An introduction to GUI programming
with Tkinter

Erik Spence
SciNet HPC Consortium

9 September 2014

Scilet

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 9 September 2014 1/49

An introduction to Tkinter

The purpose of this class is to introduce you to the basics of GUI
programming in Python, using Tkinter . There are several GUI interfaces
available in Python:
@ Tkinter is the Python interface to the Tk GUI toolkit.
@ wxPython is an open-source Python interface for wxWindows.
@ JPython is a Python port for Java which gives Python scripts access
to Java class libraries.

Many others are also available. We will use Tkinter, due to the fact that it
is the de facto standard Python GUI library.

Note that | will be using Python 2.7.8 in this class. The examples will
work with Python 3.X, but with slightly different syntax.]
Scillet

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 9 September 2014 2 /49

What is Tk?

If Tkinter is the Python interface to the Tk GUI toolkit, what is Tk?

o Tk started life as Tcl extension (1991). It is now written in C.

@ Tkis a high-level windowing toolkit. You can interface with it directly
using C or other languages.

@ Tk interfaces are also available in Python, Ruby, Perl, Tcl, and
probably other languages.
@ What Tk itself is interfacing with depends on your system:

» Mac: Tk provides interfaces to the MacOS windowing system.

» Windows: Tk provides interfaces to the Microsoft windowing system.

» Other platforms: Tk 8.X attempts to look like the Motif window
manager, but without using Motif libraries. Prior to that it interfaced
with the X window system.

Let it suffice to say that Tk provides a high-level means of accessing your
system’s windowing infrastructure.
ch?\let

nnnnnn

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 9 September 2014 3/49

Running code in today’s class

All the code for today’s class should be launched from the command line,
rather than an interactive prompt. Those using Linux or Macs should run
python from a terminal:

ejspence@mycomp ~
ejspence@mycomp ~> python mycode.py
ejspence@mycomp ~>

If you are running Windows, run your code from the cmd.exe prompt:

C:\Users\ejspence>
C:\Users\ejspence> c:\Python27\python.exe mycode.py
C:\Users\ejspence>

Do NOT use IDLE, or any other graphical Python interface. Some of
these use Tk as a back end, and today's code may break or confuse

the interface. met

’ compute ca\cu\

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 9 September 2014 4 /49

~
~
~

Our first Tkinter program

@ The Tkinter module is needed
to build Tkinter widgets.

o First thing generated is the
parent window, upon which
everything else will be placed.

@ The Label widget is generated.

@ Arrange the Label using the
pack command.

@ The 'mainloop’ command is
used to launch the window, and
start the event loop.

@ The window can be moved,
resized, and closed.

Erik Spence (SciNet HPC Consortium)

Programming with Tkinter

firstTkinter.py
from Tkinter import Tk, Label

Create the window.
top = Tk()

Create a Label.
= Label(top, text = "Hello World")

Arrange the Label.
1.pack()

Run the parent, and its children.
top.mainloop()

'look’ of

Scilet

) compute ca\cu\

The window has the
whatever system you
are running.

9 September 2014 5/ 49

Event-driven programming

The previous example was trivial, but it illustrates steps which are seen in
most Tkinter programs. Some notes:

@ The mainloop method puts the label on the window, the window on
the screen and enters the program into a Tkinter wait state.

@ In the wait state, the code waits for user-generated activity, called
'events’.

@ This is called event-driven programming.

@ The programs are essentially a set of event handlers that share
information rather than a single linear control flow.

This style of programming is notably different from what most of us are

accustomed.
SciNet

’ compute ca\cu\

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 9 September 2014 6 /49

Our first Tkinter program, continued

We can tweak the appearance of our # firstTkinter2.py
main window: from Tkinter import Tk, Label

@ Use the 'title’ option to change top = TkQ)

the title of the window.
1 = Label(top, "Hello World")

@ The 'minsize/maxsize’ arguments | 1.pack()
set the minimum/maximum size

Of the window. # Give the window a title.

top.title("My App")
@ The 'configure’ argument can be
used to set a variety of different # Change the minimum size.

window features, such as the top.minsize(400, 400)
background colour. # Change the background colour.

top.configure(bg = "green")

Run the widget.
top.mainloop()

t 0
A
CANADA

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 9 September 2014 7 /49

Our second Tkinter program

. # secondTkinter.py
@ The Tkinter Button command

creates a button.

from Tkinter import Label, Button, Tk

The ’callback function’. Invoked
when the button is pressed.
def hello_callback(): print "Hello"

@ The first argument is the
parent window.

@ The 'pack’ command makes

the widget visible, and tells the | “°F = ™0

parent to resize to fit the # Make a Label.

children. 1 = Label(top, text = "My Button:")
1.pack()

@ When the button is pushed,
the callback function & Make a buttom.

"hello_callback’ is called. b = Button(top, text = "Hello",
command = hello_callback)

o If the upper-right-corner "X’ is b.pack()

not visible the window is too
small. Resize the window. top.mainloop()

(,_CGmpUre_Camo {
CANADA

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 9 September 2014 8 /49

A better second Tkinter program

Widgets are usually created as
objects, so let's recast our example
as such.

secondTkinter2.py
import Tkinter
from MyApp import MyApp

top = Tkinter.Tk()

Note that the constructor takes the
parent window as an argument.
app = MyApp(top)

top.mainloop()

Erik Spence (SciNet HPC Consortium)

MyApp.py
from Tkinter import Label, Button

class MyApp:

def __init__(self, master):
self.l = Label(master,
text = "My Button:")
self.l.pack()

self.b = Button(master,
text = "Hello",
command = self.hello)

self.b.pack()

Function called when the button
is pressed.
def hello(self): print "Hello"

Programming with Tkinter

a1 %= TANTZTS

‘) compute «calcul
CANADA

9 September 2014

9 /49

An even better second Tkinter program

Generally speaking, objects should # MyApp2.py, continued

be invokable on their own.
self.1l = Label(self,
text = "My Button:")
self.l.pack()

MyApp2.py
from Tkinter import Label, Button,
Frame self.b = Button(self,
. . text = "Hello",
Extend the Frame class, to inherit command = self.hello)
self.b.pack()

the mainloop function.

class MyApp(Frame) :
Function called when the button

def __init__(self, master = None): .
is pressed.
def hello(self): print "Hello"

Construct the Frame object.
F ._-init__(self, t
rame._init_(se master) # Allow the class to run stand-alone.
self.pack() . " i
if _name__ == "_main__":
MyApp () .mainloop ()
a1 %= TANTZTS
Q) oo
10 / 49

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 9 September 2014

Callback functions

"Callback functions’ are invoked by widgets due to an 'event’, such as the
pressing of a button. These functions need to be handled carefully:

@ Notice that we used "command = self.hello” rather than
"command = self.hello()" in the code for the Button in the last
example.

@ If you do "command = func()” in the widget declaration, func() will
be run upon the widget creation, not when it is needed.

@ But without the brackets there is no way to pass arguments to the
function! If arguments are needed you must use lambda, or another
indirection layer.

o (Global variables may also work, but are not recommended.)

@ Functions invoked using lambda are only called at runtime, not when

the widget is created.
ch?\let

nnnnnn

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 9 September 2014 11 / 49

Many different Tkinter widgets are available

The list of widgets which can be added to a Tkinter window is extensive:

Buttons, Checkbuttons, Radiobuttons, Menubuttons
Canvas (for drawing shapes)

Entry (for text field entries)

Message (for displaying text messages to the user)
Labels (text captions, images)

Frames (a container for other widgets)

Scale, Scrollbar

Text (for displaying and editting text)

and others...
SciNet

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 9 September 2014 12 / 49

Tkinter control variables

More often then not, we want to tie the value of variables to the specific
states of widgets, or to specific events. This is called tracing.
@ Native Python variables don't track events as they occur.

@ However Tkinter contains wrapper objects for variables which change
value with changing events. These are called Tkinter variables.

@ Because they are objects, Tkinter variables are invoked using a
constructor: var = IntVar().

These variables have a number of important functions:

@ Checkbuttons use a control variable to hold the status of the button.
o Radiobuttons use a single control variable to indicate which button
has been set.

e Control variables hold text strings for several different widgets (Entry,

Label, Text). Sﬁﬁ\let

AAAAAA

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 9 September 2014 13 / 49

How to use Tkinter control variables

There are four types of control variables: StringVar (string), IntVar
(integers), DoubleVar (floats), BooleanVar (booleans). Each variable has a
default value. How do these variables tend to manifest themselves?

o Button: set its 'textvariable’ to a StringVar. When the StringVar is
changed the Button's text will change.

@ Checkbutton: set the 'variable’ option to an IntVar. Note that you
can also use other values for a Checkbutton (string, boolean).

@ Entry: set the 'textvariable’ option to a StringVar.
@ Radiobutton: the 'variable’ option must be set to either an IntVar or
StringVar.
@ Scale: set the 'variable’ option to any control variable type. Then set
the 'from_" and 'to’ values to set the range.
ﬁeﬁ\let

AAAAAA

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 9 September 2014 14 / 49

Tkinter control variables example

MyCheckbutton.py
from Tkinter import IntVar, BOTH
Checkbutton, Frame

class MyCheckbutton(Frame) :
def __init__(self, master = None):
Frame.__init__(self, master)
self .pack(expand = True,
£fill = BOTH)
self.master.title("")
self.master.minsize (200, 100)

Object variables.
self.var = IntVar()

Create a checkbutton.

cb = Checkbutton(self, text =
"Show title", variable =
self.var, command = self.click)

cb.place(x = 50, y = 50)

MyCheckbutton.py, continued
def click(self):
if (self.var.get() == 1):
self .master.title("Checkbutton")
else: self.master.title("")

if __name__ == "_main_"
MyCheckbutton () .mainloop ()

Erik Spence (SciNet HPC Consortium)

Programming with Tkinter

@ The IntVar object tracks the
checkbox value (0 or 1).

o .get()/.set('x") returns/sets the
value of the control variable.

@ The 'place’ function locates
the checkbox in the window,

from the upper-right Met

corner. QP ©moue; - caleul

9 September 2014 15 / 49

Pop quiz!

Create an application which

@ Accepts a numeric entry from the user, using the Entry widget.
@ The Entry widget has a Label widget beside it, which says "Ibs".
@ Has a 'Calculate’ button. When the 'Calculate’ button is pressed:

» The application calculates the number of kilograms, assuming that the
value given in the Entry widget is numeric, and is in pounds
(1 pound = 0.453592 kilograms).

> Prints the value to the command line.

Hint: create a StringVar() for the entry widget. When the button is
pressed grab the value and go.

cSc:I?\let

AAAAAA

Erik Spence (SciNet HPC Consortium) 9 September 2014 16 / 49

Programming with Tkinter

Pop quiz one

1bs2kgs.py
from Tkinter import *
class 1bs2kgs(Frame) :
def __init__(self, master = None):
Frame.__init__(self, master)
self.pack()

self.lbs = StringVar()

lbs_entry = Entry(self, width =
textvariable = self.lbs)

1bs_entry.pack(side = LEFT)

Label(self, text = "lbs").pack(
side = LEFT)

Button(self, text = "Calculate",
command = self.calc).pack(
side = LEFT)

lbs_entry.focus()

1bs2kgs.py, continued
def calc(self):
try:
value = float(self.lbs.get())
print "The number of
kgs is", 0.453592 * value

except ValueError: pass

if __name__ == "_main__"
1bs2kgs () .mainloop ()

for ¢ in self.master.winfo_children():

c.pack_configure(padx = 5, pady = 5)

Erik Spence (SciNet HPC Consortium)

Programming with Tkinter

e .focus() moves the window
focus: type without clicking

e .winfo_children() returns a
list of all child widgets.

e .pack_configure() adjusts

the packing of Met

the Wldgets_ Q) ©mpute:S - calcul

9 September 2014 17 / 49

Widgets and assignments

Did you notice the strange lines # 1bs2kgs.py
of code in the previous from Tkinter import *
example? What's wrong here?

class 1bs2kgs(Frame):
def __init__(self, master = None):
Frame.__init__(self, master)
self.pack()

self.lbs = StringVar()

lbs_entry = Entry(master, width = 7,
textvariable = self.lbs)

lbs_entry.pack(side = LEFT)

Label(self, text = "lbs").pack(
side = LEFT)

Button(self, text = "Calculate",
command = self.calc).pack(
side = LEFT)

lbs_entry.focus()
for ¢ in master.winfo_children(): t
c.pack_configure(padx = 5, pady = 5) c

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 9 September 2014 18 / 49

Widgets and assignments

Did you notice the strange lines
of code in the previous
example? What's wrong here?

Because these widgets were not
assigned to a name, they should
be garbage collected as soon as
the pack() command is finished.

Erik Spence (SciNet HPC Consortium)

1bs2kgs.py
from Tkinter import *
class 1bs2kgs(Frame):

Programming with Tkinter

def __init__(self, master = None):
Frame.__init__(self, master)
self.pack()

self.lbs = StringVar()

lbs_entry = Entry(master, width = 7,
textvariable = self.lbs)

lbs_entry.pack(side = LEFT)

Label(self, text = "lbs").pack(
side = LEFT)

Button(self, text = "Calculate",
command = self.calc).pack(
side = LEFT)

lbs_entry.focus()
for ¢ in master.winfo_children(): t

c.pack_configure(padx = 5, pady = 5)

9 September 2014 18 / 49

Widgets and assignments

Did you notice the strange lines
of code in the previous
example? What's wrong here?

Because these widgets were not
assigned to a name, they should
be garbage collected as soon as
the pack() command is finished.

Tkinter emits Tk calls when
objects are constructed. Tkinter
internally cross-links widget
objects into a long-lived tree
used to build the display. As
such the widgets are retained,
even if not in the code itself.

1bs2kgs.py
from Tkinter import *
class 1bs2kgs(Frame):
def __init__(self, master = None):
Frame.__init__(self, master)
self.pack()

self.lbs = StringVar()

lbs_entry = Entry(master, width = 7,
textvariable = self.lbs)

lbs_entry.pack(side = LEFT)

Label(self, text = "lbs").pack(

side = LEFT)

Button(self, text = "Calculate",
command = self.calc).pack(
side = LEFT)

lbs_entry.focus()
for ¢ in master.winfo_children():

c.pack_configure(padx = 5, pady = 5) c

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 9 September 2014 18 / 49

Using images with Tkinter

There are several packages available for using images in Tkinter :
@ The Photolmage class can read GIF and PGM/PPM images, as well
as base64-encoded GIF files from strings.

@ The Python Imaging Library (PIL) contains classes that can handle
over 30 file formats. This package is no longer being maintained, and
has been succeeded by the Pillow package.

@ Important: you must keep a reference to your Photolmage object (of
either the Photolmage of PIL class). This is in direct contrast to
what was shown on the last slide.

@ If you do not keep a reference the object will be garbage collected
even if the widget is still operating!

Scilet

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 9 September 2014 19 / 49

Using images within widgets

To embed an image in a widget,
there are several steps:

o First open the image file in
question.

@ Then convert it to a Tkinter
-compatible image object.

@ Then embed it into a widget.

@ Again: you must keep a
reference to your Photolmage
object, otherwise the object
will be garbage collected.

Erik Spence (SciNet HPC Consortium)

MyImage.py
from Tkinter import Label, Frame
from PIL import Image, ImageTk

class MyImage (Frame):
def __init__(self, master = None):
Frame.__init__(self, master)
self.pack()

img = Image.open('"tatras.jpg")
pic = ImageTk.PhotoImage (img)

label = Label(self, image = pic)

Keep a reference!

(or don’t and see what happens)
label.image = pic

label.pack()

if __name__ == "_main__":

MyImage () .mainloop()

-w canaDA

Programming with Tkinter

9 September 2014 20 / 49

Pop quiz two!

Create an application which:

@ Consists of a single button.

@ On the button is an image. Start with "Happy.jpg”.

@ When the button is pressed the image changes to " Sad.jpg"”.

@ When the button is pressed again the image changes back to
"Happy.jpg".

@ And so on.

Hint: use the Button's ".configure(image = newimage)’ to change the
image.

Scilet

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 9 September 2014 21/ 49

Pop quiz two!

switchface.py

from Tkinter import Button, Frame
from PIL.Image import open

from PIL.ImageTk import PhotolImage

class switchface(Frame):

Frame.__init__(self, master)
self.pack()

The pic currently displayed.
self.current = 0

Open the images.
self.i0 = open("Happy.jpg")
self.il = open("Sad.jpg")

self.p0 = PhotoImage(self.iO)
self.pl = PhotoImage(self.il)

def __init__(self, master = None):

Make them tkinter-compatible.

switchface.py, continued

Create button, add image.
self.b = Button(master, image =

self.p0, command = self.switch)
self.b.pack()

Keep a reference.

self.b.image = self.pO

def switch(self):
if (self.current == 0):
self.b.configure(image = self.pl)
self.current = 1
else:
self.b.configure(image = self.p0)
self.current = 0

if __name__ == "_main_ ":

switchface() .mainloop()

(|
A\ V cANADA

Erik Spence (SciNet HPC Consortium)

Programming with Tkinter

9 September 2014 22 / 49

Arranging your widgets

There are three Geometry Managers in Tkinter for arranging widgets:
'grid’, 'pack’ and 'place’. We've already used the latter two. Do not try to
mix grid and pack in the same window (’container’).
@ pack
» Lays widgets out along the sides of a box.
» Works best when everything is in one row or one column.
» Can be tricky to make more-complicated layouts until you understand
the packing algorithm, which we won't cover here. It's best not to try.
o grid
> Lays out widgets in a grid (along row and column boundaries)
» Good for creating tables and other structured types of layouts.
@ place

» Can place a widget at an absolute position, a given x and y
» Can place a widget relatively, such as at the edge of another widget.

Scilet

’ compute ca\cu\

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 9 September 2014 23 /49

Grid

The grid Geometry Manager
puts widgets in a 2-D table.
The 'container’ widget is split
into rows and columns, and
each cell in the table can hold
a widget.

First

Secondl
[~ More?

The column defaults to 0 if not
specified. The row defaults to
the first unused row in the grid.

Erik Spence (SciNet HPC Consortium)

MyGrid.py
from Tkinter import Label, Entry,
Checkbutton, Frame

class MyGrid(Frame):
def __init__(self, master = None):
Frame.__init__(self, master)
self.pack()

Label(self, text =
Label(self, text =
Entry(self).grid(row = 0, column
Entry(self).grid(row = 1, column
Checkbutton(self, text =
columnspan = 2)

"First").grid()
"Second") .grid ()

"More?") .grid(

1)
1)

if _name__ == "_main_":
MyGrid () .mainloop() b
o_mmpum:caiu\
Programming with Tkinter 9 September 2014 24 / 49

Grid keywords

Grid takes a number of useful keywords:
@ column/row: the column or row into which the widget will be placed.

> If no column is specified, column = 0 is used.

» If no row is specified, the next unused row is used.

» If you put two widgets in the same cell, both will be visible, with
potentially odd results.

@ columnspan/rowspan, number of columns/rows to span, to the
right/down.

@ sticky, defines how to expand the widget if the cell is larger than the
widget.
» Can be any combination of S, N, E, W, NE, NW, SW, SE.
» Default is to be centred.

@ padx/pady, optional horizontal /vertical padding to place around the

widget, within the cell.
ch?\let

CANADA

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 9 September 2014 25 / 49

Pack, vertical example

The pack Geometry Manager
lays widgets on the side of a
box, in this example on the
top side. Pack can allow the
widget to change size if the
window is resized.

Using 'fill = X’ will cause the
widget to fill in the horizontal
direction if the window is
resized.

Erik Spence (SciNet HPC Consortium)

MyPackl.py
from Tkinter import Label, X, Frame, BOTH

class MyPackl(Frame) :
def __init__(self, master = None):
Frame.__init__(self, master)
self.pack(expand = True, fill = BOTH)

self.master.minsize (100, 70)

Label(self, text = "Red", bg = "red",
fg = "white").pack()

Label(self, text = "Green",
bg = "green").pack(fill = X)

Label(self, text = "Blue", bg = "blue",
fg = "white") .pack()

if _name__ == "_main__":
MyPack1 () .mainloop ()

\“ll‘\-t

Programming with Tkinter

(’ compute «calcul
CANADA

9 September 2014 26 / 49

Pack, horizontal example

Use the 'side’ argument to
indicate which side of the box
pack should pack against.

Red Blue

Resizing the window will not
cause the widgets to grow in
this case, the way that 'fill’
does, though they will stay
centered on the left side.

Erik Spence (SciNet HPC Consortium)

MyPack2.py
from Tkinter import Label, Frame,
BOTH, LEFT

class MyPack2(Frame):
def __init__(self, master = None):
Frame.__init__(self, master)
self.pack(expand = True, fill = BOTH)

self.master.minsize (130, 100)

Label(self, text = "Red", bg = "red",
fg = "white").pack(side = LEFT)
Label(self, text = "Green",
bg = "green").pack(side = LEFT)
Label(self, text = "Blue", bg = "blue",
fg = "white").pack(side = LEFT)

if __name__ == "_main__":

MyPack2 () .mainloop() t
D o -

Programming with Tkinter

9 September 2014 27 / 49

Pack keywords

Pack takes several useful keywords:

o side, which side to pack against. Options are LEFT, TOP (default),
RIGHT, BOTTOM. You can mix them within the same parent
widget, but you'll likely get unexpected results.

o fill, specifies whether the widget should occupy all the space provided
to it by the parent widget. Options are NONE (default), X
(horizontal fill), Y (vertical fill), or BOTH.

@ expand, specifies whether the widget should be expanded to fill extra
space inside the parent widget. Options are False (default) and True.

Scilet

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 9 September 2014 28 / 49

Place

The place Geometry
Manager is the simplest of
the three to use. It places
the widget either in absolute
or relative terms. However,
it is a pain to use for general
placement of widgets,
though can be useful in
special cases.

Erik Spence (SciNet HPC Consortium)

MyPlace.py

from Tkinter import Label, NW, E, CENTER,
Frame, BOTH

class MyPlace(Frame):

Frame.__init__(self, master, **options)
self.pack(expand = True, fill = BOTH)

self.config(width = 100, height = 100)
Label(self, text = "Red", bg = "red",
fg = "white") .pack(anchor = NW,
relx = 0.4, y = 10)
Label(self, text = "Green",
bg = "green").pack(anchor = E,
relx = 0.2, rely = 0.8)
Label(self, text = "Blue", bg = "blue",
fg = "white").pack(anchor = CENTER,
x = 80, rely = 0.4)

def __init__(self, master = None, **options):

if _name__ == "_main__": MyPlace().mainloop() F‘
- NaDA
Programming with Tkinter 9 September 2014 29 / 49

Place keywords

Place takes a number of useful keywords:
o relx/rely: between 0 and 1, the position of the widget, in the x/y
direction, relative to the parent window in which its embedded.
@ x/y: in pixels, the absolute position of the widget, in the window in
which the widget is embedded.
o If both relx and x are specified then the relative position is calculated
first, and the absolute position is added after.

@ anchor: the point on the widget that you are actually positioning.
Options are the eight points of the compass (E, S, NW, ...) and
CENTER.

Scifet
(’ comexits; Ei\cu\

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 9 September 2014 30 / 49

Centering your widget

The default location of # MyCentre.py
your Widget depends on from Tkinter import Frame
the Window Manager' class MyCentre(Frame) :

Genel’a“y it's in the def __init__(self, master = None):

upper-left corner.
Frame.__init__(self, master)

o Use self.pack()
winfo_screenwidth() # Width and height of the window.
to get the window w = 200; h = 50
width. Similarly for
. # Upper-left corner of the window.
height. x = (self.master.winfo_screenwidth() - w) / 2
@ The geometry y = (self.master.winfo_screenheight() - h) / 2

command is used to
set the location of
the window's
upper-left corner. if _name__ == "_main__": MyCentre().mainloop() 1
Y=

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 9 September 2014 31/ 49

Set the height and location.
master.geometry ("/dx)d+/d+%d" % (w, h, x, y))

Pop-up windows

Pop-up windows are fun. Every app # MyPopup.py

needs a pop-up window. The from Tkinter import Button, Frame
easiest package to use for pop-up
WindOWS iS tkMessageBOX. class MyPopup(Fra_me):

from tkMessageBox import showinfo

Like the main window, the pop-up def _init_(self, master = None):
windows have a default look which Fri’;e'**lz(l)t”(self’ master)

. se .pac
depends upon the system running P

the code. Button(self, text = "Pop-up!",
command = self.popup).pack()

def popup(self):
showinfo("My Pop-Up", "Hello")

if _name__ == "_main__":

MyPopup () .mainloop ()

B al” APy
L STINTL

(’ compute «calcul
CANADA

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 9 September 2014 32 /49

Many pre-made pop-up windows are
available

If you're going to use pop-up windows, the defaults that come with
tkMessageBox should be sufficient:

@ single-button pop-ups:
» “Ok”: showinfo, showwarning, showerror

@ double-button pop-ups:

> “Yes-No": askquestion, returns the strings “yes", “no”
> “Yes-No": askyesno, returns True/False

> “Ok-Cancel": askokcancel, returns True/False

> “Retry-Cancel”: askretrycancel, returns True/False

These functions all have the same syntax:
tkMessageBox.function(title, message [, options]).

ch?\let

CANADA

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 9 September 2014 33 /49

Toplevel windows

Sometimes the pre-made
pop-up windows don't meet
your needs, since these are
canned pop-ups. For these cases
one uses Toplevel windows.

Toplevel windows behave like
main windows, but are actually
children of whichever window
spawned them.

Erik Spence (SciNet HPC Consortium)

MyToplevel.py

from Tkinter import Button, Frame,
Toplevel

class MyToplevel (Frame) :

def __init__(self, master = None):
Frame.__init__(self, master)
self.pack()

Button(self, text = "A new window!",
command = self.new_window) .pack()

A new functional window.
def new_window(self):
top = Toplevel(master = self)
Button(top, text = "Quit",
command = top.quit).pack()

if __name__ == "_main__":
MyToplevel() .mainloop() ¥

Programming with Tkinter

QP
9 September 2014 34 /49

File manager windows

MyFile.py, continued

MyFile.py
from Tkinter import Button, Frame

from tkFileDialog import
askopenfilename

class MyFile(Frame) :
def __init__(self, master
Frame.__init__(self, master)

= None):

self.pack()
= "Get a file!",

Button(self, text
command = self.getfile).pack()

def getfile(self):
= askopenfilename (

filename =
parent = self,
title = "Please select a file")

if (len(filename) > 0):

if _name__ == "_main__":

MyFile() .mainloop()

Pre-made file manager dialog
boxes are available through the

tkFileDialog module.

print "You chose %s" % filename

Erik Spence (SciNet HPC Consortium)

9 September 2014

Programming with Tkinter

Scilet

‘) compute «calcu
CANADA

35/ 49

Quitting cleanly

We want our program to close
cleanly. But we must be careful
how we do so:

o All Tkinter widgets come with
the 'quit’ function built in.
This will close the
entire Tkinter program, which
may not be what you want.

@ Alternatively, you can use the
"destroy’ function, which will
only close the particular widget
which you are referencing.

badquit.py
from Tkinter import Tk, Button

behaviour 1
t1 = Tk()

tl.b = Button(tl, text = "push me",

command = lambda:tl.b.destroy())
t1.b.pack()
t1.mainloop()

behaviour 2
t2 = Tk()

t2.b = Button(t2, text = "me too!",

command = lambda:t2.b.quit())
t2.b.pack()
t2.mainloop()

Scilet

) compute ca\cu\

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 9 September 2014

36 / 49

Quitting cleanly

badquit.py

The lambda command needs to be from Tkinter import Tk, Button
used in this case because the
callback command which is being # behaviour 1

t1 = Tk()

referenced is self-referential. £1.D = Button(tl, text = *push me",

command = lambda:tl.b.destroy())
t1.b.pack()
t1.mainloop()

behaviour 2

t2 = Tk()

t2.b = Button(t2, text = "me too!",
command = lambda:t2.b.quit())

t2.b.pack()

t2.mainloop ()

Scilet

) compute ca\cu\

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 9 September 2014 36 / 49

A 'Quit’ button class

Let's create a class that we can use
in future widgets.

MyQuitter.py

from Tkinter import Button, LEFT, YES,
BOTH, Frame

from tkMessageBox import askokcancel

Extends the Frame class.
class MyQuitter(Frame):
def __init__(self, master = None):

Frame.__init__(self, master)
self.pack()

b = Button(self, text = "Quit",
command = self.myquit)

b.pack(side = LEFT, expand = YES,
£fill = BOTH)

MyQuitter.py, continued

def myquit(self):
if askokcancel ("Quit",
"Do you really wish to quit?"):
Frame.quit(self)

Erik Spence (SciNet HPC Consortium)

Programming with Tkinter

@ The askokcancel function
returns True if 'OK’ is pressed.

@ The 'LEFT" argument indicates
the position of the button.

@ The second 'pack’ is invoked
after the Button is created,
and so can go in
the same line.
Sciflet
)Compute ca\cu\

9 September 2014 37 /49

Capturing destroy events

Tkinter lets you manipulate
"protocol handlers’

@ These handle the interaction
between the application and
the window manager

@ The most-used way to do this
is re-assigning the
WM _DELETE_WINDOW
protocol (invoked by pressing
the 'X" in the upper-right

Corner)' "WM_DELETE_WINDOW", q.myquit)
if _name__ == "_main__":
MyCapture () .mainloop()
[=]
DCINet
(’ compute «calcul
Erik Spence (SciNet HPC Consortium) Programming with Tkinter 9 September 2014 38 /49

MyCapture.py
from Tkinter import Frame
from MyQuitter import MyQuitter

class MyCapture(Frame):

def __init__(self, master = None):

Frame.__init__(self, master)
self.pack()

q = MyQuitter(self)
q.pack()

self.master.protocol(

Notes on code re-usability

Modular programming is always to be encouraged, and GUI programming
is no exception.

@ Throughout this class we have crafted our examples such that they
are classes that can be embedded in other widgets.

@ Custom GUI classes can be written as extensions of existing classes,
the most common choice being Frame.

@ Using widgets that are extensions of existing classes allows uniform
and consistent modification of the look-and-feel of your widgets.

Scilet

’ compute ca\cu\

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 9 September 2014 39 / 49

Code re-usability example

Because we set up our previous
code examples as classes, we can
just drop them into other widgets.

:llbs Calculate

Pop-up!
Red
AT

B

e

Erik Spence (SciNet HPC Consortium)

ABunchOfWidgets.py

from Tkinter import Frame, RAISED
from 1lbs2kgs import lbs2kgs

from MyPopup import MyPopup

from MyPlace import MyPlace

class ABunchOfWidgets(Frame) :

def __init__(self, master = None):

Frame.__init__(self, master)
self.pack()

1bs2kgs (self) .pack()

MyPopup (self) .pack()

MyPlace(self, borderwidth = 2,
relief = RAISED).pack()

if _name__ == "_main__":
ABunch0OfWidgets () .mainloop ()

t 0

Programming with Tkinter

A
CANADA

9 September 2014

40 / 49

Drop-down menus

MyMenus.py
from Tkinter import Menu, Frame
class MyMenus (Frame) :

def __init__(self, master = None):
Frame.__init__(self, master)
self .pack()
self.master.minsize(100,100)

Create a menu instance,

self.mbar = Menu(self)

Attach to the root window.

self .master.config(menu =
self.mbar)

Create a new menu instance...

self.filemenu = Menu(self.mbar,
tearoff = 0)

the menu does not need packing.

MyMenus.py, continued

...and stick into the menubar.
self.mbar.add_cascade(label =
"File", menu = self.filemenu)

Add entries to filemenu.

self.filemenu.add_command(label =
"New", command = self.new_call)

self.filemenu.add _command(label =
"Open", command = self.o_call)

The callback functions.
def new_call(self): print "New_call"

def o_call(self): print "o_call"

if _name__ == "_main__":
MyMenus () .mainloop ()

_ .t

Erik Spence (SciNet HPC Consortium)

Programming with Tkinter

‘, compute +catcul
CANADA

9 September 2014 41/ 49

Bindings

Any user action (keyboard or
mouse), is called an 'event’.
Events can be captured by the
application, and specific actions
taken. This is accomplished using
the 'bind’ function.

Event actions can be bound to any
widget, not just the main window.

MyBindings.py
from Tkinter import Frame
from tkMessageBox import showerror,

askyesno

class MyBindings(Frame) :
def __init__(self, master = None):
Frame.__init__(self, master)
self.pack()

MyBindings.py, continued

self.master.minsize (100, 100)

self.master.bind("a",
self.a_callback)

self.master.bind("<Button-1>",
self.b_callback)

Called when the ’a’ is pressed.
def a_callback(self, event):
if not askyesno("A query",
"Did you press the ’a’ button?"):
showerror("I am aghast!", "Liar!")
def b_callback(self, event):
print "clicked", event.x, event.y

if _name__ == "_main__":
MyBindings () .mainloop()

L ANEQT

Erik Spence (SciNet HPC Consortium)

Programming with Tkinter

e —1 B AR
(’ compute «calcul
CANADA

9 September 2014 42 / 49

Event formats

A partial list of possible bindings:

e "(Button-1)": a mouse button is pressed over the widget. Button 2 is
the middle, 3 is the right. " (Button-1)" and "(1)" are synonyms.

"(Enter)” /" (Leave)”: the mouse pointer entered/left the widget.
Return)”: the user pressed the Enter key.

”

"
"(key)": the user pressed the any key.
(Control-p)”: the user pressed Ctrl-p.

The event object has a number of standard attributes:
X, Y: current mouse position, in pixels.
char: the character code, as a string.

type: the event type.

and others... Sﬁ?\let

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 9 September 2014 43 / 49

Bindings pop quiz!

Create an application which
@ Has a label at the top of the frame which says " Are you an idiot?"
@ Has a button below the label which contains the text "No".

@ Moves to a random location on the screen every time you try to press
the "No" button.

@ Don't bother making this one a class, since that doesn't really make
sense.

Hints:
@ Use the "Enter” binding to bind the mouse pointer.

@ When the mouse enters the "No" button, move the window (use the
random.random() function to get a random number).

@ master.winfo_screenwidth() and height might be useful. Sﬁ?\let

CANADA

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 9 September 2014 44 / 49

Bindings pop quiz!

idiot.py
from Tkinter import Tk, Label, Button
from random import random

def moveme (event) :
x = xsize * random()
y = ysize * random()

Move the window.
master.geometry("%dxld+/d+%d" %
(w, h, x, y))

master = Tk()

xsize = master.winfo_screenwidth()
ysize = master.winfo_screenheight ()
w = 200

h =50

idiot.py, continued

master.minsize(w, h)
master.title("Let me check")

Label (master,

text = "Are you an idiot?").pack()
b = Button(master, text = "No!")
b.pack()
b.bind("<Enter>", moveme)

master.mainloop()

Sciflet
‘) com;:zxitNeA- gak\cu[

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 9 September 2014 45 / 49

Threads and GUIs

In general, we recommend against using Python's threading capabilities:
@ Python's Global Interpreter Lock prevents more than one thread from
running at a given time.

@ Consequently there is no increase in computational performance.

However, these concerns do not apply when dealing with GUIs, since
computational performance is not usually at issue. There are some details
worth noting:

@ The main event loop runs in a single thread.

o If a callback function is invoked, it runs in the same thread.

@ If the function takes a long time to complete, you will notice:

> the windows will not update (resize, redraw, minimize)
» the windows will not respond to new events.

Threads can be useful to fix this problem. SCHlet

’ compute ca\cu\

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 9 September 2014 46 / 49

lllustrating the problem

MySummer.py
from Tkinter import Tk, Button, Label

def button_press():
total = 0
for i in xrange(100000000) :
total += i
label.config(text = str(total))

master = Tk()

Button(master, text = "Add it up",
command = button_press).pack()

label = Label(master)

label.pack()

master.mainloop()

Erik Spence (SciNet HPC Consortium)

Programming with Tkinter

Here we illustrate the problem
that GUIs can have. Perform the
following steps:
@ Run the GUI.
@ Press the button.
@ While the calculation is
being performed, resize the
window.

What happens?

Scilet

’ compute ca\cu\

9 September 2014 47 / 49

Fixing the problem, using threads

MySummer.threaded.py

from Tkinter import Tk, Button,
Label

import threading

def button_press():

def callback():
total = 0
for i in xrange(100000000) :
total += i
label.config(text = str(total))

Launch the thread.
threading.Thread(
target = callback).start()

Create a function for the thread.

Erik Spence (SciNet HPC Consortium)

Programming with Tkinter

Because the control of the
calculation is in a separate thread,
control returns to the event loop.

MySummer.threaded.py, continued

master = Tk()

Button(master, text = "Add it up",
command = button_press).pack()

label = Label(master)

label.pack()

master.mainloop()

If you get an 'infinite loop’ error
then your Tcl was not compiled
with threading support. If so, try

using the 'mtTkinter’ Sﬁi‘?\l
et

paCkage.) compute ca\cu\

9 September 2014 48 / 49

Enough to get started

Using the material here, you should have enough to get started. More
information can be found on the web. A few good websites are:

@ http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html
o http://www.effbot.org/tkinterbook /tkinter-index.htm
@ http://cs.mcgill.ca/ hv/classes/MS/TkinterPres

@ http://www.python-course.eu/python_tkinter.php

Scilet

Erik Spence (SciNet HPC Consortium) Programming with Tkinter 9 September 2014 49 / 49

http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html
http://www.effbot.org/tkinterbook/tkinter-index.htm
http://cs.mcgill.ca/~hv/classes/MS/TkinterPres
http://www.python-course.eu/python_tkinter.php

	Tkinter
	Our first Tkinter program
	Our second Tkinter program

	Tkinter features
	Tkinter widgets
	Tkinter control variables
	Using images

	Geometry managers
	Grid
	Pack
	Place

	Pop-up windows
	Pre-made Pop-ups
	Toplevel windows
	File manager windows

	Other Tkinter goodies
	Quitting cleanly
	Protocol handlers
	Drop-down menus
	Bindings
	Threads

