
Scientific Computing (Phys 2109/Ast 3100H)
II. Numerical Tools for Physical Scientists

SciNet HPC Consortium, University of Toronto

Lecture 16: More Fast Fourier Transform

Winter 2013



About FFTW

Supposedly the “Fastest Fourier Transform in the West”

version 2 ! = version 3

Capabilities

I Complex one-dimensional transforms

I Complex multi-dimensional transforms.

I Real-to-half-complex array transforms

I Format real transforms different in 1d and nd.

I Threaded, MPI, SIMD vectorized

I Read the manual!



About FFTW

Supposedly the “Fastest Fourier Transform in the West”

version 2 ! = version 3

Capabilities

I Complex one-dimensional transforms

I Complex multi-dimensional transforms.

I Real-to-half-complex array transforms

I Format real transforms different in 1d and nd.

I Threaded, MPI, SIMD vectorized

I Read the manual!



About FFTW

Supposedly the “Fastest Fourier Transform in the West”

version 2 ! = version 3

Capabilities

I Complex one-dimensional transforms

I Complex multi-dimensional transforms.

I Real-to-half-complex array transforms

I Format real transforms different in 1d and nd.

I Threaded, MPI, SIMD vectorized

I Read the manual!



Notes

I Always create a plan first.
An fftw plan contains all information necessary to compute
the transform, including the pointers to the input and output
arrays.
Plans can be reused in the program, and even saved on disk!

I When creating a plan, you can have FFTW measure the
fastest way of computing dft’s of that size
(FFTW MEASURE), instead of guessing
(FFTW ESTIMATE).

I FFTW works with doubles by default, but you can install
single precision too.



Notes

I Always create a plan first.
An fftw plan contains all information necessary to compute
the transform, including the pointers to the input and output
arrays.
Plans can be reused in the program, and even saved on disk!

I When creating a plan, you can have FFTW measure the
fastest way of computing dft’s of that size
(FFTW MEASURE), instead of guessing
(FFTW ESTIMATE).

I FFTW works with doubles by default, but you can install
single precision too.



Notes

I Always create a plan first.
An fftw plan contains all information necessary to compute
the transform, including the pointers to the input and output
arrays.
Plans can be reused in the program, and even saved on disk!

I When creating a plan, you can have FFTW measure the
fastest way of computing dft’s of that size
(FFTW MEASURE), instead of guessing
(FFTW ESTIMATE).

I FFTW works with doubles by default, but you can install
single precision too.



Symmetries
Even data:

fi = f−i = fn−i

⇓

f̂k = f̂−k = f̂n−k

Odd data:
fi = −f−i = −fn−i

⇓

f̂k = −f̂−k = −f̂n−k

Shifted data:
fj = f′j+J

⇓

f̂k = exp(2πiJk/n) f̂′k



Symmetries
Even data:

fi = f−i = fn−i

⇓

f̂k = f̂−k = f̂n−k

Odd data:
fi = −f−i = −fn−i

⇓

f̂k = −f̂−k = −f̂n−k

Shifted data:
fj = f′j+J

⇓

f̂k = exp(2πiJk/n) f̂′k



Symmetries
Even data:

fi = f−i = fn−i

⇓

f̂k = f̂−k = f̂n−k

Odd data:
fi = −f−i = −fn−i

⇓

f̂k = −f̂−k = −f̂n−k

Shifted data:
fj = f′j+J

⇓

f̂k = exp(2πiJk/n) f̂′k



Symmetries for real data

I All arrays were complex so far.

I If input f is real, this can be exploited.

f∗j = fj ↔ f̂k = f̂∗n−k

I Each complex number holds two real numbers, but for the
input f we only need n real numbers.

I If n is even, the transform f̂ has real f̂0 and f̂n/2, and the

values of f̂k > n/2 can be derived from the complex valued
f̂0<k<n/2: again n real numbers need to be stored.



Symmetries for real data

I A different way of storing the result is in “half-complex
storage”. First, the n/2 real parts of f̂0<k<n/2 are stored,
then their imaginary parts in reversed order.

I Seems odd, but means that the magnitude of the
wave-numbers is like that for a complex-to-complex transform.

I These kind of implementation dependent storage patterns can
be tricky, especially in higher dimensions.



Multidimensional transforms

In principle a straighforward generalization:

I Given a set of n×m function values on a regular grid:

fab = f(a∆x, b∆y)

I Transform these to n other values f̂k

f̂kl =
n−1∑
a=0

m−1∑
b=0

fab e± 2πi (a k/n+b l/m)

I Easily back-transformed:

fab =
1

nm

n−1∑
k=0

m−1∑
l=0

f̂kl e∓ 2πi (a k/n+b l/m)

I Negative frequencies: f−k,−l = fn−k,m−l.



Multidimensional FFT

I We could successive apply the FFT to each dimension

I This may require transposes, can be expensive.

I Alternatively, could apply FFT on rectangular patches.

I Mostly should let the libraries deal with this.

I FFT scaling still n log n.

I Real transform even more convoluted.



Homework

Trigonometric interpolation
Trigometric interpolation uses a n point Fourier series to find
values at intermediate points. It is one way of “downscaling” data,
and was a motivation for Gauss, to be applied to planetary motion.
The way it works is:

I You fourier transform your data

I You add frequecies above the Nyquist frequency (in absolute
values), but set all the amplitudes of the new frequencies to
zero.

I Note that the frequencies are stored such that eg. f̂n−1 is a
low frequency −1/n.

I The resulting 2n array can be back transformed, and now
gives an



Homework

Assignment 1
Write an application that will read in this image:

as a binary file with a 2d array, in double precision, and creates an
image twice the size in all directions.
Use a real-to-half-complex version of fftw (despite the
counter-recommendation in the fftw3 documentation).



Homework

PPM image format

The image format to be used is ppm, which goes as follows:

I first line: ”P6\n”

I second line: ”width height\n”

I third line: ”maxcolor\n” (typically just ”255\n”)

I Subsequently triplets of 3 (rgb) byte values per pixel.



Homework

Assignment 2
Write an application which reads an image and performs a low
pass filter on the image for each of the colors (rgb). I.e., any
fourier components with magnitudes k larger than n/8 are to be
set to zero, after which the fourier inverse is taken and the image
is to be printed out. You can use the real-to-half-complex versions
of fftw here too.

Due next Friday at 9:00 am!


