
Scientific Computing:
Modules, make & git

Erik Spence

SciNet HPC Consortium

14 January 2014

Erik Spence (SciNet HPC Consortium) Modules, make, git 14 January 2014 1 / 30

Today’s class

Today we will discuss the following topics:

Modules. How to make them and use them.

The ’make’ command.

Version control using git.

Erik Spence (SciNet HPC Consortium) Modules, make, git 14 January 2014 2 / 30

Integrated testing

As you develop a large
program, with many
interacting parts, bugs will
develop.

It will be difficult to
determine the source of the
problem, if testing is only
performed on the integrated
whole.

in

out

Erik Spence (SciNet HPC Consortium) Modules, make, git 14 January 2014 3 / 30

Unit testing

Test major pieces of the code
individually.

This usually involves creating
specialized pieces of software
that will interface with the
pieces of code being tested.

Test against easy (or exact)
solutions, typical solutions,
edge cases, special cases.

Enormously speeds up and
simplifies the detection of
bugs.

in out

in out

in out

in out

in out

Erik Spence (SciNet HPC Consortium) Modules, make, git 14 January 2014 4 / 30

Testing and Modularity

Modular software is needed
for unit testing. This means
creating functions that do
one or two specific things,
and does them well.

Break your code up into
separate units.

Also answers the question:
“How much should be in a
module?” and “What are
good independent tests?”

Define a module to be a
testable unit of functionality.

in out

in out

in out

in out

in out

Erik Spence (SciNet HPC Consortium) Modules, make, git 14 January 2014 5 / 30

A simple example
Imagine we’re writing a matrix in binary and in ascii:

// MyArrays.cpp

void toBin(const char *n, double **x, int r, int c) {
// A bunch of commands.

}

void toAsc(const char *n, double **x, int r, int c) {
// A bunch of commands.

}

int main() {
// ...

toBin("data.bin", data, nrows, ncols);

// ...

toAsc("data.txt", data, nrows, ncols);

// ...

}

Erik Spence (SciNet HPC Consortium) Modules, make, git 14 January 2014 6 / 30

A simple example, continued
// Prototypes.

void toBin(const char *n, double **x, int r, int c);

void toAsc(const char *n, double **x, int r, int c);

int main() {
// ...

toBin("data.bin", data, nrows, ncols);

// ...

toAsc("data.txt", data, nrows, ncols);

// ...

}

void toBin(const char *n, double **x, int r, int c) {
// A bunch of commands.

}

void toAsc(const char *n, double **x, int r, int c) {
// A bunch of commands.

}

Erik Spence (SciNet HPC Consortium) Modules, make, git 14 January 2014 7 / 30

Creating modules

The prototypes for the functions are placed in their own ’header’ file. The
source code for the functions can then be put into its own file.

// outputarray.h

void toBin(const char *n, double **x, int r, int c);

void toAsc(const char *n, double **x, int r, int c);

// MyArrays.cpp

#include "outputarray.h"

int main() {
// //

toBin("data.bin", data, nrows, ncols);

// //

toAsc("data.txt", data, nrows, ncols);

// //

}

Erik Spence (SciNet HPC Consortium) Modules, make, git 14 January 2014 8 / 30

Interface versus implementation

The implementation - the actual code - goes in the .cpp or ’source’
files.

The interface - what the calling code needs to know - goes in the .h
or ’header’ files.

This distinction is crucial for writing modular code.

// outputarray.h

void toBin(const char *n, double **x, int r, int c);

void toAsc(const char *n, double **x, int r, int c);

Erik Spence (SciNet HPC Consortium) Modules, make, git 14 January 2014 9 / 30

Interface versus implementation

When MyArrays.cpp is being compiled into a .o file it needs to know
that there exists out there somewhere functions of the form

void toBin(const char *n, double **x, int r, int c);

void toAsc(const char *n, double **x, int r, int c);

This allows the compiler to check the number and type of arguments
and the return type (also called the interface).

It does not need to know the details of the implementation (the
source code of the routine).

Neither does the programmer of MyArrays.cpp (nor does the
programmer, in general, want to know the details of the
implementation).

Erik Spence (SciNet HPC Consortium) Modules, make, git 14 January 2014 10 / 30

Guards against multiple inclusion

Header files can include other header files.

It can be hard to figure out what header files are already included in
the program.

Including a header file twice usually leads to doubly-defined entities,
which leads to a compiler error.

The usual solution is to add a ’preprocessor guard’ to every header
file:

// outputarray.h

#ifndef OUTPUTARRAY H

#define OUTPUTARRAY H

void toBin(const char *n, double **x, int r, int c);

void toAsc(const char *n, double **x, int r, int c);

#endif

Erik Spence (SciNet HPC Consortium) Modules, make, git 14 January 2014 11 / 30

Compiling versus linking

ejspence@mycomp ~> g++ -Wall -O3 MyArrays.cpp -c -o MyArrays.o

MyArrays.o cannot be executed the way it’s been written, since it is
missing the routines for toBin and toAsc.

After MyArrays.o is generated, it must be linked to the relevant .o
files (libraries) to that a working executable can be made.

If you leave out one of the needed .o files you will get a fatal linking
error: ’symbol not found’.

If the files to be compiled and linked are outputarray.cpp,
outputarray.h and MyArrays.cpp, then the full compiling commands
are:

ejspence@mycomp ~> g++ -Wall -O3 outputarray.cpp -c -o outputarray.o

ejspence@mycomp ~> g++ -Wall -O3 MyArrays.cpp -c -o MyArrays.o

ejspence@mycomp ~> g++ outputarray.o MyArrays.o -o MyArrays

Erik Spence (SciNet HPC Consortium) Modules, make, git 14 January 2014 12 / 30

~
~
~
~

What goes into the header file?

At the very least, the function prototypes.

There may also be constants that the calling function and the routine
need to agree on (error codes, for example) or definitions of data
structures, classes, etc.

Often a description of the module and its functions in the comments.

Usually there is one .cpp/.h pair per module, often more than one
routine.

Not necessarily every function prototype is in the header file, just the
public ones. Routines internal to the module are not in the public .h
file.

Erik Spence (SciNet HPC Consortium) Modules, make, git 14 January 2014 13 / 30

What goes into the source file?

Everything which is defined in the .h file which requires code that is
not in the .h file.

Internal routines which are used by the routines prototyped in the .h
file.

To ensure consistency, include the corresponding .h file at the top of
the file.

Everything that needs to be compiled and linked to code that uses
the .h file.

Erik Spence (SciNet HPC Consortium) Modules, make, git 14 January 2014 14 / 30

Why does modularity matter?

Scientific software can be large, complex and subtle.

If each section uses the internal details of other sections you must
understand the entire code at once to understand what the code in a
particular section is doing.

This is why global variables are bad bad bad!

Interactions grow as (number of lines of code)2.

You must enforce boundaries between sections of code so that you
have self-contained modules of functionality.

Each section can then be tested individually, which is significantly
easier.

Erik Spence (SciNet HPC Consortium) Modules, make, git 14 January 2014 15 / 30

But it’s more work up-front

Think about the blocks of functionality that you are going to need.

How are the routines within these blocks going to be used?

Think about all the things that you might want to use these routines
for; only then design the interface.

The interfaces to your routines may change a bit in the early stages of
your code development, but if it changes alot you should stop and
rethink things – you’re not using the functionality the way you
expected to.

Like documentation, thinking about the overall design, enforcing
boundaries between modules, and testing, is more work up-front but
results in higher productivity in the long run.

Erik Spence (SciNet HPC Consortium) Modules, make, git 14 January 2014 16 / 30

make

The typical compilation of a large program is a two-step process:

1 First individually compile all .cpp files, including the necessary .h
(header) files, to generate .o (library) files.

2 Link all of the .o files together, including external .so and .a
(shared-object and static library files), to generate an executable.

However, it can get complicated and redundant:

you need to keep track of what depends upon what.

you need to retype in the entire compilation command every time you
need to recompile.

It’s easy to forget all of your compiler flags from one day to the next,
as well as the location of external libraries.

It’s better to keep all of this information contained in a single file. This is
where the ’make’ program enters the picture.

Erik Spence (SciNet HPC Consortium) Modules, make, git 14 January 2014 17 / 30

make, continued

make is a program that is used to build programs from multiple .cpp, .h,
.o, and other files.

make is a very general framework that is used to compile code, of any
type.

make takes a ’Makefile’ as its input, which specifies what to do, and
how.

The Makefile contains variables, rules and dependencies.

The Makefile specifies executables, compiler flags, library locations, ...

Use make!

Erik Spence (SciNet HPC Consortium) Modules, make, git 14 January 2014 18 / 30

Compiling with make

How does make work?

A makefile ’rule’ is a word
followed by a colon.

By default make will execute the
first rule it encounters.

After the colon are the
dependencies of the rule.

When make hits a dependency
it goes and looks for it.

When it runs out of rules for the
dependencies, it checks the
timestamps; if the dependency
is newer than the rule the
command is executed.

This file is called Makefile

Define the compiler to use.

CPP = g++

Compiler and linker flags.

CPPFLAGS = -I${GSLINC} -O2

LDFLAGS = -L${GSLINC}
LDLIBS = -lgsl -lgslcblas

all: myprog

myprog: myprog.o

${CPP} -o myprog myprog.o \
${LDLIBS}

myprog.o: myprog.cpp

${CPP} ${CPPFLAGS} -o myprog.o \
myprog.cpp

Erik Spence (SciNet HPC Consortium) Modules, make, git 14 January 2014 19 / 30

Compiling multiple source files with make

How does make work?

make will only recompile
those dependencies that have
source files that are newer
then the library, thus only
the code you are working on
is modified.

The most annoying part of
make: the indentation of the
command after the rule is
actually a ’tab’, and it must
be a tab.

The \ symbol indicates a
line-continuation.

This file is called Makefile

CPP = g++

CPPFLAGS = -I${GSLINC} -O2

LDFLAGS = -L${GSLINC}
LDLIBS = -lgsl -lgslcblas

all: MyArray

MyArray: MyArray.o outputarray.o

${CPP} -o MyArray MyArray.o \
outputarray.o ${LDLIBS}

MyArray.o: MyArray.cpp outputarray.h

${CPP} ${CPPFLAGS} -o MyArray.o \
MyArray.cpp

outputarray.o: outputarray.cpp

${CPP} ${CPPFLAGS} \
-o outputarray.o outputarray.cpp

Erik Spence (SciNet HPC Consortium) Modules, make, git 14 January 2014 20 / 30

Put a ’clean’ rule in your Makefile
CPP = g++

CPPFLAGS = -I${GSLINC} -O2

LDFLAGS = -L${GSLINC}
LDLIBS = -lgsl -lgslcblas

MyArray: MyArray.o outputarray.o

${CPP} -o MyArray MyArray.o outputarray.o ${LDLIBS}

MyArray.o: MyArray.cpp outputarray.h

${CPP} ${CPPFLAGS} -o MyArray.o MyArray.cpp

outputarray.o: outputarray.cpp

${CPP} ${CPPFLAGS} -o outputarray.o outputarray.cpp

clean:

rm -f MyArray.o outputarray.o MyArray

ejspence@mycomp> make clean

ejspence@mycomp> make

Erik Spence (SciNet HPC Consortium) Modules, make, git 14 January 2014 21 / 30

Version control

We use version control to save ourselves from ourselves. More specifically:

Version control is a tool for managing changes in a set of files.

It is used to figure out who broke what, where and when.

It essentially takes a snapshot of the files (code) at a given moment
in time.

Why do it?

I Makes collaborating on code easier/possible.
I Helps you stay organized.
I Allows you to track changes in the code.
I Allows reproducibility in the code.

Erik Spence (SciNet HPC Consortium) Modules, make, git 14 January 2014 22 / 30

How does version control work?

Jeff

1. Checks in code
Repository

3. Checks in changes

Dan

1. Checks in code

4.
U

pd
at

es
co

de
2.

C
hecks

out
code

Erik Spence (SciNet HPC Consortium) Modules, make, git 14 January 2014 23 / 30

Basic Checkins

Main Trunk

Milk

rev1

Milk
Eggs

rev2

Milk
Eggs
Juice

rev3

Milk
Eggs
Soup

rev4

Erik Spence (SciNet HPC Consortium) Modules, make, git 14 January 2014 24 / 30

Checkout and edit

Milk
Eggs
Juice

rev3

Milk
Eggs
Soup

working copy

Milk
Eggs
Soup

rev4
check out

revert

check in

Main Trunk

Erik Spence (SciNet HPC Consortium) Modules, make, git 14 January 2014 25 / 30

Version control: git

There are many types and approaches to version control. Here we will
introduce one implementation: git.

There are four main things you need to know how to do to get started
with git:

Initialize a git repository.

Commit files to the repository.

Delete files from the repository.

Where to find more information.

Erik Spence (SciNet HPC Consortium) Modules, make, git 14 January 2014 26 / 30

Version control: setup a repository

The first thing to do is set up a repository for your code.

ejspence@mycomp ~> cd code

ejspence@mycomp code> git init

Initialized empty Git repository in /home/s/scinet/ejspence/code/.git/

ejspence@mycomp code>

This creates a .git directory, in the code directory, which contains the
repository information.

ejspence@mycomp code> ls -a

. .. .git

ejspence@mycomp code>

Erik Spence (SciNet HPC Consortium) Modules, make, git 14 January 2014 27 / 30

~

Version control: adding repository files

We now need to add files to the repository. First you must add the files to
the ’staging’ area, then you commit.

ejspence@mycomp code> echo "some data" > temp.txt

ejspence@mycomp code> cp temp.txt temp2.txt

ejspence@mycomp code> ls

temp2.txt temp.txt

ejspence@mycomp code> git add . # include all files in the commit.

ejspence@mycomp code> git commit -m "First commit for my repository."

[master (root-commit) f60c07d] First commit for my repository.

2 files changed, 2 insertions(+), 0 deletions(-)

create mode 100644 temp.txt

create mode 100644 temp2.txt

ejspence@mycomp code>

Unfortunately, you must always ’stage’ the files before commiting them.

Erik Spence (SciNet HPC Consortium) Modules, make, git 14 January 2014 28 / 30

Version control: removing repository files

Let’s look at what we’ve done so far.

ejspence@mycomp code> git log

commit f60c07da5e36c9dcd55e3e51323391e550c42920

Author: Erik Spence <ejspence@scinet.utoronto.ca>

Date: Wed Jan 8 14:34:31 2014 -0500

First commit for my repository.

But suppose you want to delete a file?

ejspence@mycomp code> git rm temp2.txt

rm ’temp2.txt’

ejspence@mycomp code> git add .

ejspence@mycomp code> git commmit -m "Remove temp2.txt."

[master 95c1ef3] Remove temp2.txt

1 files changed, 0 insertions(+), 1 deletions(-)

delete mode 100644 temp2.txt

Erik Spence (SciNet HPC Consortium) Modules, make, git 14 January 2014 29 / 30

Version control: more information

There are many other things that can be done with git:

Review differences between files in different commits.

Go back to a previous version of the code.

Branch the code to add new and wonderful features.

Reconcile different branches of the code.

For a very extensive tutorial, go here:
http://www.vogella.com/tutorials/Git/article.html

Erik Spence (SciNet HPC Consortium) Modules, make, git 14 January 2014 30 / 30

http://www.vogella.com/tutorials/Git/article.html

	Module programming
	Motivation
	Example
	Example
	Compiling versus linking

	make
	How make make works
	Compiling with make

	Version control
	Motivation
	git

