Kit Barton kbarton@ca.ibm.com
IBM Toronto Lab

Performance Tuning with the IBM XL Compilers
SciNet Tutorial

© 2012 IBM Corporation

IBM | Software Group | Rational

© Copyright IBM Corporation 2012. The information contained in these materials is provided for
informational purposes only, and is provided AS IS without warranty of any kind, express or implied. IBM
shall not be responsible for any damages arising out of the use of, or otherwise related to, these materials.
Nothing contained in these materials is intended to, nor shall have the effect of, creating any warranties or
representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable
license agreement governing the use of IBM software. References in these materials to IBM products,
programs, or services do not imply that they will be available in all countries in which IBM operates. Product
release dates and/or capabilities referenced in these materials may change at any time at IBM'’s sole
discretion based on market opportunities or other factors, and are not intended to be a commitment to future
product or feature availability in any way. IBM, the IBM logo, Rational, the Rational logo, Telelogic, the
Telelogic logo, and other IBM products and services are trademarks of the International Business Machines
Corporation, in the United States, other countries or both. Other company, product, or service names may
be trademarks or service marks of others.

Please Note:

— IBM’s statements regarding its plans, directions, and intent are subject to change or withdrawal without notice at IBM’s
sole discretion.

— Information regarding potential future products is intended to outline our general product direction and it should not be
relied on in making a purchasing decision.

— The information mentioned regarding potential future products is not a commitment, promise, or legal obligation to
deliver any material, code or functionality. Information about potential future products may not be incorporated into any
contract. The development, release, and timing of any future features or functionality described for our products
remains at our sole discretion.

2 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

IBM | Software Group | Rational

= Part 1 — Overview of XLC/C++ V12.1 and XLF V14.1
— New features
— Compile-time improvements
— C++ Optimization Improvements
— Debugging optimized code
— OpenMP 3.1

= Part 2 — Performance Tuning using the XL Compilers
— Overview of compiler options and frequently used pragmas/directives
— C++ Optimization Tuning
— Debugging Optimized Code
— Tuning parallel codes
— Data prefetch and reorganization
— Vectorization
— SIMD Tuning

3 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

IBM | Software Group | Rational

Part 1 — Overview of XLC/C++ V12.1 and XLF V14.1

4 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

IBM | Software Group | Rational

= Target AlX, Linux on Power
—Common technology for Blue Gene/Q, and zOS (XLC/C++ only for zOS)

= | anguage standard compliance
—C99 Standard compliance
—C++98 and subsequent TRs, Selected C++0x features
—Fortran 2003 Standard compliance
—OpenMP implementation for parallel programming

= Fully backward compatible with objects compiled with older compilers
— Supports mix-and-match of objects generated with different compilers and
optimization levels
—Backward compatibility through option control in some rare situations:
* C++ name mangling, OpenMP TLS, etc

= GCC affinity
—Partial source and full binary compatibility with gcc

5 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

IBM | Software Group | Rational

= Platform exploitation
—qarch: ISA exploitation

—qtune: skew performance tuning for specific processor, including
tune=balanced

—Large portfolio of compiler builtins and performance annotations

= Mature compiler optimization technology
— Five distinct optimization packages
—Debug support and annotated assembly listings at all optimization levels
* Debug experience is affected by aggressive optimization
— Aggressive loop restructuring
—Whole program optimization
— Profile-directed optimization

6 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

IBM | Software Group | Rational

= Libraries of mathematical routines tuned for optimal performance on various POWER
architectures
— General implementation tuned for POWER
— Specific implementations tuned for specific POWER processors (pwrb, pwr6, pwr7)

= Compiler will automatically insert calls to MASS/MASSYV routines at higher optimization levels
— Users can add explicit calls to the library

= References
— “Improve the performance of programs calling mathematical functions” by Robert F.

Enenkel and Daniel M. Zabawa,
http://www.ibm.com/developerworks/rational/library/10/improveperformanceprogramsmathfunctions/index.htmi

— Autovectorization sandbox:
http: //ww.ibm convdevel operwor ks /downl oads /enmsandbox/power _infrastructure. html

— MASS Webpage: http://www.ibm.com/software/awdtools/mass

7 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

http://www.ibm.com/developerworks/rational/library/10/improveperformanceprogramsmathfunctions/index.html
http://www.ibm.com/developerworks/downloads/emsandbox/power_infrastructure.html
http://www.ibm.com/software/awdtools/mass

IBM | Software Group | Rational

Customer Requirements
— GCC style atomic operation support
— More aggressive restrict pointer implementation
— SIMD level pragmas
— Loop iteration pragmas
— Functrace enhancement (optfile)
— Inline ASM enhancements
— Boost and GCC compatibility enhancements

Performance Improvements
— Improve performance of applications using object-oriented language features
— Non-loop SIMDization for more VSX vector exploitation

Language Standards
— Continue C++0X phased feature release: constexpr, rvalue ref, strong enum...
— Start C1X phased feature release: static_assert ..
— OpenMP 3.1 conformance

Productivity and Usability
— Reduced memory usage for whole-program optimization
— Faster compilation of complex codes, e.g, C++ template code
— Debugging enhancements, e.g, better support for debugging optimized code, support for C++0x
subset features
— Portability enhancements
— XML Transformation report content extension and usability enhancement
— Tooling integration (PTP, HPCS toolkit)

8 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

IBM | Software Group | Rational

Customer Requirements from HPC, ISV and other clients
— Alignment control (alignment directive)
— SIMDization control (SIMD level directives)
— Loop iteration directives
— Functrace enhancement (module name, optfile)
— Initialization of malloc storage (-ginitalloc option)
— Traceback enhancements
— WORKSHARE improvements in FORALL

Performance Improvements
— Improved handling of FO0 array language
— More precise aliasing analysis for Fortran dummy arguments
— Loop transformation enhancements at -O3 —ghot for SIMDization/Vectorization and data locality

Language Standards
— OpenMP 3.1 conformance

— Subset of Fortran 2008 (non coarray part): CONTIGUOUS, BLOCK, Internal procedures as actual
arguments and procedure pointer targets, compiler_version, compiler_options

Productivity and Usability
— Compile-time performance improvement for F90 array language and F90 modules
— Compilation memory footprint improvements
— Compilation scalability improvements including 64-bit components
— Improved XML compiler transformation reports
— Improved diagnostics control (-ghaltonmsg, -gmaxerr options)
— Debugging enhancements including support for Fortran 2003 features

9 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

[
il
nll
i

IBM | Software Group | Rational

Infrastructure Improvements

= Compilation time
— Significant effort placed to improve compilation speed for large applications
— Caching of directory lookups to speed up processing of header files (C/C++)

= Scalability
— Improved memory utilization for IPA process
— More compiler components running on 64-bit mode
 Eliminates compiler limitations for optimizing large source files

Reduction in compile time Reduction in compile time
Compared to XLFV13.1 (-O3 -ghot -q64) Compared to XLC/C++V11.1 (-02)
1 1.2
0.8 1
0.6 B XLFV14.1 g'z B XLC/C++V12.1
0.4 04
0.2 0.2
0
0 dealll povray perlbbench gobmk omnetpp Average
wrf tonto gamess leslie3d Average namd soplex lbm gce h264ref xalanbmk
Benchmarks (SPEC2006) Benchmarks (SPEC2006)

10 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

IBM | Software Group | Rational

General performance improvements
— More aggressive dead code elimination
— More precise side-effect analysis for IPA process (level=1 and up)

Significant effort placed to improve runtime performance for C++ applications
— More effective inlining to support object-oriented C++
— Better support for always_inline attribute
— Improved management for temporary objects
— Improved management of aggregate returns
— Improved management of aggregate value parameters
— More effective implementation of the C99 “restrict” keyword (both C and C++)

Expect runtime performance improvements for object-oriented C++ codes

11 September 17,2012 XL Compiler Tutorial for SciNet

© 2012 IBM Corporation

IBM | Software Group | Rational

AlX uses a global data structure to access statically-allocated variables
— Compiler generates a load off a reserved address, to be fixed up by the linker
« Maximum 64k offset, providing up to 8k 64-bit entries
— If this table overflows, current linker mechanism introduces a branch to fixup code
— This can be addressed through IPA, but non-IPA compilations pay heavy runtime cost

New mechanism in collaboration with the AIX linker
— Compiler generates a two instruction sequence: an add-immediate-shifted and a load
* Low latency between these two instructions
— Provides up to 2G of TOC data, up to 256M entries
— Available under the option -gpic=large

Combination with data local mechanism provides faster access to global data

Similar mechanism implemented on Linux on Power

12 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

IBM | Software Group | Rational

= Debug levels
— There is an intrinsic tradeoff between compiler optimization and debug transparency
— Compiler optimizations hide program state from the debugger
» Users have to choose between full debug at no-opt, or marginal debug at full opt

= Compiler to provide control over tradeoffs between optimization and debug
— Debug levels: -g0 to -g9
* -g1 minimal debug, maintain full performance
* -g9 will provide full debug capability, at runtime performance cost
— Expect better runtime performance from -g9 -O2 than -g -O0
— Intermediate levels provide other levels of tradeoff
« -0O2 -g8 provide full debug, except no modification to user variables from debugger

13 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

IBM | Software Group | Rational

= Generate compilation reports consumable by other tools

— Enable better visualization and analysis of compiler information

— Help users do manual performance tuning

— Help automatic performance tuning through performance tool integration

= Unified report from all compiler subcomponents and analysis

— Compiler options
— Pseudo-sources

— Compiler transformations, including missed opportunities

= Consistent support among Fortran, C/C++

= Controlled under option

-glistftmt=[xml | html]=inlines
-qlistftmt=[xml | html]=transform
-glisttmt=[xml | html]=data
-qlistftmt=[xml | html]=pdf
-qlistftmt=[xml | html]=all
-glistfmt=[xml | html]=non

new

September 17,2012 XL Compiler Tutorial for SciNet

generates inlining information

generates loop transformation information
generates data reorganization information
generates dynamic profiling information
turns on all optimization content

turns off all optimization content

© 2012 IBM Corporation

IBM | Software Group | Rational

" Full OpenMP 3.1 compliance for XL C/C++ V12.1 and XLF V14.1 on AIX/Linux

* Major OpenMP 3.1 features include
— New omp atomic extensions

* update / read / write / capture
— Support for min/max reductions on C/C++

* Aligns C/C++ reductions with Fortran
— Mergeable and final clauses on tasks

* Provides fine-grain control over task creation to improve performance
— OMP_PROC_BIND

* Generic mechanism to bind threads to processors
* Existing thread binding mechanisms in XL Compilers still supported

* Performance enhancements to reduce the overhead of parallel work initialization

15 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

IBM | Software Group | Rational

= Inline ASM
— ASM is a gcc extension that allows mingling of machine assembly on C++ code
— Not portable, not recommended unless there is no other option
— New implementation is more robust and better mimics GCC behavior

= GCC builtins
— Implement more gcc builtin functions
 Particularly atomic access builtins

16 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

IBM | Software Group | Rational

IBM Rational Cafes — Connecting Communltles

» Accelerate your enterprise modernization efforts
by becoming a member of the Cafe
communities

= Ask questions, get free distance learning,
browse the resources, attend user group
webcasts, read the blogs, download trials, and
share with others

» Cafes have forums, blogs, wikis, and more

» Languages covered:
C/C++, COBOL, Fortran, EGL, PL/I, and RPG

* Products covered:
. COBOL for AIX®
. Enterprise COBOL for z/OS®
. Enterprise PL/I for z/OS

. Host Access Transformation Services

. PL/I for AIX

. Rational® Business Developer

. Rational Developer for Power Systems Software™
. Rational Developer for i for SOA Construction

. Rational Developer for System z

. Rational Developer for System z Unit Test

. Rational Team Concert™

. XL C for AIX

. XL C/C++ for AlX/Linux ®
. XL Fortran for AIX/Linux

. XL C/C++ for z/VM

. z/OS XL C/C++

17 September 17,2012 XL Compiler Tutorial for SciNet

develo])erWorksﬁ Technical topics Evaluation software Community Events [T

IBM Rational Cafes

Connecting Communities

Join. Download. Learn.

L D ‘h e mos| Ifamy r1BM CiC++ compiler
er I o5 and on-ine Toruma UnitTest |

h’ (a:\ma(e cunversanuns

d ”OHHND\UDS and forums to connectwwm 1BM
wihis revolutionary technology can e | Eoriran der bout Fartran compiler products. Leam
nnovative business solufions, fast Le e

| vscow
|_EGIHY oude
| aore EGL

- Inte

| Gettogether with developers about IBM PLA comg RrPGH an
|_.PL/IZH products through blags and forums Lo
| Leammore -

with RPG and IBM developers to mingle
USS our favorite language - RPG

facebook.com/IBMcompilers

@IBM_Compilers

compinfo@ca.ibm.com

© 2012 IBM Corporation

IBM | Software Group | Rational

Part 2 — Performance Tuning with XL Compilers

18 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

IBM | Software Group | Rational

Optimization levels:
— -00 to -05

High Order Transformations:
— -ghot

Interprocedural analysis:
— -qgipa or —0O4 or —05

— -gpdf1/-qpdf2

Target machine specification:
— -garch=pwr7 —qtune=pwr7 —qcache=auto

Floating point options:
— -gstrict=subopt, -gfloat=subopt

Program behavior options:
— -gassert=subopt, etc.

Diagnostic options:
— -glist, -greport, -qglistfmt, etc

19 September 17,2012 XL Compiler Tutorial for SciNet

Profile directed feedback optimization:

© 2012 IBM Corporation

IBM | Software Group | Rational

Noopt,-O0
— Quick local optimizations
— Keep the semantics of a program (-gstrict)

= -02
— Optimizations for the best combination of compile speed and runtime performance
— Keep the semantics of a program (-gstrict)

= -0O3
— Equivalent to —O3 —ghot=level=0 —qgnostrict
— Focus on runtime performance at the expense of compilation time: loop transformations, dataflow
analysis
— May alter the semantics of a program (-gnostrict)

» -O3 —ghot
— Equivalent to —O3 —ghot=level=1 —qgnostrict
— Perform aggressive loop transformations and dataflow analysis at the expense of compilation time

= -0O4
— Equivalent to —O3 —ghot=level=1 —qipa=level=1 -gnostrict
— Aggressive optimization: whole program optimization; aggressive dataflow analysis and loop
transformations

= -05
— Equivalent to —O3 —ghot=level=1 —qipa=Ilevel=2 -gnostrict
— More aggressive optimization: more aggressive whole program optimization, more precise
dataflow analysis and loop transformations

20 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

IBM | Software Group | Rational

HPC Performance Tuning with XL Compilers

Profiling for hot spot detection:
*Compiler instrumentation: —qpdfi=level={1,2} / pdf2
/\ *-pg for gprof/xprofiler; -qlist for tprof

*User-provided profile functions: -qfunctrace
Frequently use

option set SIMDization:

*Automatic SIMDization: —O3 or above with —qsimd

*User explicit SIMD program: -qaltivec

03 —qarch=pwr7 or
-03 —qhot —qarch=pwr7 Loop transformations:

with —gnostrict or —gstrict "Loop transformations: —O3 or above

Parallelization:

*User explicit parallelization only: -gsmp=omp

*Auto parallelization: -gsmp (-gsmp=auto)

Whole program optimizations:

*-04 or —05 for inter-procedural optimization:
inlining, code partition, data reorganization

21 September 17,2012 XL Compiler Tutorial for SciNet

© 2012 IBM Corporation

IBM | Software Group | Rational

= #pragma align ' .
= #pragma alloca (C only)
= #pragma block loop

= {#pragma chars

= {#pragma comment

* #pragma define, #pragma instantiate (C++ only) _
* #pragma disjoint ¥

= #pragma do_not_instantiate (C++ only)
= {#pragma enum

= #pragma execution_frequency

= #pragma expected_value

= #pragma fini (C only)

= #pragma hashome (C++ only)

= #pragma ibm snapshot

= #pragma implementation (C++ only)

= #pragma info

= #pragma init (C only)

= #pragma ishome (C++ only)

= #pragma isolated_call

= #pragma langlvl (C only)

= {#pragma leaves

= #pragma loopid

= {#pragma map
22 September 17,2012 XL Compiler Tutorial for SciNet

#pragma mc_func

#pragma namemangling (C++ only)

#pragma namemanglingrule (C++ only)

#pragma nosimd ¥

#pragma novector

#pragma object_model (C++ only)
#pragma operator_new (C++ only)
#pragma options

#pragma option_override
#pragma pack

#pragma pass_by_value (C++ only)
#pragma priority (C++ only)
#pragma reachable

#pragma reg_killed_by

#pragma report (C++ only)
#pragma simd_level ‘
#pragma STDC cx_limited_range
#pragma stream_unroll

#pragma strings

#pragma unroll

#pragma unrollandfuse

#pragma weak

#pragma ibm independent_loop

Parallel processing

= #pragma ibm critical (C only)

* #pragma ibm independent_calls (C only)
* #pragma ibm iterations (C only)

* #pragma ibm parallel_loop (C only)

* #pragma ibm permutation (C only)

= #pragma ibm schedule (C only)

= #pragma ibm sequential_loop (C only)
* #pragma omp atomic

= #pragma omp parallel

= #pragma omp for

= #pragma omp ordered

= #pragma omp parallel for

= #pragma omp section, #pragma omp sections
= #pragma omp parallel sections

* #pragma omp single

* #pragma omp master

* #pragma omp critical

* #pragma omp barrier

* #pragma omp flush

* #pragma omp threadprivate

* #pragma omp task

* #pragma omp taskwait

¥ Frequently used

© 2012 IBM Corporation

IBM | Software Group | Rational

23

Dependency

— #pragma ibm independent_loop

— #pragma disjoint

Frequency
— #pragma execution_frequency
— #pragma expected value
— #pragma ibm min_iterations
— #pragma ibm max_iterations
— #pragma ibm iterations

Alignment
— __alignx
— _ attribute__ {(aligned(16))}

SIMDization
— #pragma nosimd
— #pragma simd_level

Unroll
— #pragma unroll

September 17,2012 XL Compiler Tutorial for SciNet

© 2012 IBM Corporation

IBM | Software Group | Rational

» Frequently used compiler option sets
—-03 —qarch=pwr7 —qtune=pwr7
—-03 —ghot —garch=pwer7 —qtune=pwr7

* Frequently used compiler directives/pragmas
— Dependency and alias analysis
— Alignment
— Frequency
— Program behavior
— Transformations

24 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

IBM | Software Group | Rational

matrix.cpp

#include <iostream>
#include <Eigen/Dense>
#define ROWS 3
#define COLUMNS 3
using namespace Eigen;
int main() {

MatrixXd a(ROWS,COLUMNS),
b(ROWS,COLUMNS), -
res(ROWS. COLUMNS): = Add a and b and put result in res

for (int i=0; i<ROWS; i++) {

for (int j=0; j<<COLUMNS; j++) {
a(i,j) = j*+(i*COLUMNS);
b(i,j) = a(i,j)*2;
}
}

std::cout << "a: " << a << std::endl|
<< "b: " << b << std::endl;
res = atb;
std::cout << "res: " << res << std::endl;
return O;

» Create 3x3 matrices, aand b

» |nitialize a and b

25 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

IBM | Software Group | Rational

Transformation Reports
xIC_r matrix.cpp -0 matrix -glist -O2 -glistfmt=html

TR0 IBM XL Compiler Report -

= C % @ basilisk.torolab.ibm.com/~kbarton/matrix.htm| e

g

[]1BM Compilers []TPO []Dashboards 5. IBM Toronto Lab () HPCwira e Markham Weather @ Ubuntu 10.04 LTS » [] Other Bookmarks

IBM XL Compiler Report - Version1.1 . :
P P - Compiler A

information .
Language: C++ OptlonS

Compiler version: 12.1.0.0

Compiler name: [BM XL C/C++ for ADX, Version 12.1.0.0

Report produced on: 051012 21:45:59 EDT
Locale: en_US
Report produced with: /gsaltibgsa/projectsioxlicmpbldirunivacppi 2 1/aixsolution120323/usrivacppibini.origklC_r -I./eigen-eigen-6eT488e2037 3/ matrix.cpp -0 matrix -qlist -02 -

galias=ansi -gthreaded -D_THREAD_SAFE -D__ VACPP_MULTI__ -D_AIX -D_AIX32 -D_AIX41 -D_AIX43 -D_AIX50 -D_AIX51 -D_AIX52 -D_AIX53 -D_IBMR2 -D_POWER -
glistimt="noxml="notransforms."noinlines:*nodata:* nopdf:*filename:*stylesheet*version=v1.0:html=*transforms."inlines:*data:”pdf:*filename:*stylesheet*version=v1.0 COde from

Table of Contents

Navigati ¢ different
1. Program Hierarchy avigation o .
1 Powambemy | g SO TS —

3. Profiling Reports contents hyperlinks

Program Hierarchy provide easy
+ File #1: /eigen-eigen-6e7488e20373/Eigen/src/Core/DenseBase.h navigation /

+ Region#1: ct Q2 5Eigen9DenseBaseXTO2 SEigenGMatrixXTdSM1SM1SPOSM1SN1 _ Fv
o Region #36:
ct Q2 5Eigen9DenseBaseXTQ2 5Eigeni3CwiseBinaryOpXTQ3 SEigenBinternali3scalar sum opXTd TCQZ 5SEigenGMatrixXTdSN1SN1SPOSNISNT TCQZ 5E
o Reglon#102: eval Q2 5Eigen9DenseBaseXTQ? SEigen6MatrixXTdSM1SN1SPOSNISNT CFv
¢« Region#342: ct Q2 3std9bad allocFPCc
o+ Region#449: dt Q2 3stdSbad allocFy
+ File #2: /eigen-eigen-Ge7488e20373/Eigen/src/Core/MatrixBase.h
o Reglon#2: ct Q2 5EigeniOMatrixBaseXTQ2 SEigent6MatrixXTdSN1SN1SPOSNISNT _ Fv
o Reglon #37:
ct Q2 5EigeniOMatrixBaseXTQ2 SEigeni3CwiseBinaryOpXTQ3 5EigenBinternall3scalar sum opXTd TCQZ 5EigenGMatrixXTdSN1SN1SPOSN1SN1 TCQZ2 &l
o Reglon#343: dl Q2 5Eigeni5FlainObjectBaseXTQ2? SEigenGMatrixXTdSN1SM1SPOSM1SNT FPv
« File #3: . /eigen-eigen-6eT488e20373/Eigen/src/Core/FlainObjectBase.h

o Reglon#3: ct Q2 5Eigeni5PlainObjectBaseXTQ2 SEigentMatrixXTdSM1SN1SPOSNISNT _ Fv .
o Reglon#6: check template params Q2 5Eigeni5PlainCbjectBaseXTQ2 SEigentMatrixXTdSM1SN1SPOSN1SNT Fv v
4|k LA

26 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

IBM | Software Group | Rational

(] 1M Compiler

xIC_r matrix.cpp -0 matrix -glist -O2 -glistfmt=htmi

Loop optimization

Compiler Report -

TPO [] Dashboards

basilisk.torolab.ibm.com/~kbarton/matr

7+ IBM Toronto Lab

Component

#loopTransformation

Loop Transformat| ble

Seq # Type Phase Region #
1 LoopUnrall {success) Low Level Optimizer 21

2 LoopUnroll (success) Low Level Optimizer 306

3 LoopUnroll (success) Low Level Optimizer 306

4 LoopUnroll {success) Low Level Optimizer 306

Inline Optimization Table

Seq Type Phase Caller Region Callee Region Callsite File
#

1 Successfullnline (success) C++ Front End

2 Successfullnline (success) C++ Front End 3 2 3

3 Successfullnline (success) C++ Front End 3 4 3

4 Successfullnline (success) C++ Front End 5 3 5

5 Successfullnline (success) C++ Front End 5 [5

& Successfullnline (success) C++ Front End B 7 3

7 FunctionTooBig (fail) C++ Front End]] 3
4k

27 September 17,2012 XL Compiler Tutorial for SciNet

Cwire ¢ Markham Weather @ Ubuntu 10.04

Line #

791

3415

3430

3445

Relevant source

information

Linux Today () Slashdot) CTWEE = XM online+

Description

Callsite Line Callsite Column

#

506
395
102
246
247
47

599

Success/failure and
relevant information

A

» [:I Other Bookmarks

Attributes

1 Loop unroll was performed. + Unrall Factor: 2
1 Loop unroll was performed. + Unroll Factor: 2
1 Loop unroll was performed. + Unroll Factor: 2
1 Loop unroll was performed. + Unroll Factor: 2
Description
pt
20 The function was successfully inlined.
52 The function was successfully inlined.
113 The function was successfully inlined.
5 The function was successfully inlined.
7 The function was successfully inlined.
5 The function was successfully inlined.
'y
7 The function was not inlined because it is too big to be inlined. 1)

‘b//;

© 2012 IBM Corporation

IBM | Software Group | Rational

Transformation Hierarchy

=

xIC_r matrix.cpp -0 matrix -glist -O3 -ghot -glistfmt=html

Tr0 IBM XL Compiler Report -

C ft

More optimizations with

() basilisk.torolab.ibm.com/~kbarton/matrix.html#loopTransformati

increased opt levels

7| @

[]18M Compilers []TPO [] Dashboards s IBM Toronto Lab () HPCwire () Ubuntu 10.04 LTS [[/| Linux Today () Slashdot ¢[J) CTWEB > XM online+ () Mac@IBM » [Other Bookmarks
Loop Transformation Table i
T

Seq# Type Phase Line # Loop Index Description Attributes

1 CompleteLoopUnroll (success) High Level Optimizer il 13 not available Complete loop unroll was performed. not available

2 NonMNormalizableLoop (fail) High Level Optimizer 167 205 3 An attempt to optimize loop failed because the loop is not normalizable. not available

3 MNonMormalizableLoop (fail) High Level Optimizer 167 205 3 An attempt to optimize loop failed because the loop is not normalizable. not available

4 NonMormalizableLoop (fail) High Level Optimizer 167 206 4 An attempt to optimize loop failed because the loop is not normalizable. naot available

5 NonMNormalizableLoop (fail) High Level Optimizer 167 206 4 An attempt to optimize loop failed because the loop is not normalizable. not available

6 MNonMormalizableLoop (fail) High Level Optimizer 167 217 b1 An attempt to optimize loop failed because the loop is not normalizable. not available

7 NonMormalizableLoop (fail) High Level Optimizer 167 217 d An attempt to optimize loop failed because the loop is not normalizable. naot available

8 NonMNormalizableLoop (fail) High Level Optimizer 167 224 2 An attempt to optimize loop failed because the loop is not normalizable. not available

9 NonMormalizableLoop (fail) High Level Optimizer 167 224 2 An atterpt to optimize loop failed because the loop is not normalizable. not available

10 NonMormalizableLoop (fail) High Level Optimizer 295 921 9 An attempt to optimize loop failed because the loop is not normalizable. not available

11 NonMNormalizableLoop (fail) High Level Optimizer 295 921 9 An attempt to optimize loop failed because the loop is not normalizable. not available

12 NonMormalizableLoop (fail) High Level Optimizer 295 921 9 An atterpt to optimize loop failed because the loop is not normalizable. not available

13 CompleteLoopUnroll (success) High Level Optimizer 295 743 not available Complete loop unroll was performed. not available

14 CompleteLoopUnroll (success) High Level Optimizer 332 739 not available Complete loop unroll was performed. not available

15 CompleteLoopUnroll (success) High Level Optimizer 332 743 not available Complete loop unroll was performed. not available

16 CompleteLoopUnroll (success) High Level Optimizer 332 739 not available Complete loop unroll was performed. not available

17 CompleteLoopUnroll (success) High Level Optimizer 306 358 not available Complete loop unroll was performed. naot available

18 CompleteLoopUnroll (success) High Level Optimizer 306 358 not available Complete loop unroll was performed. not available

19 CompleteLoopUnroll (success) High Level Optimizer i} 13 not available Complete loop unroll was performed. not available

20 LoopUnroll {success) Low Level Optimizer 306 4538 b1 Loop unroll was performed. + Unroll Factor: 2

21 LoopUnroll (success) Low Level Optimizer 306 4645 1 Loop unroll was performed. ¢ Unroll Factor: 2

22 LoopUnroll {success) Low Level Optimizer 295 4211 q Loop unroll was performed. « Unroll Factor: 2 .

T

4k K— 4| A

28

September 17,2012

XL Compiler Tutorial for SciNet

© 2012 IBM Corporation

IBM | Software Group | Rational

= The XL Compilers perform inlining in many places
—C++FE
« Small methods
* inline and always_inline
« Some exception-handling capabilities
« Within a single source file

— High-level Optimizer
« Larger methods
« Will inline within a source file (-O3, -ghot) and across source files (-O4, -O5, -qgipa)
* Inline across languages (-O4, -O5, -qgipa)

— Low-level optimizer
« Larger methods
« Within a source file
« Enabled at -O2 and higher

= Transformation reports will show inlining results for each component

29 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

IBM | Software Group | Rational

[Jim]]

Inlining

xIC_r matrix.cpp -0 matrix -glist -O2 -glistfmt=html=inlines

TF0 IBM XL Compiler Report - \

= C # (© basilisk.torolab.ibm.com/~kbarton/ matrix.html#inlineOptimization

(]18M Compilers (L] TP0 [Dashboards -, IBM TorontoLab () HPCwire ¥ Markham Weather (5) Ubuntu 10.04 LTS [J |Linux Today () Slashdot () CTWEB > XM online+ (") Mac@IgM

Produce report
specific to inlining

» Dmher Bookmarks

Inline Optimization Table

3 Type

1 Successfullnling (success)
2 Successfullnline (success)
3 Successfullnline (success)
4 Successfullnline (success)
5 Successfullnline (success)
& Successfullnline (success)

7 FunctionTooBig (fail)

8 Successfullnline (success)
9 Successfullnline (success)
10 | Successfullnling (success)
11| Successfullnline (success)
12| Successfullnline (success)

13 | Successfullnline (success)
4 DL

Phase

C++ Front End
C++ Front End
C++ Front End
C++ Frant End
C++ Front End
C++ Frant End
C++ Front End
C++ Frant End
C++ Front End
C++ Frant End
C++ Front End
C++ Front End

C++ Front End

Caller Region
#

|,_.. I,_. |,_. I._. |._- |._- [[¥=1 [[==1 un um [[#%] [[#%] [%]
o L . [[—

Callee Region
#

loo I~ [[=31 [[®%] (=4 ([] I—

(] ||—- In—-
(%] L]

Callsite File Callsite Line Callsite Column

#

I [=41 [B=% [[=41 [[=31 [[=41 [} [[®%] (¥} (%] [} [[®%] L]

30 September 17,2012

XL Compiler Tutorial for SciNet

#

506
385
102
246
247
47

589
246
2
438
218
361
415

#
20
52
13
5

Description

The function was successfully inlined.
The function was successfully inlined.
The function was successfully inlined.
The function was successfully inlined.
The function was successfully inlined.
The function was successfully inlined.
The function was not inlined because it is toa big to be inlined.
The function was successfully inlined.
The function was successfully inlined.
The function was successfully inlined.
The function was successfully inlined.
The function was successfully inlined.

The function was successfully inlined.

Inlining limits
exceeded

© 2012 IBM Corporation

€ 3 C ff () basilisktorolab.ibm.com/~kbarton/matrix.html#inlineOptimization

(] 18M Compilers (]P0 [Dashboards . IBM Toronto Lab () HPCwire ¢ Markham Weather (&) Ubuntu 10.04 LTS [] Linux Today () Slashdot () CTWEB s XM online+ () Mac@IBM

IBM | Software Group | Rational

Increasing inline thresholds

xIC_r matrix.cpp -0 matrix -glist -O2 -glisttmt=html=inlines -ginline=level=10

TPD [BM XL Compiler Report - V

limits in compiler

Increase inlining

o ®

» [:] Other Bookmarks

Inling Optimization Table i
Y
:eq Type Phase {;aller Region {;allee Region ;allslte File {;allslte Line ;allslte Column Description
1 Successfullnline (success) C++ FrontEnd 2 1 2 506 20 The function was successfully inlined.
2 Successfullnline (success) C++ FrontEnd 3 P 3 385 52 The function was successfully inlined.
3 Successfullnline (success) C++ FrontEnd 3 [3 102 113 The function was successfully inlined.
4 Successfullnline (success) C++ FrontEnd 5 3 5 246 5 The function was successfully inlined.
5 Successfullnline (success) C++ FrontEnd 5 [5 247 7 The function was successfully inlined.
& Successfullnline (success) C++ FrontEnd 8 7 3 47 5 The function was successfully inlined.
7 Successfullnline (success) C++ FrontEnd 8 B 3 599 7 The function was successfully inlined.
8 Successfullnline (success) C++ FrontEnd |11 10 [246 5 The function was successfully inlined.
9 Successfullnline (success) C++ FrontEnd | 12 i [312 3 The function was successfully inlined.
10 | Successfullnline (success) C++ FrontEnd 13 12 [438 3 The function was successfully inlined.
11 | Successfullnline (success) C++ FrontEnd | 14 13 4 218 9 The function was successfully inlined.
12 | Successfullnline (success) C++ FrontEnd 15 7 [361 5 The function was successfully inlined.
13 | Successfullnline (success) C++FrontEnd 16 15 B 415 3 The function was successfully inlined. Function now :
4 inlined 4
31 September 17,2012 XL Compiler Tutorial for SciNet

© 2012 IBM Corporation

IBM | Software Group | Rational

= -ginline=level=#
— Compiler option to adjust internal thresholds used by inlining heuristics
— Default level is 5
— 6-10 increase inlining
— 1-4 decrease inlining

= -ginline+ (C and Fortran only)
— Compiler option to specify functions to be inlined
— Compiler still uses internal thresholds, so inlining is not guaranteed
— Equivalent -qginline- option to prevent functions from being inlined

= inline keyword (C99/C++ only)
— Modify source code to indicate preferences for inlining
— Compiler still uses internal thresholds, so inlining is not guaranteed

__attribute __ ((always_inline)) pragma (IBM,GCC, C/C++ only)
— Indicate a method should always be inlined
— Compiler will always inline these methods — they are treated independently of internal
thresholds

32 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

IBM | Software Group | Rational

= Pointer aliasing can be a major impediment for compiler optimizations

— If the compiler cannot prove that two pointers do not represent the same storage, it must
assume they do

— This can hinder optimizations

alias.Ist
alias.c | 000000 PDEF example
int *A- 4| PROC gr3 contains A
s 5/ 000000 lwz 80620004 1 L4A gr3=.A(gr2,0) 7 aaiiEe B
int *B; 51000004 lwz 80820008 1 L4A gr4=.B(gr2,0)
5/ 000008 lwz 80630000 1 L4A gr3=A(gr3,0) —
int example() { 5/00000C lwz 80840000 1 L4A gr4=B(gr4,0) gr0 contains *A
*A += *B: 5/ 000010 lwz 80030000 1 L4A grO=(*)int(gr3,0) gr5 contains *B
"B 4= A 5/ 000014 lwz 80A40000 1 L4A gr5=(*)int(gr4,0)

5000018 add 7C002A14 1 A gr0=gr0,gr5 LStore — *Aj
5/00001C stw 90030000 1 ST4A (*)int(gr3,0)=gr0

return *A + *B; 6/ 000020 lwz 80A40000 1 L4A gr5=(*)int(gr4,0) T
} 6| 000024 add 7C002A14 1 A grO=gr0,gr5 ek
6/ 000028 stw 90040000 1 ST4A (*)int(gr4,0)=gr0
| P 8| 00002C lwz 80630000 1 L4A gr3=(*)int(gr3,0) iStore result to *Bj
e 8/ 000030 add 7C601A14 1 A gr3=gr0,gr3
9| 000034 bclr 4E800020 1 BA Ir Reload *A

33 September 17,2012 XL Compiler Tutorial for SciNet

© 2012 IBM Corporation

IBM | Software Group | Rational

= The restrict keyword tells the compiler that a secific pointer is the only one that points to this

data

restrict.c

int * restrict A;
int * restrict B;

int example() {
*A +=*B;
B +="A;

return *A +
*B’
}

xlc_r -c -O2 -qlist restrict.c

34 September 17,2012

restrict.c

| 000000

4|

5| 000000 Ilwz
5| 000004 lwz
5| 000008 lwz
5| 00000C Iwz
5| 000010 Ilwz
5/ 000014 lwz
5| 000018 add
5| 00001C stw
6| 000020 add
6] 000024 stw
8] 000028 add
9] 00002C bclr

XL Compiler Tutorial for SciNet

PDEF

PROC
80620004 1
80820008 1
80630000 1
80840000 1
80030000 1
80A40000 1

7C002A14 1
90030000 1
7CA50214 1
90A40000 1
7C602A14 1
4E800020 1

example

L4A
L4A
L4A
L4A
L4A
L4A
A
ST4A
A
ST4A
A
BA

gr3 contains A
gr4 contains B

gr3=.A(gr2,0)
grd=.B(gr2,0)
gr3=A(gr3,0) .
gr4=B(gr4,0) grO contains *A
gr0=(*)A{int}(gr3,0) gr5 contains *B

gr5=(*)B{int}(gr4,0)

gro=gr0,gr5 Store result to *Aj
(")A{int}(gr3,0)=gr

gr5=gr5,gr0
*)B{int}(gr4,0)=

gr(3) g{rlg ér%r 5iStore result to *Bj

Ir

© 2012 IBM Corporation

IBM | Software Group | Rational

Restricted parameter pointer:
void function(float * restrict a1. float *restrict a2} {
for (int i=0;i<n; i++) {
al[i] = a2][i];
}
}

Block scope restricted pointer:
float * restrict a1 = A1; float * restrict a2 = A2;
for (int i=0;i<n; i++) {
atl[i] = a2[i];
}

Multiple level restricted pointer:
float * restrict *restrict * restrict aa1 = AA1;
float * restrict *restrict * restrict bb1 = BB1;
for (int k=0; k<n3; k++) {
for (int j=0; j<n2; j++) {
for (int i=0; i< n1; i++) {
o aa1[i][jlk] = bb1[i[](k];

35 September 17,2012 XL Compiler Tutorial for SciNet

* Determine if two different
pointers are being used to
reference different objects

* Refine aliasing to expose
optimization opportunities;

© 2012 IBM Corporation

IBM | Software Group | Rational

= Exception handling
— If you are not using exception handling, use the -gnoeh option
 Assertion that no exceptions will be thrown at runtime
— Can improve optimization opportunities

= Malloc tuning
— On AlX, there are several different algorithms for memory allocation
— For C++, MALLOCOPTIONS=pool will frequently improve performance

= Data page size
— Increasing data page size can also improve performance
— -bdatapsize:64k

36 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

IBM | Software Group | Rational

= Debug levels
— There is an intrinsic tradeoff between compiler optimization and debug transparency
— Compiler optimizations hide program state from the debugger
» Users have to choose between full debug at no-opt, or marginal debug at full opt

= Compiler to provide control over tradeoffs between optimization and debug
— Debug levels: -g0 to -g9
* -g1 minimal debug, maintain full performance
* -g9 will provide full debug capability, at runtime performance cost
— Expect better runtime performance from -g9 -O2 than -g -O0
— Intermediate levels provide other levels of tradeoff
« -0O2 -g8 provide full debug, except no modification to user variables from debugger

37 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

IBM | Software Group | Rational

int example(int x, int y) {
int t1, t2;
int result;

t1 = x*y-1;
t2 = x*y*3;

result = t1+t2;
return result;

int main() {
int res = example(4,5);

printf("res=%d\n", res);

return O;

}

xIC r-02 -g -qlist debug.c

38 September 17,2012 XL Compiler Tutorial for SciNet

(dbx) listi example
0x10000800 (example) 7c0321d6 mullw r0,r3,r4
0x10000804 (example+0x4) 5404103a sli r4,r0,0x2
0x10000808 (example+0x8) 3864ffff addi r3,-1(r4)
0x1000080c (example+0xc) 4e800020 blr

All locals
optimized away

(dbx) stop in example

(dbx) run

[1] stopped in example at line 6 ($t1)
6 t1=x*y-1;

(dbx) print t1

reference through nil pointer

(dbx) step

stopped in example at line 7 ($t1)
7 12 =x*y*3;

(dbx) print t1

reference through nil pointer

(dbx) step

stopped in example at line 9 ($t1)
9 result =t1+t2;

(dbx) print t2

reference through nil pointer

(dbx) step

stopped in example at line 11 ($t1)

11 }
(dbx) print result

reference through nil pointer

Unable to print local
variables

© 2012 IBM Corporation

IBM | Software Group | Rational

int example(int x, int y) {
int t1, t2;
int result;

t1 = x*y-1;
t2 = x*y*3;

result = t1+t2;
return result;

}

int main() {
int res = example(4,5);

printf("res=%d\n", res);

return O;

}

xIC r-02 -g8 -glist debug.c

39 September 17,2012 XL Compiler Tutorial for SciNet

(dbx) stop in example

[1] stop in example

(dbx) run

[1] stopped in example at line 6 ($t1)
6 t1=xy-1;

(dbx) print t1

804398288

(dbx) step

stopped in example at line 7 (
7 12 =x*y*3;

(dbx) print t1

19

(dbx) step

stopped in example at line 9
9 result = t1+t2;

(dbx) print t2

60

(dbx) step

stopped in example at li
10 return result;

(dbx) print result

79

(dbx) step

stopped in example at line 11 ($t1)
11 }

Local variables
correctly displayed

($t1)

© 2012 IBM Corporation

IBM | Software Group | Rational

int example(int x, int y) {
int t1, t2;
int result;

t1 = x*y-1;
t2 = x*y*3;

result = t1+t2;
return result;

}

int main() {
int res = example(4,5);

printf("res=%d\n", res);

return O;

}

xIC r-02 -g9 -glist debug.c

40 September 17,2012 XL Compiler Tutorial for SciNet

(dbx) stop in example
[1] stop in example
(dbx) run
[1] stopped in example at line 6 ($t1)
6 t1=x*y-1;
(dbx) step
stopped in example at line 7 ($t1)
7 12 =x*y*3;
(dbx) print t1
19
(dbx) assign t1=10
(dbx) step
stopped in example at line 9 ($t1)
9 result = t1+t2;
(dbx) assign t2=20
(dbx) step
stopped in example at line 10
10 return result;
(dbx) print result
30
(dbx) step
stopped in example at line 11 ($t1)
1 }

Local variables
modified in debugger

© 2012 IBM Corporation

IBM | Software Group | Rational

» Performance
— Varies across benchmarks tested

= -g8 Performance
— noopt -g vs -0O2 -g8: 1.42x to 8.14x improvement (average 3.14x improvement)
— 02 -g8 vs -02: 53% to 95% of -O2 performance (average 80% of -O2 performance)

= -g9 Performance
—noopt -g vs -02 -g9: 1.1x to 3.54x improvement
— 02 -g9 vs -02: 15% to 77% of -O2 performance (average 40% of -O2 performance)

41 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

IBM | Software Group | Rational

= XLSMPOPTS environment variable allows you to tune runtime behaviour of OpenMP and
autoparallel programs

= Some suboptions of interest:
— spins and yields to define the behaviour of idle threads
* By setting spins=0:yields=0 idle threads will busy wait

— Thread binding using startproc and stride suboptions, or new bind suboption
— schedule to define the runtime scheduling algorithm used for parallel loops (static,

dynamic, guided)
* Note that the default schedule has changed from runtime to auto in V11/V13

42 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

IBM | Software Group | Rational

= Alternative method of binding threads to CPUs

= Advantages over existing mechanism:
1. Ability to adjust granularity of binding based on resource sets (proc, MCM, efc.)

2. Allows applications to stop and then resume over a checkpoint without losing the
thread binding configuration

43 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

IBM | Software Group | Rational

= System Detail Level (SDL)
- MCM
— L2CACHE
— PROC_CORE
— PROC

= New suboptions for XLSMPOPTS:
bind=SDL=n1,n2,n3

n1=start resource

n2=number of resources
n3=stride

bindlist=SLD=i0,i1,...,ix

44 September 17,2012 XL Compiler Tutorial for SciNet

© 2012 IBM Corporation

IBM | Software Group | Rational

module mod
real :: x(500), y(500), z(500)
libm* align(16, x, y, z)

Guide the compiler to align arrays x,
y, and z to 16 bytes
* Avoid cache conflicts and

false sharing
end module * Expose SIMDization
subroutine partial_sum(m, n) opportunity
use mod

integer, intent(in) :: m, n

libm* assert(itercnt(40)) The frequently used loop iteration

I) counts are 40 and 120
ibm* assert(itercnt(120)) * Guide the compilers during

profitability analysis

dor=m. 1 * Expose loop optimization
z(i) = x(i) + 1.37*y(i) opportinities
enddo

end subroutine

45 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

IBM | Software Group | Rational

POWERY7 prefetch engine supports up to 12 data streams

POWERY provides fine grained software control to specify data stream type,
stream length, stream stride, prefetch depth

Automatic data prefetch insertion at optimization level -O3 -ghot or above
— More aggressive exploitation under option
-gprefetch=aggressive
— Global analysis for coarse grained prefetch engine control at optimization level -O5

-glistftmt=xml=transformations (-glistfrmt=html=transformations) generates data
prefetching information in xml (html)

46 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

IBM | Software Group | Rational

» Transient cache line touch
void _ dcbtt(void *address);
void _ dcbtstt (void * address);

= Partial cache line touch
void partial dcbt(void *address);

= Stride-N stream prefetch
void protected stream stride (offset, stride, stream ID);

= Transient stream prefetch

void __ transient protected_stream count depth(unit count,
depth, stream ID)
void _ transient unlimited protected stream depth (prefetch depth,
stream ID)

47 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

IBM | Software Group | Rational

Stream direction |

Store stream prefetch for array a; Stream id

transient stream prefetch for array b

Stream length |

~ ___protected_store_stream_set(FORWARD, &a, 11);
T protected_stream_count_depth(n*sizeof(double)/128, DEEPER, 11);

__protected_stream_set(FORWARD, &b, 0); Prefetch depth)
__transient_protected_stream_count_depth(n*sizeof(double)/128, DEEPER, 0);

I Start stream prefetch |

(

\

__eieio();

___protected_stream_go();

for (i=0; i< n; i++) {
ali] = b[i] + ...;

48 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

IBM | Software Group | Rational

» Reshape data layout to reduce memory latency, enhance cache utilization and
memory bandwidth.

= Data reorganization transformations enabled at O5
— Data splitting
— Data interleaving
— Data transposing
— Data merging
— Data grouping
— Data compressing
— Data padding

= —glisttmt=xml=data (-glisttmt=html=data) generates data reorganization
transformation information in xml (html)

49 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

IBM | Software Group | Rational

Examples of Data Reorganization

Array splitting

S[0].F3
S[1].F3
S[2].F3

S[3].F3

»

VA E VA

F3[0] | F3[1] | F3[2] | F3[3]

Array merging

A[O][3]] ...

A3 | ...

AL2113]] ...

AL3]3]| ...

AL3]13]| ...

50 September 17,2012 XL Compiler Tutorial for SciNet

Array transposing

A1 ALBIE] -

© 2012 IBM Corporation

IBM | Software Group | Rational

Transformation report

for (i=0;i<n;i++) { Loop vectorization
. . was performed.
blil=sqrt(a[il); =

}

= MASS enhancements for POWER7
—POWERY vector MASS library (libmassvp7.a)
* Internally exploit VSX instructions

SP: average speedup of 1.99 vs Power5 MASSV

DP: average speedup of 1.27 vs Powerd MASSV
—POWERY SIMD MASS library (libmass_simdp7.a)
* Tuned math routines operating on vector data types
* Over 35 frequently used mathematical functions
* Both simple and double precision
* To be used in conjunction with explicit SIMD programming

__vsqgrt_ P7(b,a,n);

= Auto-vectorization at optimization level —O3 or above

= -gstrict=vectorprecision to maintain precision over all loop iterations

51 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

IBM | Software Group | Rational

52

= Successor to altivec programming extensions on POWERG6/PPC970

—Altivec data types
vector char
vector short
vector pixel
vector int
vector float
—VSX Altivec extensions
vector double
vector long long

= Altivec built-in functions extended to new data types

vec_add(vector double, vector double),

16-byte vectors
16 elements

8 elements

8 elements

4 elements

4 elements
16-byte vectors
2 elements

2 elements

vec_sub(vector long long, vector long long),

= New vector operations: vec_mul, vec_div, ...

= Unaligned load and store operations

—Altivec truncating loads/stores still available: vec Id, vec_st
—New non-truncating loads/stores: vec xld2, vec xstd2

September 17,2012 XL Compiler Tutorial for SciNet

© 2012 IBM Corporation

IBM | Software Group | Rational

#include <math.h>
#include <altivec.h>

extern double x[1000],y[1000],z[10007];

void sub () {
int 1i;

vector double x2,vy2,z2;

for (1=0;1<1000;1+=2)

{

x2=vec x1d2 (0, &x[i]);
y2=vec x1d2(0,&y[i]);
z2=vec_sqrt (vec add(

vec mul (x2,x2),vec mul (y2,y2)));
vec xstd2(z2,0,&z[1]);

1}

xlc —O3 —qarch=pwr7 —qvecnvol —qaltivec py.c

Compiler Listing:

4]

0] 000050
71 000054
71 000058
71 00005C
6] 000060
71 000064
5| 000068
0l 00006C
81 000070
0l 000074
0l 000078

53 September 17,2012

addi
xvsgrtdp
xvcpsgnd
xvmuldp
1xvd2x
xvmaddad
Ixvd2x
addi
stxvd2x
addi

bc

38840010
F060032C
F0021780
F0442380
7C840698
FO010BOS
7C250698
38A50010
7C630798
38630010
4320FFDS8

XL Compiler Tutorial for SciNet

L T = o T o S e S e e S A S St

subroutine sub (x,Vy, z)
real*8 x(*),y(*),z(*)
vector (real (8)) x2,vy2,z2

do i=1,1000,2
x2=vec x1d2(0,x (1))
y2=vec x1d2(0,y (1))
z2=vec_sqgrt (vec add(

vec mul (x2,x2),vec mul (y2,y2)));
call vec xstd2(z2,0,z (1))
enddo
return
end
xIf90 —O3 —garch=pwr7 —qvecnvol py.f
CL.5:
AT gr4=gr4, 16
VDEFSQRT vs3=vs0, fcr
LRVS vs0=vs2
VDFM vs2=vsd,vsd, fcr
VLQD vsd=y[]Q@gr612->.y(grd,gr0,0)
VDFMA vsO=vs0,vsl,vsl, fcr
VLQD vsl=x[]@gr609->.x(gr5,gr0,0)
AT gr5=grb5,16
VSTQD z[]1@gr621->.z(gr3,gr0,0)=vs3
AT gr3=gr3,16
BCT ctr=CL.5,,100,0

© 2012 IBM Corporation

IBM | Software Group | Rational

= Automatic SIMDization for VMX and VSX
— Supports data types of INTEGER, UNSIGNED, REAL and COMPLEX

= Features:
— Basic block level SIMDizaton
— Loop level aggregation
— Data conversion, reduction
— Loop with limited control flow
— Automatic SIMDization with -gstrict (VSX) and -gnostrict
— Support of unaligned vector memory accesses (VSX)
— Automatic SIMDization enabled at -O3 -qsimd

54 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

IBM | Software Group | Rational

xIf90 —O3 —ghot —qgstrict —garch=pwr7 —qsimd —qvecnvol -glist py.f

Compiler Listing:

f: 0] CL.115:
Py.T. 9| VLQD vs4=@V.y[].rns2.0(grll,grl2,0)
subroutine sub (x,y, z) 9| VLQOD vs5=@V.y[].rns2.0 (grll,gr31,0)
integer 1 9| VLQD vs9=@V.x[] .rns3.1(gr8,gr0, 0)
real*8 x(*),y(*),z(*) 9] VLQD vs10=@V.x[].rns3.1(gr8,gr23,0)
CALL ALIGNX(l6, x(1)) 9] VDFM vsd4=vsd,vs4, fcr
CALL ALIGNX(l6, y (1)) 9] VDFM vs5=vs5,vs5, fcr
CALL ALIGNX (16, z (1)) 9| LRYS eBeya?
do izl,lOOO 9] VDFMA vs8=vs8,vs9,vs9, fcr
z (1)=sqrt (x (1) *x(i)+y (i) 9| LRVS vs9=vs3
*y (l)) 9 VDFMA vs9=vs9,vsl0,vsl0, fcr
enddo 9] VDFSQRT vsl0=vs0, fcr
return 9] VDFSQRT vsll=vsl, fcr
end
9] VSTQD @vV.z[].rnsl.2(gr9,gr26,0)=vs7
9| VSTQD @V.z[].rnsl.2(gr9,gr25,0)=vs6
0| AT gr9=gr9, 64
0| BCT ctr=CL.115,,100,0

55 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

IBM | Software Group | Rational

Transformation report

Loop was SIMD
vectorized

It is not profitable

to vectorize

data dependence
prevents SIMD
vectorization

memory accesses have
non-vectorizable
alignment.

User actions

“Use #pragma simd_level(10) to force the compiler to do SIMDization

“Use fewer pointers when possible
“Use #pragma independent if it has no loop carried dependency
“Use #pragma disjoint (*a, *b) if a and b are disjoint

“Use restrict keyword or compiler option —qgrestrict

“Use __attribute__ ((aligned(n)) to set data alignment
“Use __alignx(16, a) to indicate the data alignment to the compiler
“Use -qassert=refalign if all references are naturally aligned

“Use array references instead of pointers where possible

56 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

IBM | Software Group | Rational

Transformation report

loop structure prevents
SIMD vectorization

memory accesses have
non-vectorizable strides

either operation or data
type is not suitable for
SIMD vectorization.

User actions

“Convert while-loops into do-loops when possible
“Limited use of control flow in a loop
“Use MIN, MAX instead of if-then-else

“Eliminate function calls in a loop through inlining

“Loop interchange for stride-one accesses, when possible
“Data layout reshape for stride-one accesses
“Higher optimization to propagate compile known stride information

=Stride versioning

“Do statement splitting and loop splitting

57 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

IBM | Software Group | Rational

= Obey all language aliasing rules (avoid —qalias=noansi in C/C++)

= Avoid unnecessary use of globals and pointers; use restrict keyword or compiler
directives/pragmas to help the compiler do dependence and alias analysis

= Use “const” for globals, parameters and functions whenever possible

= Group frequently used functions into the same file (compilation unit) to expose
compiler optimization opportunity (e.g., intra compilation unit inlining, instruction
cache utilization)

Excessive hand-optimization such as unrolling and inlining may impede the
compiler

Keep array index expressions as simple as possible for easy dependency analysis

Consider using the highly tuned MASS and ESSL libraries rather than custom
implementations or generic libraries

58 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

IBM | Software Group | Rational

= POWERY7 exploitation

— POWERY specific ISA exploitation under —garch=pwr7
* Extended FP register file
* 64-bit population count, bit permutation, fixed point pipelined multiply, fix point select,

divide check for software divide assistance

* VMS/VSX
* Stride-N stream prefetch, partial cache line touch

— Scheduling and instruction selection under —qtune=pwr7

= Automatic SIMDization

— Use simd_level(0..10) pragma to exploit aggressive SIMDization

— Use align attribute to force the compiler to align static data by 16-byte; use
MALLOCALIGN=16 to force OS to align malloced data by 16-byte; use alignx directive to
tell the compile the alignment.

— Limited use of control flow

— Limited use of pointers. Use independent_loop directive to tell the compiler a loop has no
loop carried dependency; use either restrict keyword or disjoint pragma to tell the
compiler the references do not share the same physical storage whenever possible

— Limited use of stride accesses. Expose stride-one accesses whenever possible

59 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

IBM | Software Group | Rational

= POWERY aware loop transformations
— Loop distribution, unroll-and-jam, stream unrolling controlled by 12 streams on each
core, shared by SMTs
— Loop blocking controlled by L2 cache size
— Selection of SIMDization and vectorization controlled by the threshold; use loop iteration
directives to guide the compiler

= Memory hierarchy optimization

— Data prefetch
* Automatic data prefetch at O3 —ghot or above.
* -gprefetch=aggressive to enable aggressive data prefetch;
* DSCR setting for the default data prefetching;
* Enable DCBZ insertion on POWER?7 IH
* Partial cache line touch

— Data reorganization enabled at O5

60 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

IBM | Software Group | Rational

*An information centre containing the documentation for the XL Fortran V14.1 and XL C/C++
V12.1 versions is available at:
— AIX Compilers:http://pic.dhe.ibm.com/infocenter/comphelp/v121v141/index.jsp
— Linux Compilers: http://pic.dhe.ibm.com/infocenter/Inxpcomp/v121v141/index.jsp
*Installation Guide
*Getting Started with XL C/C++
*Compiler Reference
*Language Reference

"\Whitepaper “Code optimization with the IBM XL Compilers”

*"Whitepaper “Overview of the IBM XL C/C++ and XL Fortran Compiler Family” available at:

"Please send any comments or suggestions on this information center or about the existing C,
C++ or Fortran documentation shipped with the products to

61 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

http://pic.dhe.ibm.com/infocenter/comphelp/v121v141/index.jspLinux
http://pic.dhe.ibm.com/infocenter/comphelp/v121v141/index.jspLinux
http://pic.dhe.ibm.com/infocenter/comphelp/v121v141/index.jspLinux
http://pic.dhe.ibm.com/infocenter/lnxpcomp/v121v141/index.jsp
http://pic.dhe.ibm.com/infocenter/lnxpcomp/v121v141/index.jsp
http://www-01.ibm.com/support/docview.wss?uid=swg27005174
http://www.ibm.com/support/docview.wss?uid=swg27005175
mailto:compinfo@ca.ibm.com
mailto:compinfo@ca.ibm.com

IBM | Software Group | Rational

You

'+ |Goto IBM
© Copyright IBM Corporation 2012.

The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any kind, express or implied. IBM shall not be responsible

for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is intended to, nor shall have the effect of, creating any warranties or
representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of IBM software. References in these materials
to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release dates and/or capabilities referenced in these materials may
change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future product or feature availability in any way.

IBM, the IBM logo, the on-demand business logo, Rational, the Rational logo, and other IBM products and services are trademarks of the International Business Machines Corporation,
in the United States, other countries or both. Other company, product, or service names may be trademarks or service marks of others.

62 September 17,2012 XL Compiler Tutorial for SciNet © 2012 IBM Corporation

http://www.ibm.com/software/rational

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Major features of the XLC compiler
	Optimization capabilities of the XLC Compiler
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	IBM Rational Cafes – Connecting Communities
	Slide 18
	Performance Compiler Options
	Summary of Optimization Levels
	HPC Performance Tuning with XL Compilers
	Pragmas (C/ C++)
	Frequently Used Pragmas/Directives/Attributes
	Summary
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Software-controlled data prefetching for POWER7
	Built-in functions for POWER7 data prefetching and cache control
	Example of POWER7 data prefetching
	Data Reorganization
	Slide 50
	MASS enhancements and Auto-vectorization
	Explicit SIMD programming for POWER7 Enabled under -qaltivec
	VSX Example
	Automatic SIMDization
	AutoSIMD: VSX example
	SIMDization Tuning
	Slide 57
	Tips for Compiler Friendly Programming
	Tips for POWER7 Optimizations
	Slide 60
	XL Compiler Documentation
	Slide 62

