
Scientific Computing III. High
Performance Scientific Computing

(Phys 2109/Ast 3100H)

Lecture 2: Parallel Programming Paradigms

SciNet HPC Consortium, University of Toronto

Winter 2013

Parallel Computers

Top500.org:

List of the worlds
500 largest
supercomputers.
Updated every 6
months,

Info on
architecture, etc.

Supercomputer architectures

I Clusters, or, distributed memory machines
In essence a bunch of desktops linked together by a network
(“interconnect”). Easy and cheap.

I Multi-core machines, or, shared memory machines
These can see the same memory. Limited number of cores,
typically, and much more $$$.

I Vector machines.
These were the early supercomputers, and could do the same
operation on a large number of numbers at the same time.
Very $$$$$$, especially at scale.
These days, most chips have some low-level, small size
vectorization, but you rarely need to worry about it (compiler
should do this).

Most supercomputers are a hybrid combo of these different
architectures.

Distributed Memory: Clusters

Simplest type of parallel com-
puter to build

I Take existing powerful
standalone computers

I And network them

(source: http://flickr.com/photos/eurleif)

Distributed Memory: Clusters

Each node is independent!

Parallel code consists of
programs running on sep-
arate computers, commu-
nicating with each other.

Could be entirely different
programs.

Each node has own memory!

Whenever it needs data
from another region, re-
quests it from that CPU.

Usual model: “message passing”

~ ~
~

~

n n
n

n

CPU1

CPU2

CPU3

CPU4

�
�
�
�
�
�
�
�
�
�
�
���

�
��

�*

6

�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
��

���
��

?

�
�

�
�	

Distributed Memory: Clusters

Each node is independent!

Parallel code consists of
programs running on sep-
arate computers, commu-
nicating with each other.

Could be entirely different
programs.

Each node has own memory!

Whenever it needs data
from another region, re-
quests it from that CPU.

Usual model: “message passing”
~ ~

~

~

n n
n

n

CPU1

CPU2

CPU3

CPU4

�
�
�
�
�
�
�
�
�
�
�
���

�
��

�*

6

�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
��

���
��

?

�
�

�
�	

Clusters+Message Passing

Hardware:
Easy to build
(Harder to build well)
Can build larger and
larger clusters relatively
easily

Software:
Every communication
has to be hand-coded:
hard to program

~ ~
~

~

n n
n

n

CPU1

CPU2

CPU3

CPU4

�
�
�
�
�
�
�
�
�
�
�
���

��
�
�*

6

�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
��

�
����

?

�
�

�
�	

Shared Memory

One large bank of
memory, different
computing cores acting
on it. All ‘see’ same
data.

Any coordination done
through memory

Could use message
passing, but no need.

Each code is assigned a
thread of execution of a
single program that acts
on the data.

~ ~

~

~

n n

n

n

-� � -

?

6

6

?

Core 1 Core 2

Core 3

Core 4

Memory

Threads versus Processes

Threads:
Threads of execution within
one process, with access to the
same memory etc.

Processes:
Independent tasks with their
own memory and resources

Shared Memory: NUMA

Non-Uniform Memory Access

I Each core typically has
some memory of its own.

I Cores have cache too.

I Keeping this memory
coherent is extremely
challenging.

~ ~

~

~

Memoryn n

n

n

Coherency

I The different levels of
memory imply multiple
copies of some regions

I Multiple cores mean can
update unpredictably

I Very expensive hardware

I Hard to scale up to lots of
processors, very $$$

I Very simple to program!!

~ ~

~

~

Memoryn n

n

n

x[10] = 5

x[10] =?

Shared Memory Communication Cost

Latency Bandwidth

GigE 10 µs 1 Gb/s
(10,000 ns) (60 ns/double)

Infiniband 2 µs 2-10 Gb/s
(2,000 ns) (10 ns /double)

NUMA 0.1 µs 10-20 Gb/s
(shared memory) (100 ns) (4 ns /double)

Processor speed: O(GFLOP) ∼ few ns or less.

Hybrid Architectures

I Multicore machines linked
together with an
interconnect

I Many cores have modest
vector capabilities.

I Machines with GPU or
other coprocessors: GPU is
multi-core, but the amount
of shared memory is limited.

Techniques for different parallel programming paradigms

I Embassingly parallel applications
Scripting, GNU Parallel1

I Shared memory
OpenMP, Threads, Automated parallelization

I Distributed memory
MPI, Files

I Graphics computing
CUDA, OpenCL

I Hybrid combinations

1O. Tange (2011): GNU Parallel - The Command-Line Power Tool,

;login: The USENIX Magazine, February 2011:42-47.

Techniques for different parallel programming paradigms

I Embassingly parallel applications
Scripting, GNU Parallel1

I Shared memory
OpenMP, Threads, Automated parallelization

I Distributed memory
MPI, Files

I Graphics computing
CUDA, OpenCL

I Hybrid combinations

1O. Tange (2011): GNU Parallel - The Command-Line Power Tool,

;login: The USENIX Magazine, February 2011:42-47.

Techniques for different parallel programming paradigms

I Embassingly parallel applications
Scripting, GNU Parallel1

I Shared memory
OpenMP, Threads, Automated parallelization

I Distributed memory
MPI, Files

I Graphics computing
CUDA, OpenCL

I Hybrid combinations

1O. Tange (2011): GNU Parallel - The Command-Line Power Tool,

;login: The USENIX Magazine, February 2011:42-47.

Techniques for different parallel programming paradigms

I Embassingly parallel applications
Scripting, GNU Parallel1

I Shared memory
OpenMP, Threads, Automated parallelization

I Distributed memory
MPI, Files

I Graphics computing
CUDA, OpenCL

I Hybrid combinations

1O. Tange (2011): GNU Parallel - The Command-Line Power Tool,

;login: The USENIX Magazine, February 2011:42-47.

Techniques for different parallel programming paradigms

I Embassingly parallel applications
Scripting, GNU Parallel1

I Shared memory
OpenMP, Threads, Automated parallelization

I Distributed memory
MPI, Files

I Graphics computing
CUDA, OpenCL

I Hybrid combinations

1O. Tange (2011): GNU Parallel - The Command-Line Power Tool,

;login: The USENIX Magazine, February 2011:42-47.

Techniques for different parallel programming paradigms

I Embassingly parallel applications
Scripting, GNU Parallel1

I Shared memory
OpenMP, Threads, Automated parallelization

I Distributed memory
MPI, Files

I Graphics computing
CUDA, OpenCL

I Hybrid combinations

1O. Tange (2011): GNU Parallel - The Command-Line Power Tool,

;login: The USENIX Magazine, February 2011:42-47.

Data or computation bound?

Computation bound ⇒

Data bound ⇒

Task parallelism

Focus on processes/threads.
These processes may have quite
different computations to do.
Bring the data to the computation

Data parallelism

Focus on operations on a given,
large data set. Data set often an
array, partitioned, and tasks act
on separate partitions.
Bring the computation to the data

Granularity

Fine-grained parallelism
Small individual tasks.
The data is transferred among processors frequently.
Often OpenMP, to overlap different hardware
functions

Coarse-grained parallelism
Data communicated infrequently,
after larger amounts of computation.
Often MPI, because of network latency

Too fine-grained⇒ overhead
Too course-grained⇒ load imbalance

Balance depends on architecture, access pattern, and computation.

Using SciNet

GPC

I 3780 nodes each with 2× 2.53GHz quad-core Intel
Xeon 5500 64-bit processors

I 30240 cores total

I 16GB RAM per node

I No local hard disks

I Infiniband network on all nodes

I 306 TFlops

I #66 on Nov 2012 TOP500 supercomputer list

Using SciNet

GPC

I 3780 nodes each with 2× 2.53GHz quad-core Intel
Xeon 5500 64-bit processors

I 30240 cores total

I 16GB RAM per node

I No local hard disks

I Infiniband network on all nodes

I 306 TFlops

I #66 on Nov 2012 TOP500 supercomputer list

Mini intro to SciNet - how to get started

I Need to have an account

I If you don’t: get it
(wiki.scinethpc.ca/wiki/index.php/Essentials)

I If you can’t: email us.

I Read the SciNet Tutorial and the GPC quick start on the wiki.
(wiki.scinethpc.ca/wiki/index.php/GPC Quickstart)

Access:
$ ssh -X login.scinet.utoronto.ca
$ ssh -X gpc01 (or gpc02, gpc03, gpc04)

Mini intro to SciNet - how to compile

I Ssh into one of the devel nodes gpc0{1,2,3,4}.

I Then load a compiler into your environment:

$ module load gcc

I Then you can compile using g++.

I In general, the Intel compilers are preferred on the GPC, but
for the purpose of this course, g++ is fine too.

Mini intro to SciNet - how to run

I You do not run on the devel nodes.

I You run on compute nodes.

I Compute nodes are reserved through the queue.

I You can get an interactive session on a compute nodeby
making the following request to the scheduler (from one of
the devel nodes)

$ qsub -l nodes=1:ppn=8,walltime=2:00:00 -I -X -qdebug

which gets a dedicated compute node for two hours. You can
ask for more time but you will need to omit the ’-qdebug’ and
you may be waiting for a long time for a node.

I Alternatively, submit a job script.

GNU Parallel

I What if you need to keep all 8 cores on a node busy.

I GNU Parallel can help you with that!

I GNU parallel is a really nice tool to run multiple serial jobs in
parallel. It allows you to keep the processors on each 8core
node busy, if you provide enough jobs to do.

I GNU parallel is accessible on the GPC in the module
gnu-parallel.

$ module load gnu-parallel/20120622

Note that we recommend the newer version of gnu-parallel over
the (default) 2010 one.

GNU Parallel Example
gpc-f101n084-$ g++ -O3 mycode.cc -o mycode

gpc-f101n084-$ mkdir $SCRATCH/example2

gpc-f101n084-$ cp mycode $SCRATCH/example2

gpc-f101n084-$ cd $SCRATCH/example2

gpc-f101n084-$ cat > joblist.txt
mkdir run1; cd run1; ../mycode 1 > out
mkdir run2; cd run2; ../mycode 2 > out
. . .
mkdir run64; cd run64; ../mycode 64 > out

gpc-f101n084-$ cat > myjob.pbs
#!/bin/bash
#PBS -l nodes=1:ppn=8,walltime=24:00:00
#PBS -N GPJob
cd $PBS O WORKDIR
module load gcc gnu-parallel/20120622
parallel -j 8 < joblist.txt

gpc-f101n084-$ qsub myjob.pbs
2961985.gpc-sched

gpc-f101n084-$ ls
GPJob.e2961985 GPJob.o2961985 joblist.txt
mycode myjob.pbs/ run3/
...

GPC and hyperthreading

I HyperThreading: Appears as if there are 16 processors rather
than 8 per node.

I For OpenMP applications this is the default unless
OMP NUM THREADS is set.

I For MPI, try -np 16.
I For gnu parallel, use -j 16.

I Always request ppn=8, even with hyperthreading.

I Always test if this is beneficial and feasible!

Homework

I Make sure you’ve got a SciNet account!

I Read the SciNet tutorial (as it pertains to the GPC)

I Read the GPC Quick Start.

I Get the first set of code:

$ cd $SCRATCH
$ git clone /scinet/course/sc3/homework1
$ cd homework1
$ source setup
$ make

I Contains threaded program ’blurppm’ and 266 ppm images to
be blurred.

I Usage:

blurppm INPUTPPM OUTPUTPPM BLURRADIUS NUMBEROFTHREADS

Homework

I Simple test:

$ qsub -l nodes=1:ppn=8,walltime=2:00:00 -I -X -qdebug
$ cd $SCRATCH/homework1
$ blurppm 001.ppm new001.ppm 30 1
$ display 001.ppm &
$ display new001.ppm &

I Will want to do timing tests:

$ time blurppm 001.ppm new001.ppm 30 1
real 0m52.900s
user 0m52.881s
sys 0m0.008s

Homework

Part 1

I Time blurppm with a BLURRADIUS ranging from 1 to 41 in
steps of 4, and for NUMBEROFTHREADS ranging from 1 to
16. Record the (real) duration of each run.

I Plot the duration as a function of NUMBEROFTHREADS, as
well as the speed-up and efficiency.

I Submit script and plots of the duration, speedup and effiency
as a function of NUMBEROFTHREADS.

Homework

Part 2

I Use GNU parallel to run blurppm on all 266 images with a
radius of 41.

I Investigate different scenarios:

1. Have GNU parallel run 16 at a time with just 1 thread.
2. Have GNU parallel run 8 at a time with 2 threads.
3. Have GNU parallel run 4 at a time with 4 threads.
4. Have GNU parallel run 2 at a time with 8 threads.
5. Have GNU parallel run 1 at a time with 16 threads.

Record the total time it takes in each of these scenarios.

I Repeat this with a BLURRADIUS of 3.

I Submit scripts, timing data and plots.

	Parallel Programming Overview
	Parallel Computers
	Distributed Memory
	Shared Memory

