
Scientific Computing (Phys 2109/Ast 3100H)

III. High Performance Scientific Computing

Lecture 3: More OpenMP

SciNet HPC Consortium, University of Toronto

February/March 2012



OpenMP Recap – What was it?
I For shared memory systems.

I Add parallelism to
functioning serial code.

I http://openmp.org

I Compiler, run-time
environment does a lot of
work for us

I Divides up work

I But we have to tell it how
to use variables, where to
run in parallel, . . .

I Mark parallel regions.

I Works by adding compiler
directives to code.
Invisible to non-openmp
compilers.



OpenMP Recap – How do you use it?

In code:

I In C/C++, you add lines starting with #pragma omp.
This starts parallel threads, each executing the subsequent
code block.

I These lines are skipped (sometimes with a warning) by
compilers that do not support OpenMP.

When compiling:

I To turn on OpenMP support in gcc/g++, add the -fopenmp

flag to the compilation and link commands.

(gcc ≥ 4.4 supports OpenMP 3.0, gcc 4.7 supports 3.1)

When running:

I The environment variable OMP NUM THREADS determines how
many threads will be started in an OpenMP parallel block.



OpenMP Recap - OpenMP Functions from omp.h

• void omp set num threads(int nthreads); set # threads to use next
• int omp get thread num(); get current thread number
• int omp get num threads(); get current # threads
• void omp set num threads(int nthreads); set # threads to use next
• int omp get num procs(); get # processors available

Example
#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d of %d!\n",

omp get thread num(),

omp get num threads());

}

}



OpenMP Recap - Variables and the Memory Model

Variables in parallel regions are a bit tricky, because there are
different memory ’regions’:

I A shared memory space, accessible to all threads

I A private memory for each thread, created when thread starts,
and destroyed when it’s done.

I (even private memory for each task, later)

Variables that are declared in the serial part have varying defaults
for whether they become shared or private in the parallel region.

I Declare variables locally whenever possible!

Automatically thread private, avoids many bugs.

I For all other variables used in the parallel regions, specify
there access (shared, etc).

I Use default(none) to avoid bugs.



OpenMP Recap – Work Sharing in Loops

I We don’t generally want tasks to do exactly the same thing.

I Want to partition a problem into pieces, each thread works on
a piece.

I Most scientific programming full of work-heavy loops.

I OpenMP has a worksharing construct: omp for.

Example
void daxpy(int n, double a, double *x, double *y, double *z)

{

#pragma omp parallel default(none) shared(n,x,y,a,z)

#pragma omp for

for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];
}

void daxpy(int n, double a, double *x, double *y, double *z)

{

#pragma omp parallel for default(none) shared(n,x,y,a,z)

for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];
}



OpenMP Recap – Work Sharing in Loops

I We don’t generally want tasks to do exactly the same thing.

I Want to partition a problem into pieces, each thread works on
a piece.

I Most scientific programming full of work-heavy loops.

I OpenMP has a worksharing construct: omp for.

Example

void daxpy(int n, double a, double *x, double *y, double *z)

{

#pragma omp parallel default(none) shared(n,x,y,a,z)

#pragma omp for

for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];
}

void daxpy(int n, double a, double *x, double *y, double *z)

{

#pragma omp parallel for default(none) shared(n,x,y,a,z)

for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];
}



Conclusion Recap

So far, we know how to:

I Start a threaded parallel region:
#pragma omp parallel

I Deal with basic variable scope:
default() shared() private()

I Parallelize a loop:
#pragma omp for

I In a parallel region, have only one process do something:
#pragma omp single

This is (almost) enough to be able to OpenMP-parallelize the
diffusion code.



OpenMP version of the diffusion code

1. Temperature evolution

#pragma omp parallel for default(shared) private(i)

for (i=1; i<totpoints+1; i++) {

temperature[new][i] = temperature[old][i] + dt*kappa/(dx*dx) *

(temperature[old][i+1] - 2.*temperature[old][i] +

temperature[old][i-1]);

}

2. Compute theoretical

#pragma omp parallel for default(shared) private(i)

for (i=0; i<totpoints+2; i++)

theory[i] = a*exp(-(x[i]*x[i]) / (2.*sigma*sigma));

3. Compute error

error = 0.;

#pragma omp parallel for default(shared) private(i) ???(error)

for (i=1;i<totpoints+1;i++)

error += (theory[i] - temperature[new][i])

*(theory[i] - temperature[new][i]);



OpenMP version of the diffusion code

1. Temperature evolution

#pragma omp parallel for default(shared) private(i)

for (i=1; i<totpoints+1; i++) {

temperature[new][i] = temperature[old][i] + dt*kappa/(dx*dx) *

(temperature[old][i+1] - 2.*temperature[old][i] +

temperature[old][i-1]);

}

2. Compute theoretical

#pragma omp parallel for default(shared) private(i)

for (i=0; i<totpoints+2; i++)

theory[i] = a*exp(-(x[i]*x[i]) / (2.*sigma*sigma));

3. Compute error

error = 0.;

#pragma omp parallel for default(shared) private(i) ???(error)

for (i=1;i<totpoints+1;i++)

error += (theory[i] - temperature[new][i])

*(theory[i] - temperature[new][i]);



OpenMP version of the diffusion code

1. Temperature evolution

#pragma omp parallel for default(shared) private(i)

for (i=1; i<totpoints+1; i++) {

temperature[new][i] = temperature[old][i] + dt*kappa/(dx*dx) *

(temperature[old][i+1] - 2.*temperature[old][i] +

temperature[old][i-1]);

}

2. Compute theoretical

#pragma omp parallel for default(shared) private(i)

for (i=0; i<totpoints+2; i++)

theory[i] = a*exp(-(x[i]*x[i]) / (2.*sigma*sigma));

3. Compute error

error = 0.;

#pragma omp parallel for default(shared) private(i) ???(error)

for (i=1;i<totpoints+1;i++)

error += (theory[i] - temperature[new][i])

*(theory[i] - temperature[new][i]);



OpenMP version of the diffusion code

1. Temperature evolution

#pragma omp parallel for default(shared) private(i)

for (i=1; i<totpoints+1; i++) {

temperature[new][i] = temperature[old][i] + dt*kappa/(dx*dx) *

(temperature[old][i+1] - 2.*temperature[old][i] +

temperature[old][i-1]);

}

2. Compute theoretical

#pragma omp parallel for default(shared) private(i)

for (i=0; i<totpoints+2; i++)

theory[i] = a*exp(-(x[i]*x[i]) / (2.*sigma*sigma));

3. Compute error

error = 0.;

#pragma omp parallel for default(shared) private(i) ???(error)

for (i=1;i<totpoints+1;i++)

error += (theory[i] - temperature[new][i])

*(theory[i] - temperature[new][i]);



Remainder of this lecture:

I Data dependences: Reductions.

I Getting performance: load balancing, memory access, hybrid

I Non-loop/non-array constructs



Dot Product

I Dot product of two vectors

I Start from a serial
implementation, then will
add with OpenMP

I git clone
/scinet/course/sc3/lc3

I code in ndot.c

I $ source setup

I $ make ndot

I $ ./ndot

I Tells time, answer, correct
answer.

n = ~x ·~y

=
∑

i

xi yi

$ source setup

$ make ndot

$ ./ndot

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 4.9254e-02 seconds.



Dot Product - serial
#include <stdio.h>

#include "pca utils.h"

double ndot(int n, double *x, double *y){

double tot = 0;

for (int i=0; i<n; i++)

tot += x[i] * y[i];

return tot;

}

int main() {

int n=1e7;

double *x = vector(n), *y = vector(n);

for (int i=0; i<n; i++)

x[i] = y[i] = i;

double nn=n-1;

double ans=nn*(nn+1)*(2*nn+1)/6.0;

pca time tt;

tick(&tt);

double dot=ndot(n,x,y);

printf("Dot product is %14.4e (vs %14.4e) for n=%d. Took %12.4e secs.\n",

dot, ans, n, tocksilent(&tt));

}

$ make ndot

$ ./ndot

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 4.9254e-02 secs.



Dot Product - serial
#include <stdio.h>

#include "pca utils.h"

double ndot(int n, double *x, double *y){

double tot = 0;

for (int i=0; i<n; i++)

tot += x[i] * y[i];

return tot;

}

int main() {

int n=1e7;

double *x = vector(n), *y = vector(n);

for (int i=0; i<n; i++)

x[i] = y[i] = i;

double nn=n-1;

double ans=nn*(nn+1)*(2*nn+1)/6.0;

pca time tt;

tick(&tt);

double dot=ndot(n,x,y);

printf("Dot product is %14.4e (vs %14.4e) for n=%d. Took %12.4e secs.\n",

dot, ans, n, tocksilent(&tt));

}

$ make ndot

$ ./ndot

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 4.9254e-02 secs.



Towards A Parallel Dot Product

I We could clearly parallelize the loop.

I We need the sum from everybody.

I We could make tot shared, then all threads can add to it.

double ndot(int n, double *x, double *y) {

double tot = 0;

#pragma omp parallel for default(none) shared(tot,n,x,y)

for (int i=0; i<n; i++)

tot += x[i] * y[i];

return tot;

}

$ make omp ndot race

$ export OMP NUM THREADS=8

$ ./omp ndot race

Dot product is 1.1290e+20

(vs 3.3333e+20) for n=10000000.

Took 5.2628e-02 secs.

Not only is the answer wrong, it was slower to compute!



Towards A Parallel Dot Product

I We could clearly parallelize the loop.

I We need the sum from everybody.

I We could make tot shared, then all threads can add to it.

double ndot(int n, double *x, double *y) {

double tot = 0;

#pragma omp parallel for default(none) shared(tot,n,x,y)

for (int i=0; i<n; i++)

tot += x[i] * y[i];

return tot;

}

$ make omp ndot race

$ export OMP NUM THREADS=8

$ ./omp ndot race

Dot product is 1.1290e+20

(vs 3.3333e+20) for n=10000000.

Took 5.2628e-02 secs.

Not only is the answer wrong, it was slower to compute!



Race Condition - why it’s wrong

I Classical parallel bug.

I Multiple writers to some
shared resource.

I Can be very subtle, and
only appear intermittently.

I Your program can have a
bug but not display any
symptoms for small runs!

I Primarily a problem with
shared memory.

tot = 0
Thread 0: Thread 1:

add 1 add 2

read tot(=0)
into register

reg = reg+1 read tot(=0)
into register

store reg(=1) reg=reg+2
into tot

store reg(=2)
into tot

tot = 2



Race Condition - why it’s slow

I Multiple cores repeatedly
trying to read, access, store
same variable in memory.

I Not (such) a problem for
constants (read only); but a
big problem for writing.

I Sections of arrays – better.

~ ~

~

~

n n

n

n

tot- �
?

6

� -

6

?



OpenMP critical construct

I Defines a critical region.

I Only one thread can be
operating within this region
at a time.

I Keeps modifications to
shared resources saffe.

I #pragma omp critical

double ndot(int n,double*x,double*y){

double tot = 0;

#pragma omp parallel for \

default(none) shared(tot,n,x,y)

for (int i=0; i<n; i++)

#pragma omp critical

tot += x[i] * y[i];

return tot;

}

$ make omp ndot critical

$ export OMP NUM THREADS=8

$ ./omp ndot critical

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 5.1377e+00 secs.

Correct, but 100x slower than serial version!



OpenMP atomic construct

I Most hardware has support
for atomic instructions
(indivisible so cannot get
interrupted)

I Small subset, but
load/add/stor usually one.

I Not as general as critical

I Much lower overhead.

I #pragma omp atomic

double ndot(int n,double*x,double*y){

double tot = 0;

#pragma omp parallel for \

default(none) shared(tot,n,x,y)

for (int i=0; i<n; i++)

#pragma omp atomic

tot += x[i] * y[i];

return tot;

}

$ make omp ndot atomic

$ export OMP NUM THREADS=8

$ ./omp ndot atomic

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 8.5156e-01 secs.

Correct, and better – only 16x slower than serial.



How should we fix the slowdown?

I Local sums.

I Each processor sums its
local values (107/P
additions).

I And sums those to tot

(only P additions with
critical or atomic)

n = ~x ·~y

=
∑

i

xi yi

=
∑

p

(∑
i

xi yi

)

HANDS-ON: Try it!
Parallelize ndot with partial sums.
As a starting point, take omp ndot local.c
(a copy of omp ndot race.c)



How should we fix the slowdown?

I Local sums.

I Each processor sums its
local values (107/P
additions).

I And sums those to tot

(only P additions with
critical or atomic)

n = ~x ·~y

=
∑

i

xi yi

=
∑

p

(∑
i

xi yi

)

HANDS-ON: Try it!
Parallelize ndot with partial sums.
As a starting point, take omp ndot local.c
(a copy of omp ndot race.c)



How should we fix the slowdown?

I Local sums.

I Each processor sums its
local values (107/P
additions).

I And sums those to tot

(only P additions with
critical or atomic)

n = ~x ·~y

=
∑

i

xi yi

=
∑

p

(∑
i

xi yi

)

HANDS-ON: Try it!
Parallelize ndot with partial sums.
As a starting point, take omp ndot local.c
(a copy of omp ndot race.c)



Local variables solution

double tot = 0;

#pragma omp parallel shared(x,y,n,tot)

{

int mytot = 0;

#pragma omp for

for (int i=0; i<n; i++)

mytot += x[i]*y[i];

#pragma omp atomic

tot += mytot;

}

$ export OMP NUM THREADS=8

$ ./omp ndot local

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 1.7902-02 seconds.

Now we’re talking!
2.77x faster.



OpenMP Reduction Operations

I This is such a common
operation, this is something
built into OpenMP to
handle it.

I “Reduction” variables - like
shared or private.

I Can support several types
of operations: - + * . . .

I omp ndot reduction.c



OpenMP Reduction Operations

double tot = 0;

#pragma omp parallel for \

shared(x,y,n) reduction(+:tot)

for (int i=0; i<n; i++)

tot += x[i]*y[i];

$ export OMP NUM THREADS=8

$ ./omp ndot local

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 1.8928e-02 seconds.

Same speed, simpler code!

Reduction operators:
+ - * arithmatic
&& || logical: and, or
& | ^ bitwise and, or, xor

min max extremal values (in C in openmp 3.1)



OpenMP Reduction Operations

double tot = 0;

#pragma omp parallel for \

shared(x,y,n) reduction(+:tot)

for (int i=0; i<n; i++)

tot += x[i]*y[i];

$ export OMP NUM THREADS=8

$ ./omp ndot local

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 1.8928e-02 seconds.

Same speed, simpler code!

Reduction operators:
+ - * arithmatic
&& || logical: and, or
& | ^ bitwise and, or, xor

min max extremal values (in C in openmp 3.1)



Performance

I We threw in 8 cores, got a factor of 3 speedup. Why?

I Often we are limited not by CPU power but by how quickly
we can feed CPUs.

I For this problem, we had 107-long vectors, with 2 numbers of
8 bytes long flowing through in 0.036 seconds.

I Combined bandwidth from main memory was 4.3 GB/s. Not
far off of what we could hope for on this architecture.

I One of the keys to good OpenMP performance is using data
when we have it in cache. Complicated functions: easy. Low
work-per-element (dot product, FFT): hard.



A bit more on variables

I We had:
#pragma omp . . . shared(), private(), and reduction.

I Want private variable to get value from the serial part?
Use firstprivate():

#include <stdio.h>

int main() {

int n = 0;

#pragma omp parallel firstprivate(n)

{

#pragma omp for

for (int i=0;i<100;i++)

n++;

printf("My n=%\n",n);

}

}



A bit more on variables

I Private variables are destroyed after parallel region.

I What if you want the result of a private variable to be
preserved?
Use lastprivate:

#include <stdio.h>

int main() {

int n;

#pragma omp parallel for lastprivate(n)

for (int i=0;i<100;i++)

if (i>70) n=i;

printf("Last n was %\",n);

}



Load Balancing in OpenMP

I So far every iteration of the loop had the same amount of
work.

I This is not always the case.

I Sometimes cannot predict beforehand how unbalanced the
problem is.

OpenMP has work sharing construct that allow you do statically or
dynamically balance the load.



Example - Mandelbrot Set
I Mandelbrot set example of

non-balanced problem.

I Defined as complex points
a where |b∞| finite, with
b0 = 0 and bn+1 = b2

n + a.
If |bn| > 2, point diverges.

I Calculation:
I pick some nmax
I iterate for each point a,

see if crosses 2.
I Plot n or nmax as

colour.

Outside of set, points
diverge quickly (2-3 steps).
Inside, we have to do lots of
work (1000s steps).

I make mandel; ./mandel

Lots of work

Little work
�
�	

6



First OpenMP Mandelbrot Set

I Default work sharing breaks
up N iterations into∑

N/nthreads contiguous
chunks and assigns them to
threads.

I But now threads 7,6,5 will
be done and sitting idle
while threads 3 and 4 work
alone. . .

I Inefficient use of resources.

Serial 0.63s

Nthreads=8 0.29s

Speedup 2.2x

Efficiency 27%

0 1 2 3 4 5 6 7

800x800 pix; N/nthreads 100x800



First OpenMP Mandelbrot Set

I Default work sharing breaks
up N iterations into∑

N/nthreads contiguous
chunks and assigns them to
threads.

I But now threads 7,6,5 will
be done and sitting idle
while threads 3 and 4 work
alone. . .

I Inefficient use of resources.

Serial 0.63s

Nthreads=8 0.29s

Speedup 2.2x

Efficiency 27%

0 1 2 3 4 5 6 7

800x800 pix; N/nthreads 100x800



Second Try OpenMP Mandelbrot Set

I Can change the chunk size to be different from N/nthreads:
#pragma omp for schedule(static,50)

I In this case, more columns;
work better distributed.

I Now, for instance, chunk
size 50, and thread 7 gets
both a big work chunk and
a little one:

Serial 0.63s

Nthreads=8 0.15s

Speedup 4.2x

Efficiency 52%

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

800x800 pix; each thread: 50x800



Second Try OpenMP Mandelbrot Set

I Can change the chunk size to be different from N/nthreads:
#pragma omp for schedule(static,50)

I In this case, more columns;
work better distributed.

I Now, for instance, chunk
size 50, and thread 7 gets
both a big work chunk and
a little one:

Serial 0.63s

Nthreads=8 0.15s

Speedup 4.2x

Efficiency 52%

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

800x800 pix; each thread: 50x800



Third Try: Schedule dynamic

I Break up into many pieces and hand them to threads when
they are ready:
#pragma omp for schedule(dynamic)

I Dynamic scheduling.

I Increases overhead,
decreases idling threads.

I Can also choose chunk size.

Serial 0.63s

Nthreads=8 0.10s

Speedup 6.3x

Efficiency 79%



Third Try: Schedule dynamic

I Break up into many pieces and hand them to threads when
they are ready:
#pragma omp for schedule(dynamic)

I Dynamic scheduling.

I Increases overhead,
decreases idling threads.

I Can also choose chunk size.

Serial 0.63s

Nthreads=8 0.10s

Speedup 6.3x

Efficiency 79%



Tuning

I schedule(static) (default) or schedule(dynamic) are good
starting points.

I To get best performance in badly imbalanced problems, may
have to play with chunk size; depends on your problem and on
hardware.

(static,4) (dynamic,16)

0.084s 0.099s

7/6x 6.4x

95% 79%



Two level loops

In scientific code, we usually have
nested loopes were all the work is.

Almost without exception, want
the pragma on the outside-most
loop.

Why?

#pragma omp for schedule(static,4)

for (int i=0;i<npix;i++)

for (int j=0;j<npix;j++){

double x=i/(double)npix;

double y=j/(double)npix;

double complex a=x+I*y;

mymap[i][j]=f(a,maxiter);

}



Style Points

I If a variable is a private temporary variable inside a parallel
region, try declaring it inside the region.
Makes parallel region easier to specify, and can prevent bugs.

I OpenMP supports reduction and initialization clauses. These
are never necessary to use, but are convenient and can
streamline code.

I You have seen how to find out how many threads exist, etc.
However, in none of our examples did we use that info.
If you think you need to know how many threads you have,
you may well be doing something wrong (with some notable
exceptions such as complex reduction). Using locally declared
variables, and critical regions most likely will do everything
you need.



A Few More Directives

I #pragma omp ordered - execute the loop in the order it would
have run serially. Useful if you want ordered output in a
parallel region. Never useful for performance.

I #pragma omp master - a block that only the master thread
(thread 0) executes. Usually, #pragma omp single is better.

I #pragma omp sections - execute a list of things in parallel. In
OpenMP 3, task directive (later in lecture) is more powerful

I #pragma omp for collapse(n): nested loops scheduled as one
big loop.



Memory Access

I Memory access is important for serial programs, but can
become particularly important in OpenMP

I There is typically a limited bandwidth to main memory. If it
has to be shared 2, 4, or 8 ways, it becomes especially critical
to access it sensibly.

I Note on shared variables in OpenMP: If you aren’t changing
them, the compiler can copy the shared variable to local cache
and no performance hit. Modifying shared variables is
expensive - we have already seen this with the dot product.



Conditional OpenMP

I There is always overhead associated with starting threads,
splitting work, etc. Also, some jobs parallelize better than
others.

I Sometimes, overhead takes longer than 1 thread would need
to do a job - e.g. very small matrix multiplies.

I OpenMP supports conditional parallelization. Add
if(condition) to parallel region beginning. So, for small tasks,
overhead low, while large tasks remain parallel.



Conditional OpenMP in Action

#include <stdio.h>

#include <omp.h>

int main(int argc, char *argv[]) {

int n = atoi(argv[1]);

#pragma omp parallel if (n>10)

#pragma omp single

printf("have %d

threads with n=%d\n",

omp get num threads(),n);

}

$ ./conditional if 12

have 8 threads with n=12

$ ./conditional if 9

have 1 threads with n=9

$

First, pull an integer from the
command line. Check to see if
it’s bigger than a number (in
this case, 10). If so, start a
parallel region. Otherwise, ex-
ecute serially.



Controlling # of Threads

I Sometimes you might want more or fewer threads. May even
want to change while running.

I Example - TCS cluster. Matrix multiply runs fast with twice
as many program threads as physical cores (hyperthreading).
However, matrix factorizations run slower with more threads.

I omp set num threads(int) sets or changes the number of
threads during runtime.



omp set num threads() in action
#include "stdio.h"

#include "omp.h"

int main(int argc,char *argv[]){

//find # of physical cores

//(an openmp library routine)

int maxthreads=omp get num procs();

int n=atoi(argv[1]);

//set # threads equal to input

//if it’s less than maxthreads

if (n<maxthreads)

omp set num threads(n);

else

omp set num threads(maxthreads);

#pragma omp parallel

#pragma omp single

printf("Running with %d

threads for n=%d.\n",

omp get num threads(),n)

}

We have changed the # of
threads during the program.
We could always change the
number later on in the same
code, if we so desired.

Note the use of
omp get num procs, a library
call to detect the number of
available processors to the OS.



Non-loop construct

OpenMP supports non-loop parallelism as well:

I Sections:
#pragma omp parallel

{

#pragma omp sections

{

#pragma omp section

{

something to do

}

#pragma omp section

{

something to do at the

same time

}

}

}

I More flexible: tasks



Tasks

I OpenMP ≥ 3.0 supports the #pragma omp task directive.

I A task is a job assigned to a thread. Powerful way of
parallelizing non-loop problems.

I Tasks should help omp/mpi hybrid codes - one task can do
communications, rest of threads keep working.

I Like all omp, tasks must be called from parallel region.

I Raises complication of nested parallelism (what happens if a
parallel loop called from parallel loop?).



Tasks: test task.c

#include <stdio.h>

#include <omp.h>

int main(){

#pragma omp parallel

#pragma omp single

{

printf("hello");

#pragma omp task

{

printf("hello 1 from

%d.",omp get thread num());

}

#pragma omp task

printf("hello 2 from

%d.",omp get thread num());

}

}

Often want to start tasks from
as if from serial region. Must be
in parallel for tasks to spawn, so
#pragma omp parallel followed
by #pragma omp single very
useful. What would happen
w/out #pragma omp single?



Beauty of Tasks
I Some otherwise-hard-to-parallelize problems fit well into tasks.
I Example (from standard): parallel tree processing.
I Each node has left, right pointers, process each subpointer

with a task.
I Look how short the parallel tree is!
I Works for a variety of non-array structure (linked lists, etc.)

typedef struct node {

struct node *left, right;

...

};

void traverse(struct node* p) {

if (p->left)

#pragma omp task firstprivate(p)

traverse(p->left);

if (p->right)

#pragma omp task firstprivate(p)

traverse(p->right);

process(p);

}

Parallel traversal starts as follows:

int process tree(struct node* root)

{

#pragma omp parallel

#pragma omp single

traverse(root);

}

How’d you do this without tasks?



Beauty of Tasks #2

Linked list:
typedef struct node {

struct node *next;

...

};

void traverse linked list(struct node* head) {

#pragma omp parallel

#pragma omp single

{

struct node* n = head;

while (n != NULL) {

#pragma omp task firstprivate(n)

process(n);

n = n->next;

}

}

}

How’d you OpenMP this without tasks?



The Cost of Beauty

I While elegant there’s substantial overhead for tasks:

I Need to store code and data together as a package (that’s
why all the firstprivate clauses are needed).

I Task has to be put in some sort of queue, and executed when
a thread is idle.

I In contrast, in a default-scheduled loop, there is only one task
per thread.

I Tasks only cost effective if the ’process’ is compute-heavy.

I For fairly light tasks, ’serializing’ the tree or linked list, i.e.,
convering it to an array and openmp-ing that may be
necessary to get good scaling.


