
MPI II: Nonblocking,
Datatypes,
and Hybrid

Scientific Computing III
High Performance Scientific Computing

Feb 2012

Diffusion: Had to
wait for

communications to
compute

•Could not compute end
points without guardcell data

•All work halted while all
communications occurred

•Significant parallel overhead

n-4 n-3 n-2 n-1 n

-1 0 1 2 3

Global Domain

Job 1

Job 2

Diffusion: Had to
wait?

•But inner zones could have
been computed just fine

•Ideally, would do inner zones
work while communications is
being done; then go back and
do end points.

n-4 n-3 n-2 n-1 n

-1 0 1 2 3

Global Domain

Job 1

Job 2

Nonblocking
Sends

•Allows you to get work done while
message is ‘in flight’

•Must not alter send buffer until send
has completed.

•MPI_Isend(void *buf, int
count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm
comm, MPI_Request *request)

work..

work...

MPI_Isend(...)

Nonblocking
Recv

•Allows you to get work done while
message is ‘in flight’

•Must not access recv buffer until
recv has completed.

•MPI_Irecv(void *buf, int
count, MPI_Datatype datatype,
int source, int tag, MPI_Comm
comm, MPI_Request *request)

work...

MPI_Irecv(...)

How to tell if message is
completed?

•int MPI_Wait(MPI_Request *request,MPI_Status
*status);

•int MPI_Waitall(int count,MPI_Request
*array_of_requests, MPI_Status
*array_of_statuses);

Also: MPI_Waitany, MPI_Waitsome,MPI_Test...

Example
•git clone /scinet/
course/sc3/hw4

•make nonblocking

Example
•git clone /scinet/
course/sc3/hw4

•make nonblocking

gpc-f103n084-$ make nonblocking
mpicc -o nonblocking nonblocking.c -std=c99 -Wall -O2 -g
gpc-f103n084-$ mpirun -np 7 nonblocking
1: Got A, Sent B
2: Got B, Sent C
5: Got E, Sent F
0: Got G, Sent A
3: Got C, Sent D
4: Got D, Sent E
6: Got F, Sent G
gpc-f103n084-$

Notes
•This was a cycle of sends/
recvs. Why does that
matter?

•A blocking send can be
thought of as an Isend
immediately followed by a
Wait.

Reasons to use
Nonblocking

•Avoid deadlock

•Overlap communications and
computation.

•(Note: most MPI
implementations won’t do
much overlapping with
ethernet/tcp; but IB, or maybe
shared memory messages.)

Nonblocking in
diffusion-mpi.c
•Diffusion-mpi.c is the answer
to hw2.

•How would we use
nonblocking sends and
receives here to overlap
communication and
computation?

Datatypes for
more complex

messages
•Diffusion2d is the
generalization of the 1d
problem from hw2.

•Calculates diffusion equation
in two dimensions.

gpc-f103n084-$ make diffusion2d
gpc-f103n084-$./diffusion2d

Guard cell fill
•Basic idea is same as in 1d

•Copy data into guardcells in
boundary-condition phase.

•For generality, have more
than 1 level of guardcells
illustrated here (say, ng) but
only need 1 in this code.

1 2

2d Guardcells
•Recall how 2d memory is
laid out

•y-direction guardcells
contiguous

j (y)

i (x)

old[i][j]

&old[0][0]

2D Guardcells
•If we’re sending our left/
right data to our neighbour,
pretty easy

•Send count = ng*(ny+2*ng)
contiguous values, recv
same.

• MPI_Send(&(old[nx][0]),
count, MPI_FLOAT,....)

2

ny

ng

nx

What if non-
contiguous?

•But how do we do the up/
down boundary conditions?

•Data non-contiguous in
memory.

What if non-
contiguous?

• One way:

• Loop over values, sending
each one.

• Latency hit for each
message.

• Would completely dominate
communications cost.

• Terrible idea.

What if non-
contiguous?

•Another way:

•Copy data into a buffer,
send once; receive into a
buffer, unpack into array.

What if non-
contiguous?

•This approach is simple, but
introduces extraneous copies

•Memory bandwidth is
already a bottleneck for these
codes

•It would be nice (and easier
to read) to just point at the
start of the guardcell data and
have MPI read it from there.

Contiguous
case:

•Let’s look back at the left/
right case.

•Can send in one go:
i

j

count = ng*(ny+2*ng);
MPI_Send(&(old[nx][0]), count, MPI_FLOAT, right,)

MPI Data Types
•Creating MPI Data types.

•MPI_Type_contiguous:
simplest case. Lets you build
a string of some other type.

 MPI_Datatype lrgctype;

MPI_Type_contiguous(ng*(ny+2*ng), MPI_REAL, &lrgctype);
 ierr = MPI_Type_commit(&lrgctype);

 MPI_Send(&(u[nx][0]), 1, ybctype,)

ierr = MPI_Type_free(&lrgctype);

Count OldType &NewType

 MPI_Datatype lrgctype;

MPI_Type_contiguous(ng*(ny+2*ng), MPI_REAL, &lrgctype);
 ierr = MPI_Type_commit(&lrgctype);

 MPI_Send(&(u[nx][0]), 1, ybctype,)

ierr = MPI_Type_free(&lrgctype);

Type workflow
•Create a type with
MPI_Type_... calls

•Commit it when done (you
can modify the type as
building it, commit only final
version)

•Use it as any other type.

•Free when done.

 MPI_Datatype lrgctype;

MPI_Type_contiguous(ng*(ny+2*ng), MPI_REAL, &lrgctype);
 ierr = MPI_Type_commit(&lrgctype);

 MPI_Send(&(u[nx][0]), 1, ybctype,)

ierr = MPI_Type_free(&lrgctype);

Three Types of
MPI

Functionality:
•Point to point

•Collectives

•Routines to allow efficient
transfers in, out of memory.

Noncontiguous
Case

i

jint MPI_Type_vector(
 int count,
 int blocklen,
 int stride,
 MPI_Datatype old_type,
 MPI_Datatype *newtype);

stride = ny+2*ng

blocklen = ng

count = nx+2*ng

MPI_Type_vector

i

jierr = MPI_Type_vector(ny+2*ng, ng,
 nx+2*ng, MPI_FLOAT, &udgctype);

ierr = MPI_Type_commit(&udgctype);

ierr = MPI_Send(&(u[0][ny]), 1, udgctype,)

ierr = MPI_Type_free(&udgcctype);

blocklen = ng

count = nx+2*ng
stride = ny+2*ng

MPI_Type_vector

i

j

blocklen = ng

count = nx+2*ng
stride = ny+2*ng

• Check: total amount of data =
blocklen*count = ng*(nx+2*ng)

• Skipped over stride*count =
(nx+2*ng)*(ny+2*ng)

In MPI, there’s
always more

than one way..
•MPI_Type_create_subarray ;
piece of a multi-dimensional
array.

•Much more convenient for
higher-dimensional arrays

•(Otherwise, need vectors of
vectors of vectors...)

int MPI_Type_create_subarray(
 int ndims, int *array_of_sizes,
 int *array_of_subsizes,
 int *array_of_starts,
 int order,
 MPI_Datatype oldtype,
 MPI_Datatype &newtype);

int MPI_Type_create_subarray(
 int ndims, int *array_of_sizes,
 int *array_of_subsizes,
 int *array_of_starts,
 int order,
 MPI_Datatype oldtype,
 MPI_Datatype &newtype);

sizes[2] = {nx+2*ng, ny+2*ng};
subsizes[2] = {ng, ny+2*ng};
starts[2] = {nx,0};

Can also set starts at (say) {0,0},
and just point send buffer to
first place to send.

Implementing in
MPI

•Hands-On:

•In diffusion2d-mpi, implement
left/right guardcellfilling, and
up/down filling with types.

•For now, create/free type
each cycle through; ideally,
we’d create/free these once.

More
complicated

still?
• Not just a multiple of a single

data type

• Contiguous, vector, subarray
types won’t do it.

int MPI_Type_create_struct(int count, int array_of_blocklengths[],
 MPI_Aint array_of_displacements[], MPI_Datatype array_of_types[],
 MPI_datatype *newtype);

MPI Structures
•Like vector, but:

•displacements in bytes

•array of types

ch
ar

ac
ter

do
ub

le
pr

ec
isi

on

int
eg

er

int
eg

er

disp = 0
count=1

type=MPI_CHARACTER

disp = 1
count=1

type=MPI_DOUBLE_PRECISION

disp = 7
count=2

type=MPI_INTEGER

MPI Type Maps
•Complete description of this structure looks like:
blocklens = (1,1,2)
displacements = (0,1,6)
types = (MPI_CHARACTER,
MPI_DOUBLE_PRECISION, MPI_INTEGER)

•Note typemaps not unique; could write the integers
out as two single integers with displacements 6, 8.

ch
ar

ac
ter

do
ub

le
pr

ec
isi

on

int
eg

er

int
eg

er

MPI Type Maps
•What does type map look
like for domain_s?

MPI Type Maps
•Note: can’t count on guessed
locations.

•C compiler is allowed to
insert padding between fields
for performance or any other
reason.

•Use offsetof(domain_s, dx)
(eg) to find bytes of offset fro
start of structure.

Hybrid Parallelism:
MPI + OpenMP

Two great tastes that go great together

Hybrid
programming

•Most current systems are
hybrid:

•Distributed memory clusters
of shared-memory nodes.

•Using MPI across nodes and
OpenMP within nodes can
better match software to
hardware.

Advantages:
Course + Finer-

grained parallelism
•Sometimes initial MPI
parallelism is very coarse (eg,
slabs of a domain)

•Requires lots of memory; can
only fit 1,2 tasks per node

•With OpenMP, can
implement finer grained
parallelism within that, use all
cores.

Advantages:
Less memory
duplication

•Each MPI task needs certain
copies of data from remote
tasks.

•For (eg) guardcells in 3D, can
be sizable fraction of used
memory.

•If fewer MPI tasks per node,
reduce number of copies -
better memory usage.

Advantages:
Better scaling

•With fewer MPI tasks,

•Collectives scale better

•Messages between nodes are
aggregated: fewer, larger

•Can get better scaling at
larger processor counts.

vs

Pitfalls
•Like anything with OpenMP,
it’s pretty easy to start with
Hybrid

•But it takes more work to
get the performance you
want.

MPI_Init_thread
•Needed to initialize thread-
safe version of the MPI library

•There is a (small)
performance overhead for this

•Can require different levels of
thread safety.

int MPI_Init_thread(
int *argc,
char ***argv,
int required,
int *provided)

Levels of thread
safety

•MPI_THREAD_SINGLE:
single-threaded.

•MPI_THREAD_FUNNELED:
only the master thread will
make MPI calls.

•MPI_THREAD_SERIALIZE:
any thread may make MPI
calls, but only one at a time.

•MPI_THREAD_MULTIPLE:
anything goes.

int MPI_Init_thread(
int *argc,
char ***argv,
int required,
int *provided)

Simple example
•Call MPI Init thread; only
master thread uses MPI

•Call MPI, then pragma omp
parallel for over work loop

•Run with mpirun,
OMP_NUM_THREADS

...

funneled.c

Simple example
•One problem - (P-1) threads
are sleeping much of the time

•Another problem: layout.

Sendrecv

omp for

Sendrecv

Dude, where’s
my thread?

•When you have 4, 4-way
nodes and want to run 16 mpi
tasks, things are pretty simple.

•When you want to run 4, or
8, tasks, and have each run 4
or 2 threads, it matters a lot
where the tasks are.

Dude, where’s my
thread?

•OpenMPI: -bynode assigns one
MPI task per node, then “wraps
around” if needed.

•-bycore, -bysocket.

•If you use a nonstardard
OMP_NUM_THREADS, you may
have to -x OMP_NUM_THREADS
to ensure each task sees env
variable.

CPU affinity
•OS has the flexibility to move
processes, threads between
cores.

•Generally right thing for, eg,
web server, generally not for
HPC.

•Want to bind to cores or
socket (but _not_ bind
everything to same core/
socket!)

CPU affinity
•OpenMPI: -bind-to-core,
-bind-to-socket

•Binds processes (and then all
threads) to that compute
element. Be careful!

•-display-map, -report-
bindings, to see what’s going
on.

Memory affinity
•Memory may be globally
accessible, but it isn’t uniform.

•NUMA - extra ~100ns to
access memory in other
core’s cache on-socket

Memory affinity
•Memory may be globally
accessible, but it isn’t uniform.

•NUMA - extra ~100ns to
access memory in other
core’s cache on-socket

•Even worse if it’s off socket.

•An excellent reason to worry
about cpu affinity

First Touch
•Where does a given array
“live”?

•Large arrays broken into
pages.

•Typically pages associated not
with CPU that allocated array,
but with CPU that touched it
first.

•Makes sense to do even
initialization with OpenMP -
locks pages to correct CPUs.

double x[100][100]

x ?

How many
tasks per node?
•No a priori answer - need to
experiment.

•Sensible starting points:

•1 task per socket (ensures
good shared mem locality)

•1 task per network
connection (ensures no
contention in/out of node).

Can we do
better than
simple case?

•Ideally, want all threads going
at once

•Minimize serialization at
communication points.

•Overlap communication with
computation via threads.

...

funneled.c

Can we do
better than
simple case?

•Have master thread
sendrecv, then have rest do
dynamic loop.

•NOTE: _all_ omp threads in
team _must_ participate in
omp loop.

...

dynamic.c

Can we do
better than
simple case?

•Have master thread
sendrecv, then have rest do
dynamic loop.

•NOTE: _all_ omp threads in
team _must_ participate in
omp loop.

tasks.c

...

Homework: Hybrid
diffusion2d

•Three versions of diffusion2d:

•Pure MPI, blocking guardcells

•Pure MPI, nonblocking

•Hybrid: Timings

•Set points to something much larger (10k? 50k?) and
reduce number of iterations to few dozen

•Try to get best performance you can on 4 nodes (=32
processors). Is one MPI task per node best, or 2, or?

•Due Mar 22.

