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Fourier transform (FT)

J. Fourier

I Let f be a function of some variable x.

I Transform to a function f̂ of k:

f̂(k) ∝
∫

f(x) e±i k·x dx
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I This transformation can be inverted. If k is continuous:

f̂(k) ∝
∫

f̂(k) e∓i k·x dk
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Fourier Transform (FT)

I Fourier made the claim that any function can be expressed as
a harmonic series.

I The FT is a mathematical expression of that.

I Constitutes a linear (basis) transformation in function space.

I Transforms from spatial to wavenumber, or time to frequency,
etc.

I Constants and signs are just convention.∗

∗ some restritions apply.



Application of the Fourier transform

I Many equations become simpler in the fourier basis.

I Reason: exp(ik · x) are eigenfunctions of the ∂/∂x operator.

I Partial diferential equation become algebraic ones, or ODEs.

I Thus avoids matrix operations.

Examples

I Periodic phenomena

I Spectral analysis

I Signal processing/filtering

I PDEs: virtually anything with a Laplacian



Application of the Fourier transform: examples

Heat equation

∂u

∂t
= α∇2u

⇓
dû

dt
= −α‖k‖2û

Schrödinger equation:

i~
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= −
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2m
∇2Ψ

⇓

i~
dΨ̂

dt
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Discrete Fourier Transform (DFT)

C. F. Gauss

I Given a set of n function values on a regular grid:

fj = f(j∆x)

I Transform these to n other values f̂k

f̂k =
n−1∑
j=0

fj e± 2πi j k/n

I Easily back-transformed:

fj =
1

n

n−1∑
j=0

f̂k e∓ 2πi j k/n

I Negative frequencies: f−k = fn−k.

I General aliasing: k becomes equivalent to k + `n. (max
frequency = k = n/2: Nyquist)



Slow Fourier Transform

I Discrete fourier transform is a linear transformation.

I In particular, it’s a matrix-vector multiplication.

I Naively, costs O(n2). Slow!

I Same scaling as many solvers.



slow DFT

typedef double complex dcomplex;
typedef unsigned long ulong;
void fftn2(ulong n,dcomplex*f,dcomplex*fhat,int dir){

dcomplex* w = malloc(sizeof(*w)*n);
double v = (dir<0?-2:2)*3.14159265358979323846/n;
for (ulong j=0; j<n; j++)

w[j] = cos(v*j) + 1i*sin(v*j);
for (ulong k=0; k<n; k++) {

fhat[k] = 0.0;
for (ulong l=0; l<n;l++)

fhat[k] += w[(k*l)%n]*f[l];
}
free(w);

}

DON’T DO IT!
Even Gauss realized this was too slow and came up with . . .



Fast Fourier Transform (FFT)

C. F. Gauss

Derived in partial form several times before and even
after Gauss, because he’d just written it in his diary
in 1805 (published later).

Rediscovered (in general form) by Cooley and Tukey in 1965.

J. TukeyJ. W. Cooley

Basic idea

I Write each n-point FT as a sum of
two n

2 point FTs.

I Do this recursively 2 log n times.

I Each level requires ∼ n computations:
O(n log n) instead of O(n2).

I Could as easily into 3, 5, 7, . . . parts.



If O(n log n) versus O(n2) does not impress you. . .

n n log2 n n2 ratio
32 160 1,024 6×

128 896 16,384 18×
512 4,608 262,144 57×

2,048 22,528 4,194,304 186×
8,192 106,496 67,108,864 630×



Fast Fourier Transform: How can you do that?

I Define ωn = e2πi/n.
Note that ω2

n = ωn/2.

I DFT takes form of matrix-vector multiplication:

f̂k =
n−1∑
j=0

ωkj
n fj

I With a bit of rewriting (assuming n is even):

f̂k =

n/2−1∑
j=0

ωkj
n/2 f2j︸ ︷︷ ︸

FT of even samples

+ ωk
n

n/2−1∑
j=0

ωkj
n/2 f2j+1︸ ︷︷ ︸

FT of odd samples

I Repeat, until the lowest level (for n = 1, f̂ = f).

I Note that a fair amount of shuffling is involved.



Fast Fourier Transform: How do you really do that?

Do not write your own: use existing libraries.

I Because getting all the pieces right is tricky;

I Getting it to compute fast requires intimate knowledge of how
processors work and access memory;

I Because there are libraries available.
Examples: fftw, intel mkl.

I Because you have better things to do.



FFTW

Example

#include <fftw.h>
typedef double complex dcomplex;
typedef unsigned long ulong;
void fftw(ulong n,dcomplex*f,dcomplex*fhat,int dir) {

fftw plan p = fftw plan dft 1d(n,f,fhat,
dir<0?FFTW BACKWARD:FFTW FORWARD, FFTW ESTIMATE);

fftw execute(p);
fftw destroy plan(p);

}



Hands-on:

I Type this in and make sure it compiles.

I Given an 1d input signal: a discretized sinc(x) = sin(x)/x
with 16384 points on the interval [-30:30].

I Get the linking straighened out.

I Perform forward transform

I Write to file

I Continous FT of sinc(x) is

rect(f) =

{
a if |f| ≤ b
0 if |f| > b

I Does that match?



Symmetries

Real data

I All arrays were complex so far.

I If input f is real, this can be exploited.

f∗j = fj ↔ f̂k = f̂∗n−k

I Each complex number holds two real numbers, but for the
input f we only need n real numbers.

I If n is even, the transform f̂ has real f̂0 and f̂n/2, and the

values of f̂k > n/2 can be derived from the complex valued
f̂0<k<n/2: again n real numbers need to be stored.

I Beware of implement dependent storage patterns.



Inverse

Inverse DFT

I Inverse DFT is similar to forward DFT, up to a normalization:
almost just as fast.

fj =
1

n

n−1∑
k=0

f̂k e∓ 2πi j k/n

Many implementations (almost all in fact) leave out the 1/n
normalization.

I FFT allows quick back-and-forth between x and k domain (or
e.g. time and frequency domain).

I Allows parts of the computation and/or analysis to be done in
the most convenient or efficient domain.



Multidimensional transforms

In principle a straighforward generalization:

I Given a set of n×m function values on a regular grid:

fab = f(a∆x, b∆y)

I Transform these to n other values f̂k

f̂kl =
n−1∑
a=0

m−1∑
b=0

fab e± 2πi (a k+b l)/n

I Easily back-transformed:

fab =
1

nm

n−1∑
k=0

m−1∑
l=0

f̂kl e∓ 2πi (a k+b l)/n

I Negative frequencies: f−k,−l = fn−k,m−l.



Multidimensional FFT

I We could successive apply the FFT to each dimension

I This may require transposes, can be expensive.

I Alternatively, could apply FFT on rectangular patches.

I Mostly should let the libraries deal with this.

I FFT scaling still n log n.

I Real transform even more convoluted.



FFTW

2! = 3

Capabilities

I Complex one-dimensional transforms

I Complex multi-dimensional transforms.
(Needs contiguous arrays)

I Real-to-half-complex array transforms

I Format real transforms different in 1d and nd.

I Read the manual!

Notes:

I Always create a plan first. Plans can be reused in the
program, and even saved on disk!

I Works with doubles by default.



Homework

Trigonometric interpolation
Trigometric interpolation uses a n point Fourier series to find
values at intermediate points. It is one way of “downscaling” data,
and was a motivation for Gauss, to be applied to planetary motion.
The way it works is:

I You fourier transform your data

I You add frequecies above the Nyquist frequency (in absolute
values), but set all the amplitudes of the new frequencies to
zero.

I Note that the frequencies are stored such that eg. f̂n−1 is a
low frequency −1/n.

I The resulting 2n array can be back transformed, and now
gives an



Homework

Assignment 1
Write an application that will read in an image as a binary file with
a 2d array, in double precision, and creates an image twice the size
in all directions.
Use a real-to-real version of the fftw.

PPM image format
The image format to be used is ppm, which goes as follows:

I first line: ”P6\n”

I second line: ”width height\n”

I Subsequently triplets of 3 (rgb) byte values per pixel.



Homework

Assignment 2
Write an application which reads an image and performs a low
pass filter on the image, i.e., any fourier components with
mangitudes k larger than n/4 are to be set to zero, after which the
fourier inverse is taken and the image is to be printed out.

Due next Thursday at noon!


