Multidimensional Arrays in C++: Trying to get it right

Ramses van Zon

SciNet HPC Consortium

June 10, 2015

Sciet
" comelitNe;ga;\cul

Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to g June 10, 2015 1/20

What's the problem?

@ C++ sucks at multidimensional arrays.

@ Fortran is excellent at it, but people scold me for using such an old
language/it does not get me a job when I'm done with my career/I
really like templates/. ..

@ C++ could be great at multidimensional arrays, and there are a
plethora of libraries aiming to fill this void. Something must be missing
for there not to be a winner.

@ Let's look a bit more closely at what is wrong with C++
multidimensional arrays, what we'd want from such entities, and a
library that attempts to solve that.

SciNet

, compute ca\cul

Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to g June 10, 2015 2 /20

At first it seems so easy

#include <iostream>
int main() {
const long n = 4;
float a[n] = {1.0,2.0,3.0,10.0};
for (long i=0; i<n; i++)
std::cout << al[i] << " ";

Even easier using C++11 features:

#include <iostream>
int main() {
const long n = 4;
float a[n] = {1.0,2.0,3.0,10.0};
for (auto x: a)
std::cout << x << " ',

Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to g

June 10, 2015

AAAAA

3/20

Two issues, even here

1: Arbitrary size limits

#include <iostream>
int main() {
const long n = 1le7;
float a[n] = {1.0,2.0,3.0,10.0};
for (auto x: a)
std::cout << x << " ",

This segfaults. There ‘automatic arrays' are allocated on stack memory,
which is usually much smaller than the total memory.

Sﬁi\let

AAAAA

Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to g June 10, 2015 4/20

Two issues, even here

2. Function arguments

#include <iostream>
void printThis(float al[4]) {
for (auto x: a)
std::cout << x << " ",
}
int main() {
float al4] = {1.0,2.0,3.0,10.0};
printThis(a);

This will not even compile. When passed to as a function argument, the
array gets converted to a pointer, that does not know about the length of
the array. The 4 in the argument list is ignored.

<S§|Net

AAAAAA

Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to g June 10, 2015 5/ 20

To solve this, we should:

o Allocate dynamically with new
@ That means we have to explicitly deallocate with delete

@ And we should pass the size of the array to functions. Still cannot use
the c++11 loop.

Or we can use std: :vector.

@ This solve it all.
@ We must be careful not to pass vectors by value to functions though!

@ Only for the one dimensional case.

<SQNet

AAAAA

Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to g June 10, 2015 6 /20

Multidimensional case
At first, just as easy:

#include <iostream>
int main() {
const long n = 2;
const long m = 3;
const long k = 2;
float al[n] [m] [k]
= {{{1,2},{3,4},{5,6}},{{7,8},{9,10},{11,12}}};
for (auto x: a)
std::cout << x << " ",

@ While the allocation works, the cout statement does not. It prints out
two pointers to the two sub-matrices!

@ These automatic arrays suffer from the same troubles are thejge

et
Counterparts. ‘, compute «calcul

AAAAAA

Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to g June 10, 2015 7 /20

Solution

1. Manual allocation

float*** a = new float**[n];
for (int i=0;i<n;i++) {
a[i]l = new float*[m];
for (int j=0;j<m;j++)
ali]l [j] = new float[k];
}

// Special tuning needed for contiguous elements (needed fo

2. Vectors of vectors of vectors

vector<vector<vector<float>>> a(n);
for (int i=0;i<n;i++) {
al[i] .reserve(m);
for (int j=0;j<m;j++)
v[il [j].reserve(k);

}

// No tuning possible to get contiguous elements u

Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to g June 10, 2015 8 /20

Something better

Introducing rarray:

A library for runtime-defined multidimensional arrays with
none of these issues.

SciNet

Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to g June 10, 2015 9 /20

Rarray

@ A header-only template solution for multidimensional arrays with
dimensions determined at runtime.

@ Usually faster than alternatives.

@ Has optional bounds checking (no longer fast then, though).

@ All allocation on the heap, and contiguous.

@ No hidden copies of the array elements.

@ Can reuse existing buffers too.

SciNet

, compute ca\cul

Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to g June 10, 2015 10 / 20

How?

@ The header file rarray.h provides the type rarray<T,R>, where T is
any type and R is the rank.

@ Element access uses repeated square brackets.

@ Copying rarrays or passing them to functions mean shallow copies,
unless explicitly asking for a deep copy.

o For io, use the additional header rarrayio.h.

o For element-wise algebraic operations, use rarrayex.h

git clone https://github.com/vanzonr/rarray

SciNet

, compute ca\cul

Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to g June 10, 2015 11 /20

Rarray in a Nutshell

Define a nxXmXk array of floats:
Define it with preallocated memory:
Element i,j,k of the array b:

Pointer to the contiguous data in b:
Extent in the ith dimension in b:
Shallow copy of the array:

Deep copy of the array:

A rarray re-using an automatic array:

Output a rarray to screen:
Read a rarray from keyboard:

rarray<float,3> b(n,m,k);
rarray<float,3> c(ptr,n,m,k);
b[i] []1 [k]

b.data()

b.extent (i)

rarray<float,3> d=b;
rarray<float,3> e=b.copy();
float f[10][20][8]={...};
rarray<float,3> g=RARRAY(f);
std::cout « h « endl;
std::cin » h;

Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to g

<S£ﬁ\let

AAAAAA

June 10, 2015 12 /20

Details

SciNet
P L

mses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to g

Copying and function arguments

@ In C4++, when we copy a variable of a built-in type to a new variable,
the new copy is completely independent of the old variable. Likewise,
the default way of passing arguments to a function involves a complete
copy for built-in types.

@ For C-style arrays, however, only the pointer to the first element gets
copied, so you get a reference, not the whole array.

@ The latter is called a shallow copy.

@ Rarrays use shallow copies much like pointers, but memory allocated by
the rarray gets released by the first created reference.

What does this essentially mean? Well:

@ You can pass rarrays by value to function, which is as if you were
passing a pointer.
@ When you assign one rarray to another, the other simply points to the

old one.
© If you wish to do a deep copy, i.e., create a new array indepe fet
the old array, you need to use the copy method. @ e

Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to g June 10, 2015 14 /20

Returning a rarray from a function

Unless you're using C++11 context, the shallow copying causes problems:

rarray<double,2> zeros(int n, int m) {
rarray<double,2> r(n,m);
r.£i11(0.0);
return r;

}

int main() {
rarray<double,2> s = zeros(100,100) ;
return s[99] [99];

The array would get destroyed just after it is returned in C4++403. Solution:
rarray<double,2>::return_type zeros(int n, int m) {
rarray<double,2> r(n,m);
r.£i11(0.0);

return r;

.
ul

Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to g June 10, 2015 15 / 20

Optional Bounds checking

If the preprocessor constant RA_BOUNDSCHECK is defined, an out of
bounds exception is thrown if

@ an index is too small or too large;

@ the size of dimension is requested that does not exist (in a call to
extent(int i));

@ a constructor is called with a zero pointer for the buffer or for the
dimensions array;

@ a constructor is called with too few or too many arguments (for R<=
11).

RA_BOUNDSCHECK can be defined by adding the
-DRA_BOUNDSCHECK argument to the compilation command, or by
#define RA_BOUNDSCHECK" before the#include “rarray.h”"" in the
source.

SciNet

Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to g June 10, 2015 16 / 20

In the header rarrayio.h

Only ascii for now: not great

Prints it out as you would initialize an automatic array, i.e., with curly
braces.
@ Doing so means it can read it back in as well

SciNet

’ compute ca\cul

Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to g June 10, 2015 17 /20

Expressions

@ A new and mildly experimental featues allows you to do this:

#include "rarray.h"
#include "rarrayex.h"
int main()

{
rarray<float,2> a(4,4);
rarray<float,2> b(4,4);
rarray<float,2> c(4,4);
float s = 2.0;
= b + s*c;
}

@ Should work, but still under development and needs tuning.

Sﬁi\let

AAAAA

Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to g June 10, 2015 18 / 20

A Dream

SciNet
P L

mses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to g

This should be in the language

#include "rarray.h"
#include "rarrayex.h"
int main()

{
float [*] [*] a(4,4);
float [*] [*] b(4,4);
float [*] [*] c(4,4);
float s = 2.0;
a = b + s*c;

}

SciNet

Ramses van Zon (SciNet HPC Consortium) Multidimensional Arrays in C++: Trying to g June 10, 2015 20 / 20

