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Why Parallel Programming?

1. Faster
There’s a limit to how fast
1 computer can compute.

2. Bigger
There’s a limit to how
much memory, disk, etc,
can be put on 1 computer.

3. More
Want to do the same thing
that was done on 1
computer, but thousands of
times.

So use more
computers!
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Why is it necessary?

I Big Data: Modern experiments and observations yield vastly
more data to be processsed than in the past.

I Big Science: As more computing resources become available
(SciNet), the bar for cutting edge simulations is raised.

I New Science: which before could not even be done, but now
becomes reachable.

However:

I Advances in clock speeds, bigger and faster memory and disks
have been lagging as compared to e.g. 10 years ago.
Can no longer “just wait a year” and get a better computer.

I So more computing resources here means: more cores running
concurrently.

I Even most laptops now have 2 or more cpus.

I So parallel computing is necessary.
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Moore’s law

. . . describes a long-term trend in the history of
computing hardware. The number of transistors that can
be placed inexpensively on an integrated circuit doubles
approximately every two years.

(source: Moore’s law, wikipedia)

But. . .

I Moores Law didn’t promise us clock speed.
I More transistors but getting hard to push clockspeed up.

Power density is limiting factor.
I So more cores at fixed clock speed.
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Concurrency

I Must have something to do
for all these cores.

I Find parts of the program
that can done
independently, and
therefore concurrently.

I There must be many such
parts.

I There order of execution
should not matter either.

I Data dependencies limit
concurrency.

(source: http://flickr.com/photos/splorp)



Parameter study: best case scenario

I Aim is to get results
from a model as a
parameter varies.

I Can run the serial
program on each
processor at the same
time.

I Get “more” done.
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Throughput

I How many tasks can you do per time unit?

throughput = H =
N

T

I Maximizing H means that you can do as much as possible.

I Independent tasks: using P processors increases H by a factor P
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Scaling — Throughput

I How a problem’s throughput scales as processor number
increases (“strong scaling”).

I In this case, linear scaling:

H ∝ P

I This is Perfect scaling.
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Scaling – Speedup
I How much faster the problem is solved as processor number

increases.
I Measured by the serial time divided by the parallel time

S =
Tserial

T(P)

I For embarrasingly parallel applications, S ∝ P: Linear speed
up.
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Non-ideal cases

I Say we want to
integrate some
tabulated
experimental data.

I Integration can be
split up, so different
regions are summed
by each processor.

I Non-ideal:
I First need to get

data to processor
I And at the end

bring together all
the sums:
“reduction”
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Non-ideal cases

Parallel region⇒


Perfectly Parallel
(for large N)
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Non-ideal cases

Parallel region⇒


Perfectly Parallel
(for large N)

Serial portion ⇒
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Non-ideal cases

Parallel region⇒


Perfectly Parallel
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Amdahl’s law
Speed-up (without parallel overhead):

S =
Tserial

T(P)
=

NT1 + Ts

NT1
P + Ts

or, calling f = Ts/(Ts + NT1) the serial fraction,

S =
1

f + (1− f)/P

P→∞−→
1

f
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Serial part dominates asymptotically.

Speed-up limited, no matter size of P.
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Scaling efficiency

Speed-up compared to ideal factor P:

Efficiency =
S

P

This will invariably fall off for larger P except for embarrasing
parallel problems.

Efficiency ∼
1

fP

P→∞−→ 0

You cannot get 100% efficiency in any non-trivial problem.
All you can aim for here is to make the efficiency as least low as
possible.



Less ideal case of Amdahl’s law

We assumed reduction is constant.
But it will in fact increase with P,
from sum of results of all processors

Ts ≈ PT1

Serial fraction now a function of P:

f(P) =
P

N

Amdahl:

S(P) =
1

f(P) + [1− f(P)]/P

Example: N = 100, T1 = 1s. . .
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Trying to beat Amdahl’s law #1

Scale up!

The larger N, the smaller
the serial fraction:

f(P) =
P

N  0
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Weak scaling: Increase problem size while increasing P

Timeweak(P) = Time(N = n× P,P)

Good weak scaling means this time approaches a constant for large P.
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Trying to beat Amdahl’s law #2

Parallel region⇒


Perfectly Parallel
(for large N)

Serial portion ⇒

Parallel overhead ⇒

Rewrite

∝ 2 log P
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Trying to beat Amdahl’s law #2

‘Serial’ fraction now different
function of P:

f(P) =
2 log P

N

Amdahl:

S(P) =
1

f(P) + [1− f(P)]/P

Example: N = 100, T1 = 1s. . .
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Trying to beat Amdahl’s law #2

Weak scaling

Timeweak(P) = Time(N = n×P,P)

Should approach constant for large P.
Let’s see. . .

Not quite!
But much better than before.
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Synchronization

I Most problems are not
purely concurrent.

I Some level of
synchronization or exchange
of information is needed
between tasks.

I While synchronizing,
nothing else happens:
increases Amdahl’s f.

I And synchronizations are
themselves costly.



Load balancing

I The division of calculations
among the processors may
not be equal.

I Some processors would
already be done, while
others are still going.

I Effectively using less than P
processors: This reduces
the efficiency.

I Aim for load balanced
algorithms.



Locality
I So far we neglected communication costs.

I But communication costs are more expensive than
computation!

I To minimize communication to computation ratio:

* Keep the data where it is needed.
* Make sure as little data as possible is to be communicated.
* Make shared data as local to the right processors as possible.

I Local data means less need for syncs, or smaller-scale syncs.

I Local syncs can alleviate load balancing issues.

Example (PDE Domain decomposition)
wrong right
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Big Lesson

Parallel algorithm design is about finding as
much concurrency as possible, and arranging

it in a way that maximizes locality.



Parallel Computers

Top500.org:

List of the worlds
500 largest
supercomputers.
Updated every 6
months,

Info on
architecture, etc.



Supercomputer architectures

I Clusters, or, distributed memory machines
In essence a bunch of desktops linked together by a network
(“interconnect”). Easy and cheap.

I Multi-core machines, or, shared memory machines
These can see the same memory. Limited number of cores,
typically, and much more $$$.

I Vector machines.
These were the early supercomputers, and could do the same
operation on a large number of numbers at the same time.
Very $$$$$$, especially at scale.
These days, most chips have some low-level, small size
vectorization, but you rarely need to worry about it (compiler
should do this).

Most supercomputers are a hybrid combo of these different
architectures.



Distributed Memory: Clusters

Simplest type of parallel com-
puter to build

I Take existing powerful
standalone computers

I And network them

(source: http://flickr.com/photos/eurleif)



Distributed Memory: Clusters

Each node is independent!

Parallel code consists of
programs running on sep-
arate computers, commu-
nicating with each other.

Could be entirely different
programs.

Each node has own memory!

Whenever it needs data
from another region, re-
quests it from that CPU.

Usual model: “message passing”
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Clusters+Message Passing

Hardware:
Easy to build
(Harder to build well)
Can build larger and
larger clusters relatively
easily

Software:
Every communication
has to be hand-coded:
hard to program
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Shared Memory

One large bank of
memory, different
computing cores acting
on it. All ‘see’ same
data.

Any coordination done
through memory

Could use message
passing, but no need.

Each code is assigned a
thread of execution of a
single program that acts
on the data.
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Threads versus Processes

Threads:
Threads of execution within
one process, with access to the
same memory etc.

Processes:
Independent tasks with their
own memory and resources



Shared Memory: NUMA

Non-Uniform Memory Access

I Each core typically has
some memory of its own.

I Cores have cache too.

I Keeping this memory
coherent is extremely
challenging.
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Coherency

I The different levels of
memory imply multiple
copies of some regions

I Multiple cores mean can
update unpredictably

I Very expensive hardware

I Hard to scale up to lots of
processors, very $$$

I Very simple to program!!
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Shared Memory Communication Cost

Latency Bandwidth

GigE 10 µs 1 Gb/s
(10,000 ns) ( 60 ns/double)

Infiniband 2 µs 2-10 Gb/s
(2,000 ns) ( 10 ns /double)

NUMA 0.1 µs 10-20 Gb/s
(shared memory) (100 ns) ( 4 ns /double)

Processor speed: O(GFLOP) ∼ few ns or less.



Hybrid Architectures

I Multicore machines linked
together with an
interconnect

I Many cores have modest
vector capabilities.

I Machines with GPU: GPU
is multi-core, but the
amount of shared memory
is limited.

• Shared memory: OpenMP

• Distributed memory: MPI

• Graphics computing: CUDA, OpenCL



Using SciNet

GPC

I 3780 nodes each with 2× 2.53GHz quad-core Intel
Xeon 5500 64-bit processors

I 30240 cores total

I 16GB RAM per node

I No local hard disks

I Gigabit ethernet network on all nodes
Used also for management, shared file system, boot, . . .

I InfiniBand network on 1/4 of the nodes
Only used for job communication

I 306 TFlops

I #16 on the June 2009 TOP500 supercomputer sites
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Before we start with OpenMP: Mini intro to SciNet

I Need to have an account

I If you don’t: get it
(wiki.scinethpc.ca/wiki/index.php/Essentials)

I If you can’t: email us.

I Read the SciNet Tutorial and the GPC quick start on the wiki.
(wiki.scinethpc.ca/wiki/index.php/GPC Quickstart)

Access:

$ ssh -X login.scinet.utoronto.ca
$ ssh -X gpc01 (or gpc02, gpc03, gpc04)

You compile on gpc0{1,2,3,4}.

But to run do:
$ qsub -I -l nodes=1:ppn=8,walltime=1:00:00

which gets a dedicated compute node for one hour.
Alternatively, submit a job script.



OpenMP
I For shared memory systems.

I Add parallelism to
functioning serial code.

I http://openmp.org

I Compiler, run-time
environment does a lot of
work for us

I Divides up work

I But we have to tell it how
to use variables, where to
run in parallel, . . .

I Mark parallel regions.

I Works by adding compiler
directives to code.
Invisible to non-openmp
compilers.
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OpenMP basic operations

In code:

I In C/C++, you add lines starting with #pragma omp.
This parallelizes the subsequent code block.

I These lines are skipped (often with a warning) by compilers
that do not support OpenMP.

When compiling:

I To turn on OpenMP support in gcc and g++, add the
-fopenmp flag to the compilation (and link!) commands.

When running:

I The environment variable OMP NUM THREADS determines how
many threads will be started in an OpenMP parallel block.



OpenMP example

C:
#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n", omp get thread num());

}

}



OpenMP example

$ gcc -std=c99 -Wall -O2 -o omp-hello-world omp-hello-world.c -fopenmp

$ export OMP NUM THREADS=8

$ ./omp-hello-world

...

$ export OMP NUM THREADS=1

$ ./omp-hello-world

...

$ export OMP NUM THREADS=32

$ ./omp-hello-world

...

Let’s see what happens. . .



OpenMP example
$ gcc -Wall -O2 -o omp-hello-world omp-hello-world.c -fopenmp

$ export OMP NUM THREADS=8

$ ./omp-hello-world

At start of program

Hello, world, from thread 0!

Hello, world, from thread 6!

Hello, world, from thread 5!

Hello, world, from thread 4!

Hello, world, from thread 2!

Hello, world, from thread 1!

Hello, world, from thread 7!

Hello, world, from thread 3!

$ export OMP NUM THREADS=1

$ ./omp-hello-world

At start of program

Hello, world, from thread 0!

$ export OMP NUM THREADS=32

$ ./omp-hello-world

At start of program

Hello, world, from thread 11!

Hello, world, from thread 1!

Hello, world, from thread 16!
...



So what happened precisely?

I OMP NUM THREADS
threads were launched.

I Each prints “Hello, world
. . . ”;

I In seemingly random order.

I Only one “At start of
program”.

$ gcc -o omp-hello-world omp-hello-world.c -fopenmp

$ export OMP NUM THREADS=8

$ ./omp-hello-world
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Hello, world, from thread 5!
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Hello, world, from thread 2!

Hello, world, from thread 1!

Hello, world, from thread 7!

Hello, world, from thread 3!

$ export OMP NUM THREADS=1

$ ./omp-hello-world

At start of program

Hello, world, from thread 0!

$ export OMP NUM THREADS=32

$ ./omp-hello-world

At start of program

Hello, world, from thread 11!

Hello, world, from thread 1!

Hello, world, from thread 16!

...



So what happened precisely?

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n", omp get thread num());

}

}
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#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n", omp get thread num());

}

}

Program starts normally (single thread)
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So what happened precisely?

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n", omp get thread num());

}

}

At start of parallel section, launching
OMP NUM THREADS threads,
Each executes the same code!
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So what happened precisely?

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n", omp get thread num());

}

}

At end of parallel section,
threads join back up,
Execution continues serially.
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So what happened precisely?

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n", omp get thread num());

}

}

Special function to find number
of current thread (first=0).

?



OpenMP functions (from omp.h)

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d of %d!\n",

omp get thread num(),

omp get num threads());

}

}

omp get num threads() called by all threads.
Let’s see if we can fix that. . .



OpenMP functions (from omp.h)

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n",

omp get thread num());

}

printf("There were %d threads.\n", omp get num threads());

}

What do you think, will this work?

No:
Says 1 thread only!
Why?
Because that is true outside the parallel region!
Need to get the value from the parallel region somehow.
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Variables in OpenMP
Variables in parallel regions are a bit tricky.

#include <stdio.h>

#include <omp.h>

int main() {

int mythread, nthreads;

#pragma omp parallel default(none) shared(nthreads) private(mythread)

{

mythread = omp get thread num();

if (mythread == 0)

nthreads = omp get num threads();

}

printf("There were %d threads.\n", nthreads);

}

I Program runs, lauches threads.

I Each thread gets copy of mythread.

I Only thread 0 writes to nthreads.

I Good idea to declare mythread locally!

(avoids many bugs)
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How used in parallel region

?

I Program runs, lauches threads.

I Each thread gets copy of mythread.

I Only thread 0 writes to nthreads.

I Good idea to declare mythread locally!

(avoids many bugs)
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Variable declarations
�����

How used in parallel region

?

I default(none) can save you hours of debugging!
I shared: each thread sees it and can modify (be careful!).

Preserves value.
I private: each thread gets it own copy, invisible for others

Initial and final value undefined!

I Program runs, lauches threads.
I Each thread gets copy of mythread.
I Only thread 0 writes to nthreads.
I Good idea to declare mythread locally!

(avoids many bugs)
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Single Execution in OpenMP

#include <stdio.h>

#include <omp.h>

int main() {

int nthreads;

#pragma omp parallel default(none) shared(nthreads)

{

int mythread = omp get thread num();

if (mythread == 0)

nthreads = omp get num threads();

}

printf("There were %d threads.\n", nthreads);

}

I Do we care that it’s thread 0 in particular that updates
nthreads?

I Often, we just want the first thread to go through, do not
care which one.



Single Execution in OpenMP

#include <stdio.h>

#include <omp.h>

int main() {

int nthreads;

#pragma omp parallel default(none) shared(nthreads)

#pragma omp single

nthreads = omp get num threads();

printf("There were %d threads.\n", nthreads);

}



Loops in OpenMP

Take one of your openmp programs and add a loop.

#include <stdio.h>

#include <omp.h>

int main() {

int i, mythread;

#pragma omp parallel default(none) XXXX(i) XXXX(mythread)

{

mythread = omp get thread num();

for (i=0; i<16; i++)

printf("Thread %d gets i=%d\n",

XXXXXXXmythread, i);

}

}

What would you imagine this does when run with e.g.
OMP NUM THREADS=8?
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Worksharing constructs in OpenMP
I We don’t generally want tasks to do exactly the same thing.

I Want to partition a problem into pieces, each thread works on
a piece.

I Most scientific programming full of work-heavy loops.

I OpenMP has a worksharing construct: omp for.

#include <stdio.h>

#include <omp.h>

int main() {

int i, mythread;

#pragma omp parallel default(none) XXXX(i) XXXX(mythread)

{

mythread = omp get thread num();

#pragma omp for

for (i=0; i<16; i++)

printf("Thread %d gets i=%d\n",mythread,i);

}

}
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Worksharing constructs in OpenMP

I omp for construct breaks up
the iterations by thread.

I If doesn’t divide evenly,
does the best it can.

I Allows easy breaking up of
work!

I Advanced: can break up
work of arbitrary blocks of
code with omp task
construct.

$ ./omp loop

thread 3 gets i= 6

thread 3 gets i= 7

thread 4 gets i= 8

thread 4 gets i= 9

thread 5 gets i= 10

thread 5 gets i= 11

thread 6 gets i= 12

thread 6 gets i= 13

thread 1 gets i= 2

thread 1 gets i= 3

thread 0 gets i= 0

thread 0 gets i= 1

thread 2 gets i= 4

thread 2 gets i= 5

thread 7 gets i= 14

thread 7 gets i= 15

$



Less trivial example: DAXPY

I multiply a vector by a
scalar, add a vector.

I (a X plus Y, in double
precision)

I Implement this, first
serially, then with OpenMP

I daxpy.c

I make daxpy

z = ax + y

Warning

This is a common linear algebra construct that you really shouldn’t
implement yourself. Various BLAS implementations will do a much
better job than you. But good for illustration.



#include <stdio.h>

#include "pca utils.h"

void daxpy(int n, double a, double *x, double *y, double *z) {

for (int i=0; i<n; i++) {

x[i] = (double)i*(double)i;

y[i] = ((double)i+1.)*((double)i-1.);

}

for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];

}

int main() {

int n=1e7;

double *x = vector(n);

double *y = vector(n);

double *z = vector(n);

double a = 5./3.;

pca time tt;

tick(&tt);

daxpy(n,a,x,y,z);

tock(&tt);

free(z);

free(y);

free(x);

}
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Utilities for this courseHH
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#include <stdio.h>

#include "pca utils.h"

void daxpy(int n, double a, double *x, double *y, double *z) {

for (int i=0; i<n; i++) {

x[i] = (double)i*(double)i;

y[i] = ((double)i+1.)*((double)i-1.);

}

for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];
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int main() {

int n=1e7;

double *x = vector(n);

double *y = vector(n);

double *z = vector(n);

double a = 5./3.;

pca time tt;

tick(&tt);

daxpy(n,a,x,y,z);

tock(&tt);

free(z);

free(y);

free(x);

}

Fill arrays with calculated values.�
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free(z);
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free(x);

}

Do calculation.������)
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}

Driver (setup, call, timing).�



OpenMP version of daxpy

void daxpy(int n, double a, double *x, double *y, double *z) {

#pragma omp parallel default(none) shared(n,x,y,a,z) private(i)

{

#pragma omp for

for (int i=0; i<n; i++) {

x[i] = (double)i*(double)i;

y[i] = ((double)i+1.)*((double)i-1.);

}

#pragma omp for

for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];
}

}



Homework

1. Make sure you’ve got a SciNet account!

2. Read the SciNet tutorial (as it pertains to the GPC)

3. Read the GPC Quick Start.

4. Get the first set of code:
$ git clone /scinet/course/sc3/hw1

$ cd hw1

$ . setup

$ make

$ make testrun

5. This contains the serial daxpy.

6. Make sure it compiles and runs on the GPC.

7. Create the openmp version as just discussed.

8. Run this version for all values of OMP NUM THREADS from
1 to 16 on a single node, using a batch script. Make sure to
time the duration of these runs.

9. Submit git log, makefile, code, job script(s), and plots of the
speedup and effiency as a function of P.
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