
Multidimensional Arrays in C++: Trying to get it right

Ramses van Zon

SciNet HPC Consortium

June 10, 2015

Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to get it right June 10, 2015 1 / 20

What’s the problem?

C++ sucks at multidimensional arrays.
Fortran is excellent at it, but people scold me for using such an old
language/it does not get me a job when I’m done with my career/I
really like templates/. . .
C++ could be great at multidimensional arrays, and there are a
plethora of libraries aiming to fill this void. Something must be missing
for there not to be a winner.
Let’s look a bit more closely at what is wrong with C++
multidimensional arrays, what we’d want from such entities, and a
library that attempts to solve that.

Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to get it right June 10, 2015 2 / 20

At first it seems so easy
#include <iostream>
int main() {

const long n = 4;
float a[n] = {1.0,2.0,3.0,10.0};
for (long i=0; i<n; i++)

std::cout << a[i] << " ";
}

Even easier using C++11 features:

#include <iostream>
int main() {

const long n = 4;
float a[n] = {1.0,2.0,3.0,10.0};
for (auto x: a)

std::cout << x << " ";
}

Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to get it right June 10, 2015 3 / 20

Two issues, even here

1: Arbitrary size limits

#include <iostream>
int main() {

const long n = 1e7;
float a[n] = {1.0,2.0,3.0,10.0};
for (auto x: a)

std::cout << x << " ";
}

This segfaults. There ‘automatic arrays’ are allocated on stack memory,
which is usually much smaller than the total memory.

Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to get it right June 10, 2015 4 / 20

Two issues, even here

2. Function arguments

#include <iostream>
void printThis(float a[4]) {

for (auto x: a)
std::cout << x << " ";

}
int main() {

float a[4] = {1.0,2.0,3.0,10.0};
printThis(a);

}

This will not even compile. When passed to as a function argument, the
array gets converted to a pointer, that does not know about the length of
the array. The 4 in the argument list is ignored.

Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to get it right June 10, 2015 5 / 20

To solve this, we should:

Allocate dynamically with new

That means we have to explicitly deallocate with delete

And we should pass the size of the array to functions. Still cannot use
the c++11 loop.

Or we can use std::vector.

This solve it all.
We must be careful not to pass vectors by value to functions though!
Only for the one dimensional case.

Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to get it right June 10, 2015 6 / 20

Multidimensional case
At first, just as easy:

#include <iostream>
int main() {

const long n = 2;
const long m = 3;
const long k = 2;
float a[n][m][k]

= {{{1,2},{3,4},{5,6}},{{7,8},{9,10},{11,12}}};
for (auto x: a)

std::cout << x << " ";
}

While the allocation works, the cout statement does not. It prints out
two pointers to the two sub-matrices!
These automatic arrays suffer from the same troubles are their 1d
counterparts.

Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to get it right June 10, 2015 7 / 20

Solution
1. Manual allocation

float*** a = new float**[n];
for (int i=0;i<n;i++) {
a[i] = new float*[m];
for (int j=0;j<m;j++)

a[i][j] = new float[k];
}
// Special tuning needed for contiguous elements (needed for e.g. blas).

2. Vectors of vectors of vectors

vector<vector<vector<float>>> a(n);
for (int i=0;i<n;i++) {

a[i].reserve(m);
for (int j=0;j<m;j++)

v[i][j].reserve(k);
}
// No tuning possible to get contiguous elements

Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to get it right June 10, 2015 8 / 20

Something better

Introducing rarray:
A library for runtime-defined multidimensional arrays with
none of these issues.

Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to get it right June 10, 2015 9 / 20

Rarray

A header-only template solution for multidimensional arrays with
dimensions determined at runtime.
Usually faster than alternatives.
Has optional bounds checking (no longer fast then, though).
All allocation on the heap, and contiguous.
No hidden copies of the array elements.
Can reuse existing buffers too.

Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to get it right June 10, 2015 10 / 20

How?

The header file rarray.h provides the type rarray<T,R>, where T is
any type and R is the rank.
Element access uses repeated square brackets.
Copying rarrays or passing them to functions mean shallow copies,
unless explicitly asking for a deep copy.
For io, use the additional header rarrayio.h.
For element-wise algebraic operations, use rarrayex.h

git clone https://github.com/vanzonr/rarray

Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to get it right June 10, 2015 11 / 20

Rarray in a Nutshell

Define a n×m×k array of floats: rarray<float,3> b(n,m,k);
Define it with preallocated memory: rarray<float,3> c(ptr,n,m,k);
Element i,j,k of the array b: b[i][j][k]
Pointer to the contiguous data in b: b.data()
Extent in the ith dimension in b: b.extent(i)
Shallow copy of the array: rarray<float,3> d=b;
Deep copy of the array: rarray<float,3> e=b.copy();
A rarray re-using an automatic array: float f[10][20][8]={...};
. rarray<float,3> g=RARRAY(f);
Output a rarray to screen: std::cout « h « endl;
Read a rarray from keyboard: std::cin » h;

Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to get it right June 10, 2015 12 / 20

.

Details

Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to get it right June 10, 2015 13 / 20

Copying and function arguments
In C++, when we copy a variable of a built-in type to a new variable,
the new copy is completely independent of the old variable. Likewise,
the default way of passing arguments to a function involves a complete
copy for built-in types.
For C-style arrays, however, only the pointer to the first element gets
copied, so you get a reference, not the whole array.
The latter is called a shallow copy.
Rarrays use shallow copies much like pointers, but memory allocated by
the rarray gets released by the first created reference.

What does this essentially mean? Well:

1 You can pass rarrays by value to function, which is as if you were
passing a pointer.

2 When you assign one rarray to another, the other simply points to the
old one.

3 If you wish to do a deep copy, i.e., create a new array independent of
the old array, you need to use the copy method.

Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to get it right June 10, 2015 14 / 20

Returning a rarray from a function
Unless you’re using C++11 context, the shallow copying causes problems:

rarray<double,2> zeros(int n, int m) {
rarray<double,2> r(n,m);
r.fill(0.0);
return r;

}
int main() {

rarray<double,2> s = zeros(100,100);
return s[99][99];

}

The array would get destroyed just after it is returned in C++03. Solution:
rarray<double,2>::return_type zeros(int n, int m) {

rarray<double,2> r(n,m);
r.fill(0.0);
return r;

}
Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to get it right June 10, 2015 15 / 20

Optional Bounds checking

If the preprocessor constant RA_BOUNDSCHECK is defined, an out of
bounds exception is thrown if

an index is too small or too large;
the size of dimension is requested that does not exist (in a call to
extent(int i));
a constructor is called with a zero pointer for the buffer or for the
dimensions array;
a constructor is called with too few or too many arguments (for R<=
11).

RA_BOUNDSCHECK can be defined by adding the
-DRA_BOUNDSCHECK argument to the compilation command, or by
#define RA_BOUNDSCHECK“ before the#include “rarray.h”“‘ in the
source.

Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to get it right June 10, 2015 16 / 20

I/O

In the header rarrayio.h
Only ascii for now: not great
Prints it out as you would initialize an automatic array, i.e., with curly
braces.
Doing so means it can read it back in as well

Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to get it right June 10, 2015 17 / 20

Expressions

A new and mildly experimental featues allows you to do this:

#include "rarray.h"
#include "rarrayex.h"
int main()
{

rarray<float,2> a(4,4);
rarray<float,2> b(4,4);
rarray<float,2> c(4,4);
float s = 2.0;
a = b + s*c;

}

Should work, but still under development and needs tuning.

Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to get it right June 10, 2015 18 / 20

.

A Dream

Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to get it right June 10, 2015 19 / 20

This should be in the language

#include "rarray.h"
#include "rarrayex.h"
int main()
{

float[*][*] a(4,4);
float[*][*] b(4,4);
float[*][*] c(4,4);
float s = 2.0;
a = b + s*c;

}

Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to get it right June 10, 2015 20 / 20

