Scientific Computing Ill. High
Performance Scientific Computing
(Phys 2109/Ast 3100H)

Lecture 2: Parallel Programming Paradigms

SciNet HPC Consortium, University of Toronto

Winter 2013

Scilet

Parallel Computers

Top500.org:

List of the worlds
500 largest
supercomputers.
Updated every 6
months,

Info on
architecture, etc.

SUPERCOMPUTER SITES

PROJECT | LISTS ‘ STATISTICS | RESOURCES | NEWS

Home ! Lists * November 2010
TOP500 List - November 2010 (1-100)

Rmax and Rpeak Values are in TFlops. For more details about other fields, check the TOP500 description.

Power data in KW for entire system

Rank

Site

National Supercomputing
Center in Tianjin
hina

DOE/SC/Oak Ridge
National Laboratory
United States

National Supercomputing
Centre in Shenzhen (NSCS)
China

GSIC Center, Tokyo
Institute of Technology
Japan

DOE/SC/ILBNL/NERSC
United States

Commissariat a IEnergie
Atomique (CEA)
France

Computer/Year Vendor

Tianhe-1A - NUDT TH MPP, X5670
2.93Ghz 6C, NVIDIA GPU, FT-1000

8C /2010
NUDT

Jaguar - Cray XT5-HE Opteron
6-core 2.6 GHz / 2009
Cray Inc.

Nebulae - Dawning TC3600 Blade,
Intel X5650, NVidia Tesla C2050
GPU /2010

Dawning

TSUBAME 2.0 - HP ProLiant
SL390s G7 Xeon 6C X5670, Nvidia
GPU, Linux/Windows /2010
NEC/HP

Hopper - Cray XE6 12-core 2.1
GHz /2010
Cray Inc.

Tera-100 - Bull bullx super-node
S$6010/S6030/ 2010
Bull SA

Cores

186368

224162

120640

73278

153408

138368

Rmax

2566.00

1759.00

1271.00

1192.00

1054.00

1050.00

Rpeak

4701.00

2331.00

2984 30

2287.63

1288.63

1254 .55

next

Power

4040.00

6950.60

2580.00

1398.61

2910.00

4590.00

t

zul

Supercomputer architectures

» Clusters, or, distributed memory machines
In essence a bunch of desktops linked together by a network
(“interconnect”). Easy and cheap.

» Multi-core machines, or, shared memory machines
These can see the same memory. Limited number of cores,
typically, and much more $%$.

» Vector machines.
These were the early supercomputers, and could do the same
operation on a large number of numbers at the same time.
Very $$$$$9%, especially at scale.
These days, most chips have some low-level, small size
vectorization, but you rarely need to worry about it (compiler
should do this).

Most supercomputers are a hybrid combo of these different

architectures. 5£ﬁ\let

AAAAAA

Distributed Memory: Clusters

Simplest type of parallel com-
puter to build

» Take existing powerful
standalone computers

» And network them

./ J' / ?\, 7
(source: http://flickr.com/photos/eurleif)
Sciflet

‘) compute «calcul
CANADA

Distributed Memory: Clusters

Each node is independent!

Parallel code consists of
programs running on sep-
qa&;omgﬂa&commu— CPU4
nicating with each other.
Could be entirely different
programs.

CPU3

CPU2

CPU1

Scilet

Distributed Memory: Clusters

Each node is independent!

Parallel code consists of
programs running on sep-
arate co ters, co -
I.’) m[_)u rs, commu CPU4
nicating with each other.

Could be entirely different
programs.

Each node has own memory! CPU3

Whenever it needs data
from another region, re-
quests it from that CPU.

CPU2

Usual model: “message passing” CPU1

Scilet

Clusters+Message Passing

Hardware:

Easy to build

(Harder to build well)
Can build larger and CPU4
larger clusters relatively
easily

Software: CPU3
Every communication
has to be hand-coded:
hard to program CPU?2

CPU1

Scilet

Shared Memory

One large bank of
memory, different
computing cores acting
on it. All ‘see’ same
data.

Core 3

Any coordination done

Core 2
through memory

Core 1

Could use message
passing, but no need.

Each code is assigned a
thread of execution of a
single program that acts

on the data. cSﬁ?\let

Threads versus Processes

Tjdursi@gpe-r102n0B1:~

Threads:

Threads of execution within
one process, with access to the
same memory etc.

Processes:
Independent tasks with their
own memory and resources

Fle Edt View Terminal Tabs Help
Ttop - 17:27:3¢ up 2 days, 1:40, 1 user, load average: 1.81, 0.56, 0.20
Tasks: 142 total, 3 running, 139 sleeping, 0O stopped, O zombie
Cpu(s): 95.9%us, 3.@%sy, ©.0%1, 0.0%d, 0.0%a, 0.1%01, 1.0%1, 0.0%s
Mem: 16411872k total, 2778368k used. 13633504k free, 256k butfers
Swap: ok total, ok used, Ok fres, 2265652k cached
PID USER VIRT SMEM TIME+ COMMAND
18121 ljoursi 25 0 89536 1076 840 R 779.0 0.0 0:29.01 Giffusion-omp
17193 root 15 035300 2580 60 5 15.0 0.8 0:01.57 pbs_mom
17192 root 15 035300 3216 636 R 6.0 0.0 ©0:00.48 pbs_mom
1 root 15 010344 740 6125 0.0 0.0 0:01.45 init
2 root RT -5 @ © @5 0.0 0.0 0:00.00 mgration/o
3 root 3419 6 0 85 0.0 6.0 0:00.00 Ksoftirqd/0
4 root RT -5 @ © ©5 0.0 0.0 0:00.00 watchdog/e
5 root RT -5 @ © @85 0.0 6.0 0:00.01 migration/1
6 root 34 19 6 0 85 0.0 6.0 0:00.01 ksoftirqd/l
7 root RT 5 @ @ 85 0.0 0.0 6:00.00 watchdog/1
8 root RT -5 8 0 B85 0.0 6.0 0:00.00 migration/2
9 root 34 19 @ 0 85 0.0 0.0 0:00.00 Ksoftirgd/2
10 root RT -5 © © 85 0.0 0.0 8:00.00 watcndog/2
11 root RT -5 © © ©5 0.0 0.0 0:00.00 migration/3

|jdursi Ggpe-r102n081:~

Ele EdR View Terminal Tebs Help
top - 17:33:58 up 2 days, 1:47, 1 user, load average
Tasks: 150 total, 9 running, 141 sleeping, O stoppes
:100.0%us, 0.6%y, ©.0%1, ©.6%id, 0.8%Wa
16411872K total, 2801172k used, 13610700k free
ok total ok used ok fre

=

18393 ljdursi 25 © 187m 5504 3484 o
18395 ljoursi 25 © 187m 5512 3492 0
18397 ljdursi 25 © 187n 5508 3488]
18302 ljoursi 25 © 187m 5580 3556 o
18394 Ujdursi 25 © 187n 5504 3488 o
18306 ljoursi 25 © 187m 5512 3492 o
18398 Ujdursi 25 © 187n 5508 3480]
18300 ljoursi 25 © 187m 5512 3492 0
1 root 15 010344 740 612 8:

2 root RT 5 o 0 o 6

3 root 3418 6 o o 6:

4 root RT 5 0 0 o 6

5 root RT 5 0 0o 0 6:

6 root 3 19 e o ® 6:

0

: .80, 0.31, 0.1
d, 0 zombie
owni, 6.0%si,
256K buffers
2268568k cached

0.0ust

5.45 diffusion-npi
:05.46 diffusion-mpi
5.46 diffusion-mpi
aiffusion-mpt
diftusion-mpi
aiffusion-mpt
diffusion-mpi
aiffusion-mpt
init
nigration/e
ksoftirgd/o
watcndog/e
migration/1
Ksoftirgd/1

Scilet

‘) compute «calcul
CANADA

Shared Memory: NUMA

Non-Uniform Memory Access

[]
o
» Each core typically has
some memory of its own.
» Cores have cache too.
> Keeping this memory
o
o

coherent is extremely
challenging.

Scilet

‘) compute «calcul
CANADA

Coherency

» The different levels of
memory imply multiple
copies of some regions

» Multiple cores mean can
update unpredictably

» Very expensive hardware

» Hard to scale up to lots of
processors, very $$$

» Very simple to program!!

Scilet

‘) compute «calcul
CANADA

Shared Memory Communication Cost

Latency Bandwidth
GigE 10 ps 1 Gb/s
(10,000 ns) | (60 ns/double)
Infiniband 2 ps 2-10 Gb/s
(2,000 ns) | (10 ns /double)
NUMA 0.1 ps 10-20 Gb/s
(shared memory) | (100 ns) (4 ns /double)

Processor speed: O(GFLOP) ~ few ns or less.

Scilet

Hybrid Architectures

» Multicore machines linked
together with an
interconnect

» Many cores have modest
vector capabilities.
» Machines with GPU or

other coprocessors: GPU is
multi-core, but the amount

of shared memory is limited.

i B

mun

i B

cSCﬁ?\let

AAAA

Techniques for different parallel programming paradigms

Scilet

Techniques for different parallel programming paradigms

> Embassingly parallel applications
Scripting, GNU Parallel!

Scilet

Techniques for different parallel programming paradigms

> Embassingly parallel applications
Scripting, GNU Parallel!

» Shared memory
OpenMP, Threads, Automated parallelization

Scilet

Techniques for different parallel programming paradigms

> Embassingly parallel applications
Scripting, GNU Parallel!

» Shared memory
OpenMP, Threads, Automated parallelization

» Distributed memory
MPI, Files

Scilet

Techniques for different parallel programming paradigms

v

Embassingly parallel applications
Scripting, GNU Parallel!

v

Shared memory
OpenMP, Threads, Automated parallelization

v

Distributed memory
MPI, Files

v

Graphics computing
CUDA, OpenCL

Scilet

Techniques for different parallel programming paradigms

v

Embassingly parallel applications
Scripting, GNU Parallel!

v

Shared memory
OpenMP, Threads, Automated parallelization

v

Distributed memory
MPI, Files

v

Graphics computing
CUDA, OpenCL

v

Hybrid combinations

0. Tange (2011): GNU Parallel - The Command-Line Power Tool, 7
ilogin: The USENIX Magazine, February 2011:42-47. MQt

Data or computation bound?

Computation bound = Task parallelism

Focus on processes/threads.
These processes may have quite
different computations to do.
Bring the data to the computation

Data bound = Data parallelism

Focus on operations on a given,
large data set. Data set often an
array, partitioned, and tasks act
on separate partitions.

Bring the computation to the data

cSei?\let

AAAAAA

Granularity

Fine-grained parallelism
Small individual tasks.

The data is transferred among processors frequently.

Often OpenMP, to overlap different hardware
functions

Coarse-grained parallelism

Data communicated infrequently,
after larger amounts of computation.
Often MPI, because of network latency
Too fine-grained = overhead
Too course-grained = load imbalance

Balance depends on architecture, access pattern, and computagonE
et

Using SciNet

Using SciNet

3780 nodes each with 2x 2.53GHz quad-core Intel
Xeon 5500 64-bit processors

30240 cores total

16GB RAM per node

No local hard disks
Infiniband network on all nodes
306 TFlops

#66 on Nov 2012 TOP500 supercomputer li

Mini intro to SciNet - how to get started

Need to have an account

v

v

If you don't: get it
(wiki.scinethpc.ca/wiki/index.php/Essentials)

v

If you can't: email us.

Read the SciNet Tutorial and the GPC quick start on the wiki.
(wiki.scinethpc.ca/wiki/index.php/GPC_Quickstart)

v

Access:

s ssh -X login.scinet.utoronto.ca
s ssh -X gpcO0l (or gpc02, gpc03, gpc04)

Scilet

Mini intro to SciNet - how to compile

» Ssh into one of the devel nodes gpc0{1,2,3,4}.

> Then load a compiler into your environment:

$ module load gcc

» Then you can compile using g++.

> In general, the Intel compilers are preferred on the GPC, but

for the purpose of this course, g++ is fine too.

Scilet

Mini intro to SciNet - how to run

v

You do not run on the devel nodes.

» You run on compute nodes.

v

Compute nodes are reserved through the queue.

> You can get an interactive session on a compute nodeby
making the following request to the scheduler (from one of
the devel nodes)

$ gsub -1 nodes=1:ppn=8,walltime=2:00:00 -I -X -qdebug

which gets a dedicated compute node for two hours. You can
ask for more time but you will need to omit the -qdebug’ and
you may be waiting for a long time for a node.

> Alternatively, submit a job script.

(Seﬁ\let

AAAAAAA

GNU Parallel

» What if you need to keep all 8 cores on a node busy.
» GNU Parallel can help you with that!

» GNU parallel is a really nice tool to run multiple serial jobs in
parallel. It allows you to keep the processors on each 8core

node busy, if you provide enough jobs to do.

» GNU parallel is accessible on the GPC in the module
gnu-parallel.

$ module load gnu-parallel/20120622

Note that we recommend the newer version of gnu-parallel over

the (default) 2010 one.

Scilet

GNU Parallel Example

gpc-£101n084-s g++ -03 mycode.cc -o mycode
gpc-£101n084-s mkdir $sSCRATCH/example2
gpc-£101n084-s cp mycode $SCRATCH/example?2
gpc-£101n084-s cd sSCRATCH/example2

gpc-£101n084-s cat > joblist.txt

mkdir runl; cd runl; ../mycode 1 > out
mkdir run2; cd run2; ../mycode 2 > out

mkdir run64; cd run64; ../mycode 64 > out
gpc-£101n084-s cat > myjob.pbs
#!/bin/bash
#PBS -1 nodes=1:ppn=8,walltime=24:00:00
#PBS -N GPJob
cd sPBS_O_WORKDIR
module load gcc gnu-parallel/20120622
parallel -j 8 < joblist.txt
gpc-£101n084-s gsub myjob.pbs
2961985.gpc-sched

gpc-£101n084-s 1s
GPJob.e2961985 GPJob 02961985 joblist.txt

mycode my job.pbs/ run3/ 5@?\]
DEEEEY et

’ compute ca\cu\

GPC and hyperthreading

» HyperThreading: Appears as if there are 16 processors rather
than 8 per node.
» For OpenMP applications this is the default unless
OMP_NUM_THREADS is set.
» For MPI, try -np 16.
» For gnu parallel, use -j 16.
» Always request ppn=8, even with hyperthreading.

> Always test if this is beneficial and feasible!

SciNet

Homework

v

Make sure you've got a SciNet account!

Read the SciNet tutorial (as it pertains to the GPC)
Read the GPC Quick Start.

Get the first set of code:

v

v

v

cd $SCRATCH

git clone /scinet/course/sc3/homeworkl
cd homeworkl

source setup

make

©“ A B e

» Contains threaded program 'blurppm’ and 266 ppm images to
be blurred.

> Usage:

blurppm INPUTPPM OUTPUTPPM BLURRADIUS NUMBEROFTHREADS

D "'?\Iet

Homework

» Simple test:

gqsub -1 nodes=1:ppn=8,walltime=2:00:00 -I -X -qdebug
cd $SCRATCH/homeworkl

blurppm 001.ppm newOOl.ppm 30 1

display 001.ppm &

display newOOl.ppm &

L I

» Will want to do timing tests:

$ time blurppm 001.ppm newOOl.ppm 30 1
real Omb52.900s

user O0m52.881s

sys OmO.008s

Scilet

) compute ca\cu\

Homework

Part 1

» Time blurppm with a BLURRADIUS ranging from 1 to 41 in
steps of 4, and for NUMBEROFTHREADS ranging from 1 to
16. Record the (real) duration of each run.

» Plot the duration as a function of NUMBEROFTHREADS, as
well as the speed-up and efficiency.

» Submit script and plots of the duration, speedup and effiency
as a function of NUMBEROFTHREADS.

Scilet

Homework

Part 2
> Use GNU parallel to run blurppm on all 266 images with a
radius of 41.
> Investigate different scenarios:

1. Have GNU parallel run 16 at a time with just 1 thread.
2. Have GNU parallel run 8 at a time with 2 threads.

3. Have GNU parallel run 4 at a time with 4 threads.

4. Have GNU parallel run 2 at a time with 8 threads.

5. Have GNU parallel run 1 at a time with 16 threads.

Record the total time it takes in each of these scenarios.
» Repeat this with a BLURRADIUS of 3.

» Submit scripts, timing data and plots.

Scilet

	Parallel Programming Overview
	Parallel Computers
	Distributed Memory
	Shared Memory

