mythread)
{
mythread = omp_get_thread num();
for (i=0; i<16; i++)
printf("Thread %d gets i=Yd\n",
mythread, i);

Scilet

’ compute ca\cu\

Loops in OpenMP

Take one of your openmp programs and add a loop.

#include <stdio.h>
#include <omp.h>
int main() {
int i, mythread;
#pragma omp parallel default(none) XXXX(i) XXXX(mythread)
{
mythread = omp_get_thread num();
for (i=0; i<16; i++)
printf("Thread %d gets i=Yd\n",
mythread, i);
}
}

What would you imagine this does when run with e.g.
OMP_NUM_THREADS=87

Scilet

) compute ca\cu\

Worksharing constructs in OpenMP

» We don't generally want tasks to do exactly the same thing.

» Want to partition a problem into pieces, each thread works on
a piece.

» Most scientific programming full of work-heavy loops.

» OpenMP has a worksharing construct: omp for.

cSeﬁ\let

AAAAAA

Worksharing constructs in OpenMP

» We don't generally want tasks to do exactly the same thing.

» Want to partition a problem into pieces, each thread works on
a piece.

» Most scientific programming full of work-heavy loops.

» OpenMP has a worksharing construct: omp for.

#include <stdio.h>
#include <omp.h>
int main() {
int i, mythread;
#pragma omp parallel default(none) XXXX(i) XXXX(mythread)
{
mythread = omp_get_thread num() ;
#pragma omp for
for (i=0; i<16; i++)
printf ("Thread %d gets i=Yd\n",mythread,i);

ute « calcu
ANADA

Worksharing constructs in OpenMP

» omp for construct breaks up
the iterations by thread.

> If doesn't divide evenly,
does the best it can.

> Allows easy breaking up of
work!

» Advanced: can break up
work of arbitrary blocks of
code with omp task
construct.

$./omp_-loop

thread 3 gets
thread 3 gets
thread 4 gets
thread 4 gets
thread 5 gets
thread 5 gets
thread 6 gets
thread 6 gets
thread 1 gets
thread 1 gets
thread 0 gets
thread 0 gets
thread 2 gets
thread 2 gets
thread 7 gets
thread 7 gets

$

Scilet

) compute ca\cu\

Less trivial example: DAXPY

» multiply a vector by a
scalar, add a vector.

» (a X plus Y, in double
precision)

» Implement this, first —
serlioally, then with OpenMP Z = aX + y
> daxpy.c
> make daxpy
Warning

This is a common linear algebra construct that you really shouldn’t
implement yourself. Various BLAS implementations will do a much
better job than you. But good for illustration.

Scilet

#include <stdio.h>
#include "pca_utils.h"
void daxpy(int n, double a, double *x, double *y, double *z) {
for (int i=0; i<n; i++) {
x[i] = (double)ix(double)i;
y[i] = ((double)i+1.)*((double)i-1.);
}
for (int i=0; i<n; i++)
z[i] += a * x[i] + y[il;
}
int main() {
int n=1e7;

double *x

vector(n) ;
double *y = vector(m);
double *z = vector(n);
double a = 5./3.;
pca_time tt;
tick(&tt);
daxpy(n,a,x,y,2z);
tock(&tt);

free(z);

free(y);

free(x);

-

Dd—

et

um @wm

#include <stdio.h>
#include "pca.utils.h"

void daxpy(int

}
for (int i=0; i<n; i++)
z[i] += a * x[i] + y[il;
}
int main() {
int n=1e7;

double *x

vector(n) ;
double *y = vector(m);
double *z = vector(n);
double a = 5./3.;
pca_time tt;
tick(&tt);
daxpy(n,a,x,y,2z);
tock(&tt);

free(z);

free(y);

free(x);

double a, double *x, double *y, double *z) {

Utilities for this course

-

T b

e

ute « calcu
ANADA

#include <stdio.h>
#include "pca_utils.h"
void daxpy(int n, double a, double *x, double *y, double *z) {
for (int i=0; i<n; i++) {
x[i] = (double)ix(double)i;
y[i] = ((double)i+1.)*((double)i-1.);
}
for (int i=0; i<n; i++)
z[i] += a * x[i] + y[il;

Fill arrays with calculated

}
int main() {
int n=1e7;

double *x

vector(n) ;
double *y = vector(m);
double *z = vector(n);
double a = 5./3.;
pca_time tt;
tick(&tt);
daxpy(n,a,x,y,2z);
tock(&tt);

free(z);

free(y);

free(x);

-

T b

values

e

ute « calcu
ANADA

#include <stdio.h>
#include "pca_utils.h"
void daxpy(int n, double a, double *x, double *y, double *z) {
for (int i=0; i<n; i++) {
x[i] = (double)ix(double)i;
, ylil = ((double)i+1.)*((double)i—l.);[)o calculation.
for (int i=0; i<n; i++)
z[i] += a * x[i] + y[il;
}
int main() {
int n=1e7;

double *x

vector(n) ;
double *y = vector(m);
double *z = vector(n);
double a = 5./3.;
pca_time tt;
tick(&tt);
daxpy(n,a,x,y,2z);
tock(&tt);

free(z);

free(y);

free(x);

-

T b

e

ute « calcu
ANADA

#include <stdio.h>
#include "pca_utils.h"
void daxpy(int n, double a, double *x, double *y, double *z) {
for (int i=0; i<n; i++) {
x[i] = (double)ix(double)i;
y[i] = ((double)i+1.)*((double)i-1.);
}
for (int i=0; i<n; i++)
z[i] += a * x[i] + y[il;
}
int main() {
int n=1e7;

double *x

vector(n);
double *y = vector(m);
double *z = vector(n);
double a = 5./3.;
pca_time tt;
tick(&tt); ~<—Driver (setup, call, timing).
daxpy(n,a,x,y,2z);
tock(&tt);

free(z);

free(y);

free(x);

-

T b

e

ute « calcu
ANADA

OpenMP version of daxpy

void daxpy(int n, double a, double *x, double *y, double *z) {
#pragma omp parallel default(none) shared(n,x,y,a,z) private(i)
{
#pragma omp for
for (int i=0; i<n; i++) {
x[i] = (double)i*(double)ij;
y[i] = ((double)i+1.)*((double)i-1.);
}
#pragma omp for
for (int i=0; i<n; i++)
z[i] += a * x[i] + y[il;

Scilet

) compute ca\cul

Homework

BN

O NG

Make sure you've got a SciNet account!

Read the SciNet tutorial (as it pertains to the GPC)
Read the GPC Quick Start.

Get the first set of code:

$ git clone /scinet/course/sc3/hwl
$ cd hwi

$. setup

$ make

$ make testrun

This contains the serial daxpy.

Make sure it compiles and runs on the GPC.

Create the openmp version as just discussed.

Run this version for all values of OMP_NUM_THREADS from
1 to 16 on a single node, using a batch script. Make sure to
time the duration of these runs.

Submit git log, makefile, code, job script(s), and plots of -
et log. Job scrit(s). and plts o & o
speedup and effiency as a function of P. @ e

AAAAAAA

	Parallel Programming Overview
	Intro to Parallel Programming
	Why
	Concurrency
	Amdahl's law
	Beating Amdahl's law
	Load balancing
	Locality
	Big Lesson

	Parallel Computers
	Distributed Memory
	Shared Memory

	Introduction to OpenMP
	Basics
	Variables in OpenMP
	Single execution
	Loops

