
Scientific Computing (Phys 2109/Ast 3100H)
I. Scientfic Software Development

SciNet HPC Consortium

University of Toronto

Winter 2013

Part I

Introduction to Software Development

Lecture 4

Homework 1: Common issues

Testing and Modularity
Testing
Modularity

Course Project
Project description
Homework 2

Homework 1: Common issues

Flags

I What was up with this -I$(GSLINC) and -L$(GSLLIB)?

I These were added as an example of how to tell the compiler
to look for headers (-I) and libraries (-L) in non-standard
locations.

I Both -I and -L require a directory as an argument.

I In the example, these arguments were the environment
variables GSLINC and GSLLIB.

I You will not have these, nor need these at this point.

I Nor do you need -lgsl or -lgslcblas.

I Good flag: -Wall : add to the CXXFLAGS variable

I Good flag: -O3 for optimization: add to CXXFLAGS variable

I Good flag: -g for debug info: in CXXFLAGS and LDFLAGS

Nice Makefile:

CXXFLAGS=-Wall -g -O3

LDFLAGS=-g

LDLIBS=

CXX=g++

all: main

main.o: main.cc

$(CXX) -c $(CXXFLAGS) -o main.o main.cc

main: main.o

$(CXX) $(LDFLAGS) -o main main.o $(LDLIBS)

clean:

rm -f main.o

– Most of you got the dependency thing.
– Some were missing a ’clean’ target and/or an ’all’ target.

Git

I The idea is to keep recording versions of your code that work.

I And while going so, keep comments of what you changed.

I Make comments meaningfull

$ git init

$ git add <files>

$ git commit -m ’1st version of gaussian generating code’

$...

$ git commit -a -m ’Split it up in several files’

$...

Git

$ git log

commit 1d82b1e257456ee66fa1143f13742f1e6e88d895

Author: Ramses van Zon <rzon@scinet.utoronto.ca>

Date: Thu Jan 24 11:02:55 2013 -0500

Split it up in several files

commit 9d0dbb7fe6a3f02dc6b1b1d3bb55a77f3ab21ca9

Author: Ramses van Zon <rzon@scinet.utoronto.ca>

Date: Thu Jan 24 11:02:26 2013 -0500

1st version of gaussian generating code

Cheat sheet from Git Tower:
www.git-tower.com/files/cheatsheet/Git Cheat Sheet grey.pdf

Header files

We’ll look at those in depth today. . .

Testing

Why Testing?

I Crashes are easy to find (although sometimes harder to
find root cause of)

I Wrong answers are harder.

I Slightly wrong answers are hardest of all (but most
dangerous!)

I Before doing a production run, should do some small runs
as a sanity check: testing.

Integrated Testing

I Complicated piece of software,
with many interacting parts

I Difficult to tell where a problem
begins in a final answer

I Integrated testing

OUT

IN

Unit Testing

I Testing major pieces of the
code individually

I Comparing easy solutions,
typical solutions, wierd edge
cases

I Enormously speeds up,
simplifies, finding problems
when introduced

IN OUT

IN OUT

OUTIN

IN

IN

OUT

OUT

Unit Testing

I Faced with a complex piece of
software which does not have
testing done on it regularly
(integrated and unit)?

I Just save yourself a lot of time
and assume it is wrong.

IN OUT

IN OUT

OUTIN

IN

IN

OUT

OUT

Testing and Modularity

I Modular software is needed for
unit testing

I Have to have separable,
independent units

I Also answers the question
“How much should be in module?”:

What would be good
independent tests?

I Module = testable unit of
functionality

IN OUT

IN OUT

OUTIN

IN

IN

OUT

OUT

Testing Frameworks

I There are lots of excellent testing frameworks that you can
use – Google Tests (C++), xUnits, Check (C), Node
(python), JUnit (Java).

I They’re great but they have a big learing curve.

I You do not need anything that elaborate to get started
with unit testing.

Simple Test Example

int diffusionOperator(
float ** rho, // density field
int n, int m, // size of interior grid
float dx, float D, // spacing, diffusion constant
float ** Dd2rhodx2) // output

{
// Code goes here...
return 0;

}

bool passTestDiffusionOperatorConstant() {
// Try diffusionOperator with a constant rho
// If answer correct, return true, else false

}

bool passTestDiffusionOperatorGradient() {
// Try diffusionOperator with a linearly gradient
// If answer correct, return true, else false

}

Simple Test Example

// diffusionOperatorTests.cc
#include <iostream>

bool passTestDiffusionOperatorConstant();
bool passTestDiffusionOperatorGradient();

int main()
{

if (not passTestDiffusionOperatorConstant()) {
std::cerr << "diffusionOperatorConstant"

<< " FAILED" << std::endl;
return 1;

}
if (not passTestDiffusionOperatorGradient()) {

std::cerr << "diffusionOperatorGradient"
<< " FAILED" << std::endl;

return 1;
}

}

Interface v. Implementation

I The implementation – actual code – goes in the .cc file.

I The interface – what the calling code needs to know about
– goes in the .h or .hh header file.

I This distinction is crucial for writing modular code.

// diffusionOperator.h
int diffusionOperatorConstant(float ** rho, int n,

int m, float dx, float D, float ** Dd2rhodx2);
bool passTestDiffusionOperatorConstant();
bool passTestDiffusionOperatorGradient();

What does main.cc need at compile time?
Imagine we’re writing a matrix in binary and in ascii:

// outputarray.h
void toBin(const char* n, double** x, int r, int c);
void toAsc(const char* n, double** x, int r, int c);

// main.cc

#include "outputarray.h"

int main()
{

//
toBin("data.bin", data, nrows, ncols);
//
toAsc("data.txt", data, nrows, ncols);
//

}

g++ -Wall -O3 main.c -c -o main.o

Interface v. Implementation

I When main.cc is being compiled to a .o file, it needs to
know that there exists out there somewhere functions of
the form
void toBin(const char* n, double** x, int r, int c)
void toAsc(const char* n, double** x, int r, int c)

I This allows it to check the number and type of arguments
and return type (interface).

I It does not need to know the implementation details
(source of routine).

I Neither does programmer of main.cc .

Guards against multiple inclusion

I Header files can include other header files.

I Hard to figure out what header files are included already.

I Including a header file twice can lead to doubly defined
entities: compiler error.

I Common antidote is a ‘preprocessor guard’ in every header

// outputarray.h
#ifndef OUTPUTARRAYH
#define OUTPUTARRAYH
void toBin(const char* n, double** x, int r, int c);
void toAsc(const char* n, double** x, int r, int c);
#endif

Compiling v. Linking

I main.o cannot be executed - it is missing the routines for
toAsc, toBin, . . .

I At link time, the .o’s (or libraries) must be linked in to the
executable that satisfy all those routines that the code
needs.

I If you leave out one of the needed .o’s, fatal error: ‘symbol
not found’.

What goes into the interface (.h)?

I At the very least, the function prototypes.

I There may also be constants that calling function and
routine need to agree on (e.g., error codes) or definitions
of data structures, classes, etc..

I Often a desciption of the module and its functions in
comments.

I Usually there is one .cc/.h pair per module — often more
than one routine.

I Not necessarily every function prototype.

I Internal routines should not get exposed in the .h.

What goes into the implementation (.cc)?

I Everything defined in .h which requires code that is not in
the .h.

I Internal routines that are used by the .h routine.

I To ensure consistency, include the corresponding .h file at
the top of the file.

I Needs to be compiled, and linked to code that uses the .h.

Why does modularity matter?

I Scientific software can be large, complex, subtle

I If each section uses internal details from each other
section, have to understand the whole code at once.

I Interactions grow as (Lines of Code)2

I This is also why global variables are bad

I Have to enforce boundaries between sections of code
— self-contained modules of functionality.

I Makes testing easier.

More work up front

I Think about what you want the pieces of functionality to be.

I How are you going to use these routines?

I Think about everything you might want to use these routines
for; then design the interface.

I May change a bit in the early stages, but if it changes a lot
you should rethink things — you’re not using the functionality
the way you thought.

I Like documentation, etc. — more work upfront, much more
productivity in the long run.

Module design

I Keep purpose of module clear.

I As simple as possible (for your own sanity).

I As general as makes sense.

I Must be testable.

Course Project

Course Project

I Will be working on for next 3
weeks

I Charged tracer particle
moving in a diffusive
environment

I Colloidal transport in fluid
medium

I Couple kinds of physics,
couple kinds of data
structures (grid, particle)

w
�

�
���

Course Project

I Get source code:
http://wiki.scinethpc.ca/wiki/
images/f/f0/diffuse.cc

I Setup: Supervisor has this
old code for diffusive
background, “works fine,”
wants you to add tracer
particle to it.

I Python script to plot
diffusing field as a ’movie’.
http://wiki.scinethpc.ca/wiki/images/f/f0/plotdata.py

w
�

�
���

Diffusion

I Program is supposed to be solving the PDE

∂ρ

∂t
= D

(
∂2ρ

∂x2
+
∂2ρ

∂y2

)
.

I Does so by discretizing space on a 2d grid and time on a
1d grid.

I Time stepping rather trivial:

ρ(t + ∆t) = ρ(t) + ∆t × RHS.

(First order in t)

I RHS computed using discretized Laplacian.

Discretizing Derivatives

I Done by finite
differencing the
discretized values

I Implicitly or
explicitly involves
interpolating the
data and taking
the derivative of
the interpolant.

I More accuracy —
larger stencils.

d2ρ

dx2

∣∣∣∣∣
i

≈
ρi+1 − 2ρi + ρi−1

∆x2

i−1 i

−2+1 +1

i−2 i+1 i+2

Discretizing Derivatives

I Done by finite
differencing the
discretized values

I Implicitly or
explicitly involves
interpolating the
data and taking
the derivative of
the interpolant.

I More accuracy —
larger stencils.

(
∂2ρ

∂x2
+
∂2ρ

∂y2

)
i

≈
ρi,j+1 + ρi+1,j − 4ρi,j + ρi−1,j − ρi,j−1

∆x2

i−1 ii−2 i+1 i+2

+1 +1

+1

+1

−4

Course Project

I Code isn’t a disaster as
these things go.

I Even has comments!
That are still true!

I But one monolithic
routine. Difficult to
follow (even in this
simple 193-line case)

Course Project

I You’re almost always
better off in these
situations spending some
time cleaning these
things up some first

I For your own sanity

I But need to make sure
your changes don’t
change answers

I So lets start setting up
decent development
environment, baseline

Homework 2

HW2

I Start a git repository for this project, and add the two files.

I Create a Makefile and add it to the repository.

I Since we have no tests, run the program and save its output
as a baseline integrated test (add to repository). Then write a
’test’ target in your makefile that:

I Runs ’diffuse’ with output to a new file.
I Compares the file with the baseline test file.

(hint: the unix command diff compares files).

I Move the global variables into the main routine.

I Chorus: Test your modified code, and commit.

I Extract a diffusion operator routine, that gets called from main.

Chorus

I Create a .cc/.h module for the diffusion operator.

Chorus

HW2

I Add two tests for the diffusion operator: for a constant
and for a linear input field (rho[i][j]=a*i+b*j).
Add these to the test target in the makefile.

Chorus
I Extract three more .cc/.h modules:

I for output (should not contain hardcoded filenames)
I computation of the theory
I and for the array allocation stuff.

Chorus

I Describe, but don’t implement in the .h and .cc, what
would be appropriate unit tests for these.

Email in your source code and the git log file of all your
commits as a .zip or .tar file by email to rzon@scinethpc.ca
and ljdursi@scinethpc.ca by next Thursday at 9:00 am.

	Introduction to Software Development
	Homework 1: Common issues
	Testing and Modularity
	Testing
	Modularity

	Course Project
	Project description
	Homework 2

