
OpenMP 4 - What’s New?

SciNet Developer Seminar

Ramses van Zon

September 25, 2013

Intro to OpenMP

I For shared memory systems.

I Add parallelism to
functioning serial code.

I For C, C++ and Fortran

I http://openmp.org

I Compiler/run-time does a
lot of work for you

I Divides up work

I You tell it how to use
variables, and what to
parallelize.

I Works by adding compiler
directives to code.

Quick Example - C

/* example1.c */
int main()
{
int i,sum;
sum=0;

for (i=0; i<101; i++)
sum+=i;

return sum−5050;
}

> $CC example1.c

> ./a.out

⇒

/* example1.c */
int main()
{
int i,sum;
sum=0;
#pragma omp parallel

#pragma omp for reduction(+:sum)
for (i=0; i<101; i++)
sum+=i;

return sum−5050;
}

> $CC example1.c -fopenmp

> export OMP NUM THREADS=8

> ./a.out

Quick Example - Fortran

program example1

integer i,sum
sum=0

do i=1,100
sum=sum+i

end do

print *, sum−5050;
end program example1

> $FC example1.f90

⇒

program example1

integer i,sum
sum=0

!$omp parallel

!$omp do reduction(+:sum)
do i=1,100

sum=sum+i

end do

!$omp end parallel

print *, sum−5050;
end program example1

> $FC example1.f90 -fopenmp

Memory Model in OpenMP (3.1)

Execution Model in OpenMP

Execution Model in OpenMP with Tasks

Existing Features (OpenMP 3.1)

1. Create threads with shared and private memory;

2. Parallel sections and loops;

3. Different work scheduling algorithms for load balancing loops;

4. Lock, critical and atomic operations to avoid race conditions;

5. Combining results from different threads;

6. Nested parallelism;

7. Generating task to be executed by threads.

Supported by GCC, Intel, PGI and IBM XL compilers.

Introducing OpenMP 4.0

I Released July 2013, OpenMP 4.0 is an API specification.

I As usual with standards, it’s a mix of features that are
commonly implemented in another form and ones that have
never been implemented.

I As a result, compiler support varies. E.g. Intel compilers
v. 14.0 good at offloading to phi, gcc has more task support.

I OpenMP 4.0 is 248 page document (without appendices)
(OpenMP 1 C/C++ or Fortran was ≈ 40 pages)

I No examples in this specification, no summary card either.

I But it has a lot of new features. . .

New Features in OpenMP 4.0

1. Support for compute devices

2. SIMD constructs

3. Task enhancements

4. Thread affinity

5. Other improvements

1. Support for Compute Devices

I Effort to support a wide variety of
compute devices:

GPUs, Xeon Phis, clusters(?)

I OpenMP 4.0 adds mechanisms to
describe regions of code where data
and/or computation should be moved to
another computing device.

I Moves away from shared memory per se.

I omp target.

Memory Model in OpenMP 4.0

Memory Model in OpenMP 4.0

I Device has its own data environment

I And its own shared memory

I Threads can be bundled in a teams of threads

I These threads can have memory shared among threads of the
same team

I Whether this is beneficial depends on the memory architecture
of the device. (team ≈ CUDA thread blocks, MPI COMM?)

Data mapping

I Host memory and device memory usually district.

I OpenMP 4.0 allows host and device memory to be shared.

I To accommodate both, the relation between variables on host
and memory gets expressed as a mapping

Different types:
I to: existing host variables copied to a corresponding variable

in the target before
I from: target variables copied back to a corresponding variable

in the host after
I tofrom: Both from and to

I alloc: Neither from nor to, but ensure the variable exists on
the target but no relation to host variable.

Note: arrays and array sections are supported.

OpenMP Device Example using target

/* example2.c */
#include <stdio.h>
#include <omp.h>
int main()
{
int host threads, trgt threads;
host threads = omp get max threads();
#pragma omp target map(from:target threads)
trgt threads = omp get max threads();
printf("host_threads = %d\n", host threads);
printf("trgt_threads = %d\n", trgt threads);
}

> $CC -fopenmp example2.c -o example2

> ./example2

host threads = 16

trgt threads = 224

OpenMP Device Example using target

program example2

use omp lib

integer host threads, trgt threads

host threads = omp get max threads()
!$omp target map(from:target threads)
trgt threads = omp get max threads();
!$omp end target

print *, "host threads =", host threads

print *, "trgt threads =", trgt threads

end program example2

> $FC -fopenmp example2.f90 -o example2

> ./example2

host threads = 16

trgt threads = 224

OpenMP Device Example using teams, distribute
#include <stdio.h>
#include <omp.h>
int main()
{

int ntprocs;
#pragma omp target map(from:ntprocs)
ntprocs = omp get num procs();
int ncases=2240, nteams=4, chunk=ntprocs*2;

#pragma omp target

#pragma omp teams num teams(nteams) thread limit(ntprocs/nteams)
#pragma omp distribute

for (int starti=0; starti<ncases; starti+=chunk)
#pragma omp parallel for

for (int i=starti; i<starti+chunk; i++)
printf("case i=%d/%d by team=%d/%d thread=%d/%d\n",

i+1, ncases,
omp get team num()+1, omp get num teams(),
omp get thread num()+1, omp get num threads());

}

OpenMP Device Example using teams, distribute

program example3

use omp lib

integer i, ntprocs, ncases, nteams, chunk
!$omp target map(from:ntprocs)
ntprocs = omp get num procs()
!$omp end target

ncases=2240

nteams=4

chunk=ntprocs*2
!$omp target

!$omp teams num teams(nteams) thread limit(ntprocs/nteams)
!$omp distribute

do starti=0,ncases,chunk
!$omp parallel do

do i=starti,starti+chunk

print *,"i=",i,"team=",omp get team num(),"thread=",omp get thread num()
end do

!$omp end parallel

end do

!$omp end target

end program example3

Summary of New Directives and Functions for Devices

I omp target [map]

marks a region to execute on device

I omp teams

creates a league of thread teams

I omp distribute

distributes a loop over the teams in the league

I omp declare target / omp end declare target

marks function(s) that can be called on the device

I omp get team num()

I omp get team size()

I omp get num devices()

2. SIMD Constructs

I OpenMP can enable vectorization of
both serial as well as parallelized loops.

I vectorization = processing multiple
elements of an array at the same time.

I This is done using SIMD instructions.

I SIMD=single instruction multiple data.
Usually 2, 4,or 8 SIMD lanes wide.

I Can also indicate to OpenMP to create
versions of functions that can be invoked
across SIMD lanes.

New Directives for SIMD Support

I omp simd

marks a loop to be executed using SIMD lanes

I omp declare simd

marks a function that can be called from a SIMD loop

I omp parallel for simd

marks a loop for thread work-sharing as well as SIMDing

OpenMP SIMD Loop Example

#include <stdio.h>
#define N 262144

int main()
{

long long d1=0;
double a[N], b[N], c[N], d2=0.0;
#pragma omp simd reduction(+:d1)
for (int i=0;i<N;i++)

d1+=i*(N+1−i);
#pragma omp simd

for (int i=0; i<N;i++) {
a[i]=i;
b[i]=N+1−i;

}
#pragma omp parallel for simd reduction(+:d2)
for (int i=0; i<N; i++)

d2+=a[i]*b[i];
printf("result1 = %ld\nresult2 = %.2lf\n", d1, d2);

}

OpenMP SIMD Loop Example
program simdex

integer, parameter :: N = 262144

integer(kind=8) :: i, d1
real(kind=8), dimension(N) :: a, b, c
real(kind=8) :: d2
d1=0 ; d2=0.

!$omp simd reduction(+:d1)
do i=1,N

d1 = d1 + (i−1)*(N−i)
end do

!$omp end simd

!$omp simd

do i=1,N
a(i)=i−1 ; b(i)=N−i

end do

!$omp end simd

!$omp parallel do simd reduction(+:d2)
do i=1,N

d2 = d2 + a(i)*b(i)
enddo

!$omp end parallel

print *,"result1 =",d1,"result2 =",d2
end program simdex

OpenMP SIMD Function Example

#include <stdio.h>
#pragma omp declare simd

double computeb(int i)
{ return N+1−i; }
#define N 262144

int main()
{

long long d1=0;
double a[N], b[N], c[N], d2=0.0;
#pragma omp simd reduction(+:d1)
for (int i=0;i<N;i++)

d1 += i*computeb(i);
#pragma omp simd

for (int i=0; i<N;i++) {
a[i]=i; b[i]=computeb(i);

}
#pragma omp parallel for simd reduction(+:d2)
for (int i=0; i<N; i++)

d2 += a[i]*b[i];
printf("result1 = %ld\nresult2 = %.2lf\n", d1, d2);

}

3. Task Enhancements

I Can abort parallel OpenMP execution by
conditional cancellation at implicit and
user-defined cancellation points.

I Tasks can be grouped to into task
groups can be aborted to reflect
completion of cooperative tasking
activities such as search.

I Task-to-task synchronization is
supported through the specification of
task dependency.

OpenMP Task Cancellation Example

#include <stdio.h>
#define N 40

int main()
{

char haystack[N+1]="abcabcabczabcabcabcxabcabcabczabcabcabcz";
char needle=’x’;
int pos;
#pragma omp parallel for

for (int i=0; i<N; i++) {
if (haystack[i]==needle) {

pos=i;
#ifndef OPENMP

break;
#else

#pragma omp cancel for

#endif

}
}
printf("\n’%c’ found at position %d in %s\n",needle,pos,haystack);

}

Overview of New Directives and Functions for Tasks

I omp cancel parallel|for|sections|taskgroup

starts cancellation of all tasks in the same construct

I omp cancelation point parallel|for|sections|taskgroup

marks a point at which this task may be canceled

I omp taskgroup

marks a region such that all tasks started in it belong to a group

I omp task depend([in|out|inout]:variable) clause
marks that a task depends on other task

4. Thread Affinity

I OpenMP can now be told better where
to execute threads.

I Can be used to get better locality, less
false sharing, more memory bandwidth.

I To specify platform-specific data:
Environment variable OMP PLACES

I To describe thread binding to processor:

I Environment variable: OMP PROC BIND
I In code using omp parallel’s new

proc bind clause.

Allowed values:
false, true, master, close, spread

Example of Specifying Affinity

> $CC example.c -fopenmp -o example

> export OMP_NUM_THREADS=16

> export OMP_PLACES=0,8,1,9,2,10,3,11,4,12,5,13,6,14,7,15

> export OMP_PROC_BIND=spread,close

> ./example

...

5. Other improvements

I User-defined reductions:
Previously, OpenMP API only supported reductions with base
language operators and intrinsic procedures. With OpenMP
4.0 API, user-defined reductions are now also supported.

omp declare reduction

I Sequentially consistent atomics:
A clause has been added to allow a programmer to enforce
sequential consistency when a specific storage location is
accessed atomically.

omp atomic seq cst

I Optional dump all internal variables at program start:

OMP DISPLAY ENV=TRUE|FALSE|VERBOSE

Thank you for your attention.

Have fun exploring!

http://openmp.org/wp/openmp-specifications

