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HPC Systems

Architectures

I Clusters, or, distributed memory machines
I A bunch of servers linked together by a network

(“interconnect”).
I GigE, Infiniband, Cray Gemini/Aries, IBM BGQ Torus

I Symmetric Multiprocessor (SMP) machines, or, shared
memory machines

I These can all see the same memory, typically a limited number
of cores.

I IBM Pseries, Cray SMT, SGI Altix/UV

I Vector machines.
I No longer dominant in HPC anymore.
I Cray, NEC

I Accelerator (GPU, Cell, MIC, FPGA)
I Heterogeneous use of standard CPU’s with a specialized

accelerator.
I NVIDIA, AMD, Intel, Xilinx, Altera



Distributed Memory: Clusters

Simplest type of parallel com-
puter to build

I Take existing powerful
standalone computers

I And network them

(source: http://flickr.com/photos/eurleif)



Distributed Memory: Clusters
Each node is
independent!
Parallel code consists of
programs running on
separate computers,
communicating with
each other.
Could be entirely
different programs.

Each node has own
memory!
Whenever it needs data
from another region,
requests it from that
CPU.

Usual model: “message passing”
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Clusters+Message Passing
Hardware:
Easy to build
(Harder to build well)
Can build larger and
larger clusters relatively
easily

Software:
Every communication
has to be hand-coded:
hard to program
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HPC Programming Models

Languages

I serial
I C, C++, Fortran

I threaded (shared memory)
I OpenMP, pthreads

I message passing (distributed memory)
I MPI, PGAS (UPC, Coarray Fortran)

I accelerator (GPU, Cell, MIC, FPGA)
I CUDA, OpenCL, OpenACC



Task (function, control) Parallelism

Work to be done is decomposed across processors

I e.g. divide and conquer

I each processor responsible for some part of the algorithm

I communication mechanism is significant

I must be possible for different processors to be performing
different tasks



Intro to Message Passing Interface (MPI)

Distributed Memory Computing

MPI: Basics

MPI: Send & Receive

MPI: Collectives

Example: 1D Diffusion

MPI: Performance/Scaling

MPI: Non-Blocking Communications

MPI: More Collectives

MPI: MPI-IO

Example: CFD Code



Message Passing Interface (MPI)

What is it?

I An open standard library interface for message passing,
ratified by the MPI Forum

I Version: 1.0 (1994), 1.1 (1995), 1.2 (1997), 1.3 (2008)

I Version: 2.0 (1997), 2.1 (2008), 2.2 (2009)

I Version: 3.0 (2012)

MPI Implementations

I OpenMPI (www.open-mpi.org)
I OpenMPI 1.8.x
I SciNet GPC: module load gcc openmpi
I SciNet GPC: module load intel openmpi

I MPICH2 (www.mpich.org)
I MPICH 3.x, MVAPICH2 2.x , IntelMPI 5.x
I SciNet GPC: module load intel intelmpi



• Not built in to compiler

• Function calls that can be 
made from any compiler, 
many languages

• Just link to it

• Wrappers: mpicc, mpif77

MPI is a Library for 
 Message-Passing

Fortran

C



MPI is a Library for 
 Message-Passing

• Communication/coordination 
between tasks done by 
sending and receiving 
messages.

• Each message involves a 
function call from each of the 
programs.

CPU1

CPU2

CPU3

CPU0



MPI is a Library for 
 Message-Passing

• Three basic sets of 
functionality:

• Pairwise communications via 
messages

• Collective operations via 
messages

• Efficient routines for getting 
data from memory into 
messages and vice versa

CPU1

CPU2

CPU3

CPU0



Messages
• Messages have a sender and 

a receiver

• When you are sending a 
message, don’t need to specify 
sender (it’s the current 
processor),

• A sent message has to be 
actively received by the 
receiving process

CPU1 CPU3

count of MPI_SOMETYPE

tag



Messages
• MPI messages are a string of 

length count all of some 
fixed MPI type 

• MPI types exist for 
characters, integers, floating 
point numbers, etc.

• An arbitrary integer tag is 
also included - helps keep 
things straight if lots of 
messages are sent.

CPU1 CPU3

count of MPI_SOMETYPE

tag



Size of MPI 
Library

• Many, many functions (>200)

• Not nearly so many concepts

• We’ll get started with just 
10-12, use more as needed.

MPI_Init()
MPI_Comm_size()
MPI_Comm_rank()
MPI_Ssend()
MPI_Recv()
MPI_Finalize()



SciNet Access

Access to SciNet

I Log into SciNet and get a copy of the source.

I Guest SciNet accounts available from instructor.

$ssh -Y USER@login.scinet.utoronto.ca

$ssh -Y gpc0[1-8]

$cd $SCRATCH
$cp -r /scinet/course/ssc2016/mpi .

$source mpi/setup

Submit a job

$qsub -l nodes=1:ppn=8,walltime=8:00:00 -I -X -q

teach



Hello World
• The obligatory starting point

• cd mpi/mpi-intro

• Type it in, compile and run it 
together

Fortran

edit hello-world.c or .f90
$ mpif90 hello-world.f90 
         -o hello-world
or
$ mpicc hello-world.c 
         -o hello-world
$ mpirun -np 1 hello-world
$ mpirun -np 2 hello-world
$ mpirun -np 8 hello-world

C



What mpicc/
mpif77 do

• Just wrappers for the system 
C, Fortran compilers that have 
the various -I, -L clauses in 
there automaticaly

• -v option (sharcnet) or 
--showme (OpenMPI) shows 
which options are being used

$ mpicc --showme hello-world.c 
-o hello-world

gcc -I/usr/local/include
 -pthread hello-world.c -o 
hello-world -L/usr/local/lib 
-lmpi -lopen-rte -lopen-pal
-ldl -Wl,--export-dynamic -lnsl 
-lutil -lm -ldl



What mpirun 
does

• Launches n processes, assigns 
each an MPI rank and starts 
the program

• For multinode run, has a list of 
nodes, ssh’s to each node and 
launches the program

ssh node1

ssh node2

ssh node3

hello-world

hello-world

hello-world

hello-world



Number of 
Processes

• Number of processes to use is 
almost always equal to the 
number of processors

• But not necessarily.

• On your nodes, what happens 
when you run this?

$ mpirun -np 24 hello-world



mpirun runs 
any program

• mpirun will start that process-
launching procedure for any 
progam

• Sets variables somehow that 
mpi programs recognize so 
that they know which process 
they are

$ hostname
$ mpirun -np 4 hostname
$ ls
$ mpirun -np 4 ls



Example: “Hello World”

$mpirun -np 4 ./hello-world

Hello from task 2 of 4 world

Hello from task 1 of 4 world

Hello from task 0 of 4 world

Hello from task 3 of 4 world

$mpirun -tag-output -np 4 ./hello-world

[1,3]<stdout>:Hello from task 3 of 4 world

[1,2]<stdout>:Hello from task 2 of 4 world

[1,0]<stdout>:Hello from task 0 of 4 world

[1,1]<stdout>:Hello from task 1 of 4 world
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$mpirun -tag-output -np 4 ./hello-world

[1,3]<stdout>:Hello from task 3 of 4 world
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make
• Make builds an executable from a 

list of source code files and rules

• Many files to do, of which order 
doesn’t matter for most

• Parallelism!

• make -j N  - launches N 
processes to do it

• make -j 2  often shows speed 
increase even on single processor 
systems

$ make
$ make -j 2
$ make -j 



Overlapping 
Computation with I/O

P=1 Get file1.c Write file1.o file2.c file2.oCompile Compile

P=2
Get file1.c Write file1.oCompile

file2.c file2.oCompile



What the code 
does

• (FORTRAN version; C is similar)



use mpi : imports declarations for MPI 
function calls

call MPI_INIT(ierr): 
initialization for MPI library.  
Must come first. 
ierr: Returns any error code.

call MPI_FINALIZE(ierr): 
close up MPI stuff.  
Must come last. 
ierr: Returns any error code.



call MPI_COMM_RANK,
call MPI_COMM_SIZE: 

requires a little more exposition.



MPI Basics

Basic MPI Components

I #include <mpi.h> : MPI library details

I MPI Init(&argc, &argv); : MPI Intialization, must come
first

I MPI Finalize() : Finializes MPI, must come last

I ierr : Returns error code

Communicator Components

I MPI Comm rank(MPI COMM WORLD, &rank)

I MPI Comm size(MPI COMM WORLD, &size)



MPI Basics

Basic MPI Components

I #include <mpi.h> : MPI library details

I MPI Init(&argc, &argv); : MPI Intialization, must come
first

I MPI Finalize() : Finializes MPI, must come last

I ierr : Returns error code

Communicator Components
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Communicators

• MPI groups processes into 
communicators.

• Each communicator has some 
size -- number of tasks.

• Each task has a rank 0..size-1

• Every task in your program 
belongs to 
MPI_COMM_WORLD

0

1

2

3
MPI_COMM_WORLD: 

size=4, ranks=0..3



Communicators
• Can create our own 

communicators over the same 
tasks

• May break the tasks up into 
subgroups

• May just re-order them for 
some reason

0

1

2

3

MPI_COMM_WORLD: 
size=4, ranks=0..3

2

0

1

new_comm
size=3, ranks=0..2



MPI Basics

Communicator Components

I MPI COMM WORLD :
Global Communicator

I MPI Comm rank(MPI COMM WORLD, &rank) :
Get current tasks rank

I MPI Comm size(MPI COMM WORLD, &size) :
Get communicator size



call MPI_COMM_RANK,
call MPI_COMM_SIZE: 

get the size of communicator, 
the current tasks’s rank within 
communicator.

put answers in rank and 
size



Rank and Size much 
more important in 
MPI than OpenMP

• In OpenMP, compiler assigns 
jobs to each thread; don’t 
need to know which one you 
are.

• MPI: processes determine 
amongst themselves which 
piece of puzzle to work on, 
then communicate with 
appropriate others.

rank = 1

rank = 2

rank = 3

rank = 0



C Fortran

• #include <mpi.h> vs use mpi

• C - functions return ierr;

• Fortran - pass ierr

• MPI_Init
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Our first real 
MPI program 
- but no Ms 

are P’ed!
• Let’s fix this

• mpicc -o firstmessage 
firstmessage.c

• mpirun -np 2 ./firstmessage

• Note: C - MPI_CHAR



Fortran
version

• Let’s fix this

• mpif90 -o 
firstmessage 
firstmessage.f90

• mpirun -np 2 ./
firstmessage

• FORTRAN - 
MPI_CHARACTER



MPI_Status status;

ierr = MPI_Ssend(sendptr, count, MPI_TYPE, destination,
                 tag, Communicator);

ierr = MPI_Recv(rcvptr, count, MPI_TYPE, source, tag,
                 Communicator, status);

C - Send and Receive



integer status(MPI_STATUS_SIZE)

call MPI_SSEND(sendarr, count, MPI_TYPE, destination,
                 tag, Communicator, ierr)

call MPI_RECV(rcvarr, count, MPI_TYPE, source, tag,
                 Communicator, status, ierr)

Fortran - Send and Receive



Special Source/Dest: 
MPI_PROC_NULL

MPI_PROC_NULL basically ignores the relevant 
operation; can lead to cleaner code.

Special Source:
 MPI_ANY_SOURCE

MPI_ANY_SOURCE is a wildcard; matches any source 
when receiving.



More 
complicated 

example:
• Let’s look at 

secondmessage.f90, 
secondmessage.c



More 
complicated 

example:
• Let’s look at 

secondmessage.f90, 
secondmessage.c



Compile and 
run

• mpi{cc,f90} -o secondmessage 
secondmessage.{c,f90}

• mpirun -np 4 ./secondmessage

$ mpirun -np 4 ./secondmessage
3: Sent 9.000000 and got 4.000000
0: Sent 0.000000 and got -999.000000
1: Sent 1.000000 and got 0.000000
2: Sent 4.000000 and got 1.000000



0 1 2

“Hello” “Hello”



0 1 2

“Hello” “Hello”

“Hello”Implement 
periodic boundary 

conditions
• cp secondmessage.{c,f90} 

thirdmessage.{c,f90}

• edit so it `wraps around’

• mpi{cc,f90} thirdmessage.
{c,f90} -o thirdmessage

• mpirun -np 3 thirdmessage



0 1 2

Send Send
0 1 2

Send RecvSend

0 1 2

RecvSend

0 1 2



0 1 2

Send Send

Send

0,1,2



0 1 2

Send Send

Send

Deadlock
• A classic parallel bug

• Occurs when a cycle of tasks 
are for the others to finish.

• Whenever you see a closed 
cycle, you likely have (or risk) 
deadlock.



Big MPI 
Lesson #1

All sends and receives must be paired, at 
time of sending



Big MPI 
Lesson #1

All sends and receives must be paired, at 
time of sending



Different 
versions of 

SEND
• SSEND: safe send; doesn’t 

return until receive has 
started.  Blocking, no buffering.

• SEND: Undefined.  Blocking, 
probably buffering

• ISEND : Unblocking, no 
buffering

• IBSEND: Unblocking, buffering

Send

System buffer

Buffering

(Non) Blocking



Buffering is 
dangerous!

• Worst kind of danger: will 
usually work.

• Think voice mail; message 
sent, reader reads when ready

• But voice mail boxes do fill

• Message fails.

• Program fails/hangs 
mysteriously.

• (Can allocate your own 
buffers)

Send

System buffer

Buffering



Without using new MPI 
routines, how can we fix 

this?



• First: evens send, odds receive

• Then: odds send, evens receive

• Will this work with an odd # of processes?

• How about 2?   1?

0 1

Send Recv

2

Send

3

Recv

0 1

SendRecv

2

Send

3

Recv



Evens send first

Then odds

fourthmessage.f90



Evens send first

Then odds

fourthmessage.c



• A blocking send and 
receive built in together

• Lets them happen 
simultaneously

• Can automatically pair 
the sends/recvs!

• dest, source does not 
have to be same; nor do 
types or size. fifthmessage.c

Something 
new: Sendrecv



• A blocking send and 
receive built in together

• Lets them happen 
simultaneously

• Can automatically pair 
the sends/recvs!

• dest, source does not 
have to be same; nor do 
types or size. fifthmessage.f90

Something 
new: Sendrecv



MPI_Status status;

ierr = MPI_Sendrecv(sendptr, count, MPI_TYPE, destination,tag,
                    recvptr, count, MPI_TYPE, source, tag,
                    Communicator, &status);

integer status(MPI_STATUS_SIZE)

call MPI_SENDRECV(sendptr, count, MPI_TYPE, destination,tag,
                    recvptr, count, MPI_TYPE, source, tag,
                    Communicator, status, ierr)

C syntax

FORTRAN syntax

Sendrecv = Send + Recv

Send Args

Recv Args

Why are there two different tags/types/counts?
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Min, Mean, Max 
of numbers

• Lets try some code that calculates 
the min/mean/max of a bunch of 
random numbers -1..1.   Should go 
to -1,0,+1 for large N.

• Each gets their partial results and 
sends it to some node, say node 0 
(why node 0?)

• ~/mpi/mpi-intro/minmeanmax.
{c,f90}

• How to MPI it?

(min,mean,max)2

(min,mean,max)1

(min,mean,max)0







(min,mean,max)2

(min,mean,max)1

(min,mean,max)0

minmeanmax-mpi.f90

Q: are these sends/recvd
adequately paired?



(min,mean,max)2

(min,mean,max)1

(min,mean,max)0

minmeanmax-mpi.c

Q: are these sends/recvd
adequately paired?



Inefficient!

• Requires (P-1) messages, 
2(P-1) if everyone then needs 
to get the answer.

sum1
sum2
sum3

sum1
sum2
sum3

sum1
sum2
sum3

CPU1 CPU2 CPU3

total total total

+ + +



Better 
Summing

• Pairs of processors; send 
partial sums 

• Max messages received log2(P)

• Can repeat to send total back

sum1

CPU1 CPU2 CPU3

sum2

sum1+
sum2

sum3

CPU4

sum4

sum3+
sum4

sum1+
sum2+
sum3+
sum4=
total

Reduction; works for
a variety of operators 

(+,*,min,max...)

Tcomm = 2 log2(P )Ccomm



minmeanmax-allreduce.f

MPI_Reduce and
MPI_Allreduce

Performs a reduction
and sends answer to 

one PE (Reduce) 
or all PEs (Allreduce)



MPI Collectives

ierr = MPI Allreduce(sendptr, rcvptr, count,

MPI TYPE, MPI OP, Communicator);

I sendptr/rcvptr: pointer to buffers

I count: number of elements in ptr

I MPI TYPE: one of MPI DOUBLE, MPI FLOAT, MPI INT,
MPI CHAR, etc.

I MPI OP: one of MPI SUM, MPI PROD, MPI MIN, MPI MAX,
etc.

I Communicator: MPI COMM WORLD or user created



Collective 
Operations

• As opposed to the pairwise 
messages we’ve seen

• All processes in the 
communicator must 
participate

• Cannot proceed until all have 
participated

• Don’t necessarily know what 
goes on ‘under the hood’

CPU 1

CPU 2

CPU 3

CPU 0
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Scientific MPI Example

MPI “Real” problems

I Finite Difference Stencils

I Time-Marching Method

I Domain Decomposition

I Load Balancing

I Global Norms

I BC’s



1d diffusion 
equation

cd mpi/diffusion .
make diffusionf or make diffusionc
./diffusionf or ./diffusionc



Discretizing 
Derivatives

• Done by finite differencing the 
discretized values

• Implicitly or explicitly involves 
interpolating data and taking 
derivative of the interpolant

• More accuracy - larger 
‘stencils’

i-2 i-1 i i+1 i+2

+1 -2 +1

d2Q

dx2

����
i

⇥ Qi+1 � 2Qi + Qi�1

�x2



Diffusion 
Equation

• Simple 1d PDE

• Each timestep, new data for 
T[i] requires old data for 
T[i+1], T[i],T[i-1] 

�T

�t
= D

�2T

�x2

�T
(n)
i

�t
⇥ T

(n)
i + T

(n�1)
i

�t

�T
(n)
i

�x
⇥ T

(n)
i+1 � 2T

(n)
i + T

(n)
i�1

�x2

T
(n+1)
i ⇥ T

(n)
i +

D�t

�x2

�
T

(n)
i+1 � 2T

(n)
i + T

(n)
i�1

⇥



Guardcells
• How to deal with boundaries?

• Because stencil juts out, need 
information on cells beyond 
those you are updating

• Pad domain with ‘guard cells’ 
so that stencil works even for 
the first point in domain

• Fill guard cells with values 
such that the required 
boundary conditions are met

Global Domain

0 1 2 3 4 5 6 7

ng = 1
loop from ng, N - 2 ng



Domain 
Decomposition http://www.uea.ac.uk/cmp/research/cmpbio/

Protein+Dynamics,+Structure+and+Function

http://sivo.gsfc.nasa.gov
/cubedsphere_comp.html

http://adg.stanford.edu/aa241
/design/compaero.html

http://www.cita.utoronto.ca/~dubinski
/treecode/node8.html

• A very common approach to 
parallelizing on distributed 
memory computers

• Maintain Locality; need local 
data mostly, this means only 
surface data needs to be sent 
between processes.



Implement a 
diffusion 

equation in MPI
• Need one neighboring number 

per neighbor per timestep

dT

dt
= D

d2T

dx2

Tn+1
i = Tn

i +
D�t

�x2

�
Tn

i+1 � 2Tn
i + Tn

i�1

⇥



Guardcells
• Works for parallel 

decomposition!

• Job 1 needs info on Job 2s 0th 
zone, Job 2 needs info on Job 
1s last zone

• Pad array with ‘guardcells’ and 
fill them with the info from the 
appropriate node by message 
passing or shared memory

• Hydro code: need guardcells 2 
deep

n-4 n-3 n-2 n-1 n

-1 0 1 2 3

Global Domain

Job 1

Job 2



• Do computation

• guardcell exchange: each cell has to do 2 sendrecvs

• its rightmost cell with neighbors leftmost

• its leftmost cell with neighbors rightmost

• Everyone do right-filling first, then left-filling (say)

• For simplicity, start with periodic BCs

• then (re-)implement fixed-temperature BCs; 
temperature in first, last zones are fixed

n-4 n-3 n-2 n-1 n

-1 0 1 2 3

Job 1

Job 2



Hands-on:
MPI diffusion

• cp diffusionf.f90 diffusionf-
mpi.f90 or

• cp diffusionc.c diffusionc-mpi.c 
or

• Make an MPI-ed version of 
diffusion equation

• (Build: make diffusionf-mpi 
or make diffusionc-mpi)

• Test on 1..8 procs

• add standard MPI calls: init, finalize, 
comm_size, comm_rank

• Figure out how many points PE is 
responsible for (~totpoints/size)

• Figure out neighbors

• Start at 1, but end at totpoints/size

• At end of step, exchange guardcells; 
use sendrecv

• Get total error



C syntax
MPI_Status status;

ierr = MPI_Init(&argc, &argv);
ierr = MPI_Comm_{size,rank}(Communicator, &{size,rank});
ierr = MPI_Send(sendptr, count, MPI_TYPE, destination,
                 tag, Communicator);
ierr = MPI_Recv(rcvptr, count, MPI_TYPE, source, tag,
                 Communicator, &status);
ierr = MPI_Sendrecv(sendptr, count, MPI_TYPE, destination,tag,
                    recvptr, count, MPI_TYPE, source, tag,
                    Communicator, &status);
ierr = MPI_Allreduce(&mydata, &globaldata, count, MPI_TYPE,
                     MPI_OP, Communicator);
                     
Communicator -> MPI_COMM_WORLD
MPI_Type -> MPI_FLOAT, MPI_DOUBLE, MPI_INT, MPI_CHAR...
MPI_OP -> MPI_SUM, MPI_MIN, MPI_MAX,...



FORTRAN syntax

integer status(MPI_STATUS_SIZE)

call MPI_INIT(ierr)
call MPI_COMM_{SIZE,RANK}(Communicator, {size,rank},ierr)
call MPI_SSEND(sendarr, count, MPI_TYPE, destination,
                 tag, Communicator)
call MPI_RECV(rcvarr, count, MPI_TYPE, destination,tag,
                 Communicator, status, ierr)
call MPI_SENDRECV(sendptr, count, MPI_TYPE, destination,tag,
                    recvptr, count, MPI_TYPE, source, tag,
                    Communicator, status, ierr)
call MPI_ALLREDUCE(&mydata, &globaldata, count, MPI_TYPE,
                     MPI_OP, Communicator, ierr)
                     

Communicator -> MPI_COMM_WORLD
MPI_Type -> MPI_REAL, MPI_DOUBLE_PRECISION, 
           MPI_INTEGER, MPI_CHARACTER
MPI_OP -> MPI_SUM, MPI_MIN, MPI_MAX,...
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Scaling — Throughput

I How a problem’s throughput scales as processor number
increases (“strong scaling”).

I In this case, linear scaling:

H ∝ P

I This is Perfect scaling.
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Scaling – Time

I How a problem’s timing scales as processor number increases.

I Measured by the time to do one unit. In this case, inverse
linear scaling:

T ∝ 1/P

I Again this is the ideal case, or “embarrassingly parallel”.
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Scaling – Time

I How a problem’s timing scales as processor number increases.

I Measured by the time to do one unit. In this case, inverse
linear scaling:

T ∝ 1/P

I Again this is the ideal case, or “embarrassingly parallel”.
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Scaling – Speedup

I How much faster the problem is solved as processor number
increases.

I Measured by the serial time divided by the parallel time

S =
Tserial

T(P)
∝ P

I For embarrassingly parallel applications: Linear speed up.
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Serial Overhead

Parallel region⇒
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Serial Overhead
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Suppose non-parallel part const: Ts



Amdahl’s law
Speed-up (without parallel overhead):

S =
NT1 + Ts

NT1
P + Ts

or, calling f = Ts/(Ts + NT1) the serial fraction,

S =
1

f + (1− f)/P

P→∞−→
1

f
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 2  4  6  8  10  12  14  16 (for f = 5%)

Serial part dominates asymptotically.

Speed-up limited, no matter size of P.

And this is the overly optimistic case!
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Trying to beat Amdahl’s law

Scale up!

The larger N, the smaller
the serial fraction:

f(P) =
P

N
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Weak scaling: Increase problem size while increasing P

Timeweak(P) = Time(N = n× P, P)

Good weak scaling means this time approaches a constant for large P.

Gustafson’s Law
Any large enough problem can be efficiently parallelized
(Efficiency→1).
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Synchronization Overhead

I Most problems are not
purely concurrent.

I Some level of
synchronization or exchange
of information is needed
between tasks.

I While synchronizing,
nothing else happens:
increases Amdahl’s f.

I And synchronizations are
themselves costly.



Load Balancing

I The division of calculations
among the processors may
not be equal.

I Some processors would
already be done, while
others are still going.

I Effectively using less than P
processors: This reduces
the efficiency.

I Aim for load balanced
algorithms.
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MPI: Blocking



Message Passing Interface (MPI)

Non-Blocking Communications

I Mechanism for overlapping/interleaving communications and
useful computations

I Avoid deadlocks

I Can avoid system buffering, memory-to-memory copying and
improve performance

Non-Blocking: MPI Isend, MPI Irecv

I Returns immediately, posting request to system to initiate
communication.

I However, communication is not completed yet.

I Cannot tamper with the memory provided in these calls until
the communication is completed.



Message Passing Interface (MPI)

Non-Blocking Communications

I Mechanism for overlapping/interleaving communications and
useful computations

I Avoid deadlocks

I Can avoid system buffering, memory-to-memory copying and
improve performance

Non-Blocking: MPI Isend, MPI Irecv

I Returns immediately, posting request to system to initiate
communication.

I However, communication is not completed yet.

I Cannot tamper with the memory provided in these calls until
the communication is completed.



Diffusion: Had to 
wait for 

communications to 
compute

• Could not compute end 
points without guardcell data

• All work halted while all 
communications occurred

• Significant parallel overhead

n-4 n-3 n-2 n-1 n

-1 0 1 2 3

Global Domain

Job 1

Job 2



Diffusion: Had to 
wait?

• But inner zones could have 
been computed just fine

• Ideally, would do inner zones 
work while communications is 
being done; then go back and 
do end points.

n-4 n-3 n-2 n-1 n

-1 0 1 2 3

Global Domain

Job 1

Job 2



Nonblocking
Sends

• Allows you to get work done while 
message is ‘in flight’

• Must not alter send buffer until send 
has completed.

• C: MPI_Isend( void *buf, int 
count, MPI_Datatype datatype, 
int dest, int tag, MPI_Comm 
comm, MPI_Request *request )

• FORTRAN: MPI_ISEND(BUF,INTEGER 
COUNT,INTEGER DATATYPE,INTEGER 
DEST,INTEGER TAG, INTEGER COMM, 
INTEGER REQUEST,INTEGER IERROR)

work..

work...

MPI_Isend(...)



Nonblocking
Recv

• Allows you to get work done while 
message is ‘in flight’

• Must not access recv buffer until recv 
has completed.

• C: MPI_Irecv( void *buf, int 
count, MPI_Datatype datatype, 
int source, int tag, MPI_Comm 
comm, MPI_Request *request )

• FORTRAN: MPI_IREV(BUF,INTEGER 
COUNT,INTEGER DATATYPE,INTEGER 
SOURCE,INTEGER TAG, INTEGER 
COMM, INTEGER REQUEST,INTEGER 
IERROR) work..

work...

MPI_Irecv(...)



MPI: Non-Blocking Isend & Irecv

ierr = MPI Isend(sendptr, count, MPI TYPE,

destination,tag, Communicator, MPI Request)

ierr = MPI Irecv(rcvptr, count, MPI TYPE,

source, tag,Communicator, MPI Request)

I sendptr/rcvptr: pointer to message

I count: number of elements in ptr

I MPI TYPE: one of MPI DOUBLE, MPI FLOAT, MPI INT,
MPI CHAR, etc.

I destination/source: rank of sender/reciever

I tag: unique id for message pair

I Communicator: MPI COMM WORLD or user created

I MPI Request: Identify comm operations



How to tell if message is 
completed?

• int MPI_Wait(MPI_Request *request,MPI_Status 
*status);

• MPI_WAIT(INTEGER REQUEST,INTEGER 
STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

• int MPI_Waitall(int count,MPI_Request 
*array_of_requests, MPI_Status 
*array_of_statuses);

• MPI_WAITALL(INTEGER COUNT,INTEGER ARRAY_OF_ 
REQUESTS(*),INTEGER 
ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*),INTEGER 

Also: MPI_Waitany, MPI_Test...



MPI: Wait & Waitall

I Will block until the communication(s) complete

ierr = MPI Wait(MPI Request *, MPI Status *)

ierr = MPI Waitall(count, MPI Request *, MPI Status

*)

I MPI Request: Identify comm operation(s)

I MPI Status: Status of comm operation(s)

I count: Number of comm operations(s)



MPI: Test

I Does not block, returns immediately

I Provides a mechanism for overlapping communication and
computation

ierr = MPI Test(MPI Request *, flag, MPI Status *)

I MPI Request: Identify comm operation(s)

I MPI Status: Status of comm operation(s)

I flag: true if comm complete; false if not sent/recv yet



Hands On 
• In diffusion directory, cp diffusion{c,f}-mpi.{c,f90} to 

diffusion{c,f}-mpi-nonblocking.{c,f90}

• Change to do non-blocking IO; post sends/recvs, do 
inner work, wait for messages to clear, do end points
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MPI Collectives

I All processes in a group participate in communication, by
calling the same function with matching arguments.

I Types:
I Synchronization: MPI Barrier
I Data Movement: MPI Bcast, MPI Scatter, MPI Gather,

MPI Alltoall
I Collective Computation: MPI Allreduce

I Collective routines are blocking



MPI Collectives



MPI Collectives



MPI Collectives: Broadcast

I Broadcasts a message from process with rank “root” to all
processes in group, including itself.

I Amount of data sent must be equal to amount of data
received.

ierr = MPI Bcast(void *buf, count, MPI Type, root,

Comm)

I buf: buffer of data to send/recv

I count: number of elements in buf

I MPI TYPE: one of MPI DOUBLE, MPI FLOAT, MPI INT,
MPI CHAR, etc.

I root: “root” processor to send from

I Communicator: MPI COMM WORLD or user created



MPI Collectives: Scatter/Gather

I Scatter: Sends data from “root” to all processes in group.

I Gather: Recives data on “root” from all processes in group.

ierr = MPI Scatter(void *send buf, send count,

MPI Type, void *recv buf, recv count, MPI Type,

root, Comm)

ierr = MPI Gather(void *send buf, send count,

MPI Type, void *recv buf, recv count, MPI Type,

root, Comm)

I send buf: buffer of data to send

I send count: number of elements in send buf

I MPI TYPE: one of MPI DOUBLE, MPI INT, MPI CHAR, etc.

I recv buf: buffer of data to recv

I recv count: number of elements in recv buf

I root: “root” processor to send from

I Communicator: MPI COMM WORLD or user created



Example: Scatter/Gather

Scatter

I Simple Scatter example sending data from root to 4 procesors.

$cd mpi/collectives

$make

$mpirun -np 4 ./scatter

Gather

I Copy Scatter.c to Gather.c and reverse the process.

I Send from 4 processes and collect on root using MPI Gather()



Example: Scatter/Gather

Scatter

I Simple Scatter example sending data from root to 4 procesors.

$cd mpi/collectives

$make

$mpirun -np 4 ./scatter

Gather

I Copy Scatter.c to Gather.c and reverse the process.

I Send from 4 processes and collect on root using MPI Gather()



MPI Collectives: Barrier

I Blocks calling process until all group members have called it.

I Decreases performance. Try to avoid using it explicitly.

ierr = MPI Barrier(Comm)

I Communicator: MPI COMM WORLD or user created
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MPI-IO
• Would like the new, parallel 

version to still be able to 
write out single output files.

• But at no point does a single 
processor have entire 
domain...



Parallel I/O
• Each processor has to write 

its own piece of the domain.. 

• without overwriting the other.

• Easier if there is global 
coordination 



• Uses MPI to coordinate 
reading/writing to single file

• Coordination -- collective 
operations.

MPI-IO

...stuff...



MPI-IO: Example

{

. . .
MPI Offset offset = (msgsize*rank);

MPI File file;

MPI Status stat;

MPI File open(MPI COMM WORLD, "helloworld.txt",

MPI MODE CREATE | MPI MODE WRONLY, MPI INFO NULL,

&file);

MPI File seek(file, offset, MPI SEEK SET);

MPI File write(file, msg, msgsize, MPI CHAR,

&stat);

MPI File close(&file);

. . .
}



MPI-IO: Example

{

. . .
MPI Offset offset = (msgsize*rank);

MPI File file;

MPI Status stat;

MPI File open(MPI COMM WORLD, "helloworld.txt",

MPI MODE CREATE | MPI MODE WRONLY, MPI INFO NULL,

&file);

//Collective Coordinated Write

MPI File write at all(file, offset, msg, msg-

size, MPI CHAR, &stat);

MPI File close(&file);

. . .
}



MPI-IO: MPI File open

I MPI File open

ierr = MPI File open(communicator, filename, mode,

MPI Info, MPI File);

ierr = MPI File close(MPI File);

I communicator: MPI COMM WORLD or user created

I char * filename: character string filename

I int mode: Access modes, MPI MODE CREATE,
MPI MODE WRONLY, MPI MODE RDWR, etc.

I MPI Info: extra info or MPI INFO NULL

I MPI File: MPI file handle



MPI-IO: MPI File write at all

I Collective operation across all Comm processors

ierr = MPI File write at all(MPI File,

MPI Offset,buffer, count, MPI Type, MPI Status)

I MPI File: MPI file handle

I MPI Offset: MPI file offset location

I void * buffer: buffer of data to write

I int count: number of elements in ptr

I MPI TYPE: one of MPI FLOAT, MPI INT, MPI CHAR, etc.

I MPI Request: Identify comm operations



MPI-IO File View
• Each process has a view of the file that consists of only of the parts 

accessible to it.

• For writing, hopefully non-overlapping!

• Describing this - how data is laid out in a file - is very similar to 
describing how data is laid out in memory...



MPI-IO File View
• int MPI_File_set_view(

   MPI_File fh, 
   MPI_Offset disp, 
   MPI_Datatype etype, 
   MPI_Datatype filetype, 
   char *datarep, 
   MPI_Info info)

disp

/* displacement in bytes from start */
/* elementary type */
/* file type; prob different for each proc */
/* ‘native’ or ‘internal’ */
/* MPI_INFO_NULL for today */

etypes



MPI-IO File View
• int MPI_File_set_view(

   MPI_File fh, 
   MPI_Offset disp, 
   MPI_Datatype etype, 
   MPI_Datatype filetype, 
   char *datarep, 
   MPI_Info info)

/* displacement in bytes from start */
/* elementary type */
/* file type; prob different for each proc */
/* ‘native’ or ‘internal’ */
/* MPI_INFO_NULL */

{ { {

Filetypes (made up of etypes; 
repeat as necessary)



MPI-IO File Write
• int MPI_File_write_all(

   MPI_File fh, 
   void *buf, 
   int count, 
   MPI_Datatype datatype, 
   MPI_Status *status)

Writes (_all: collectively) to part of file within view.



Example: MPI-IO

MPI-IO Example

I Simple Example showing MPI writing to a single file.

$cd mpi/mpiio

$make

$mpirun -np 4 ./sine

$./dosineplot

Anything wrong with this code?
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Compressible Fluid 
Dynamics
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Equations of 
Hydrodynamics
• Density, momentum, and 

energy equations

• Supplemented by an equation 
of state - pressure as a 
function of dens, energy



Discretizing 
Derivatives

• Done by finite differencing the 
discretized values

• Implicitly or explicitly involves 
interpolating data and taking 
derivative of the interpolant

• More accuracy - larger 
‘stencils’
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Guardcells
• How to deal with boundaries?

• Because stencil juts out, need 
information on cells beyond 
those you are updating

• Pad domain with ‘guard cells’ 
so that stencil works even for 
the 0th point in domain

• Fill guard cells with values 
such that the required 
boundary conditions are met

Global Domain

0 1 2 3 4 5 6 7

ng = 1
loop from ng, N - 2 ng



Finite Volume 
Method

• Conservative; very well suited 
to high-speed flows with 
shocks

• At each timestep, calculate 
fluxes using interpolation/finite 
differences, and update cell 
quantities.

• Use conserved variables -- eg, 
momentum, not velocity.

Fx

Fy



Single-Processor 
hydro code

• cd hydro{c,f};  make

• ./hydro 100

• Takes options:
• number of points to write

• Outputs image (ppm) of initial 
conditions, final state (plots 
density)

• display ics.ppm

• display dens.ppm



• Set initial conditions

• Loop, calling timestep() and 
maybe some output routines 
(plot() - contours)

• At beginning and end, save an 
image file with outputppm()

• All data stored in array u.

hydro.c

Single-Processor 
hydro code



• Set initial conditions

• Loop, calling timestep() and 
maybe some output routines 
(plot() - contours)

• At beginning and end, save an 
image file with outputppm()

• All data stored in array u.

hydro.f90

Single-Processor 
hydro code



Plotting to 
screen

• plot.c, plot.f90

• Every 10 timesteps

• Find min, max of pressure, 
density

• Plot 5 contours of density 
(red) and pressure (green)

• pgplot library (old, but works).



Plotting to file
• ppm.c, ppm.f90

• PPM format -- binary (w/ ascii 
header)

• Find min, max of density

• Calculate r,g,b values for 
scaled density (black = min, 
yellow = max)

• Write header, then data.



Data structure
• u : 3 dimensional array 

containing each variable in 2d 
space

• eg, u[j][i][IDENS]

• or u(idens, i, j)

solver.f90 (initialconditions)

domain.h

solver.c (initialconditions)



domain.h

Nx

nguardnguard

0 1 2 3 4 5 6
q

7

u[2][3][DENSVAR];
u[2][3][MOMXVAR];
u[2][3][MOMYVAR];
u[2][3][ENERVAR];

y

x

u(idens,4,3)
u(imomx,4,3)
u(imomy,4,3)
u(iener,4,3)

x



Laid out in 
memory (C)

x

y = 2
y = 3

0 1 2 3 4 5 6 7x = 0 1 2 3 4 5 6 7

Same way as in an image file 
(one horizontal row at a time)

4 floats: dens, momx, momy, ener



Laid out in memory 
(FORTRAN)

x

y = 3
y = 4

1 2 3 4 5 6 7 8x = 1 2 3 4 5 6 7 8

Same way as in an image file 
(one horizontal row at a time)

4 floats: dens, momx, momy, ener



Timestep 
routine

• Apply boundary conditions

• X sweep, Y sweep

• Transpose entire domain , so Y 
sweep is just an X sweep

• (unusual approach!  But has 
advantages.  Like matrix multiply.)

• Note - dt calculated each step 
(minimum across domain.)

timestep
solver.f90



Timestep 
routine

• Apply boundary conditions

• X sweep, Y sweep

• Transpose entire domain , so Y 
sweep is just an X sweep

• (unusual approach!  But has 
advantages.  Like matrix multiply.)

• Note - dt calculated each step 
(minimum across domain.)

timestep
solver.c



Xsweep routine

• Go through each x “pencil” of 
cells

• Do 1d hydrodynamics routine on 
that pencil.

xsweep
solver.c

xsweep
solver.f90



What do data 
dependancies 
look like for 

this?



Data 
dependencies

• Previous timestep must be 
completed before next one 
started.

• Within each timestep, 

• Each tvd1d “pencil” can be 
done independently

• All must be done before 
transpose, BCs

BCs

tvd1d tvd1d tvd1d tvd1d...

transpose

BCs

tvd1d tvd1d tvd1d tvd1d...



MPIing the 
code

• Domain decomposition



MPIing the 
code

• Domain decomposition

• For simplicity, for now we’ll 
just implement decomposition 
in one direction, but we will 
design for full 2d 
decomposition



MPIing the 
code

• Domain decomposition

• We can do as with diffusion 
and figure out out neighbours 
by hand, but MPI has a better 
way...



Create new 
communicator 

with new topology
• MPI_Cart_create 

( MPI_Comm comm_old, 
int ndims,   int *dims, 
int *periods,   int reorder, 
MPI_Comm *comm_cart ) (0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

size = 9
dims = (2,2)
rank = 3



Create new 
communicator 

with new topology
• MPI_Cart_create (

integer comm_old, 
integer ndims, 
integer [dims], 
logical [periods], 
integer reorder, 
integer comm_cart, 
integer ierr )

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

size = 9
dims = (2,2)
rank = 3



Create new 
communicator 

with new topology

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

size = 9
dims = (2,2)
rank = 3

C
ierr = MPI_Cart_shift(MPI_COMM new_comm, int dim,
       int shift, int *left, int *right)
ierr = MPI_Cart_coords(MPI_COMM new_comm, int rank,
       int ndims, int *gridcoords)



Create new 
communicator 

with new topology

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

size = 9
dims = (2,2)
rank = 3

FORTRAN
call MPI_Cart_shift(integer new_comm, dim, shift, 
       left, right, ierr)
call MPI_Cart_coords(integer new_comm, rank,
       ndims, [gridcoords], ierr)



Let’s try starting 
to do this 
together

• In a new directory:

• add mpi_init, _finalize, 
comm_size.

• mpi_cart_create

• rank on new communicator.

• neighbours 

• Only do part of domain

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

size = 9
dims = (2,2)
rank = 3



Next
• File IO - have each process 

write its own file so don’t 
overwrite

• Coordinate min, max across 
processes for contours, 
images.

• Coordinate min in cfl routine.



MPIing the 
code

• Domain decomposition

• Lots of data - ensures locality

• How are we going to handle 
getting non-local information 
across processors?



Guardcells
• Works for parallel 

decomposition!

• Job 1 needs info on Job 2s 0th 
zone, Job 2 needs info on Job 
1s last zone

• Pad array with ‘guardcells’ and 
fill them with the info from the 
appropriate node by message 
passing or shared memory

• Hydro code: need guardcells 2 
deep

n-4 n-3 n-2 n-1 n

-1 0 1 2 3

Global Domain

Job 1

Job 2



Guard cell fill
• When we’re doing boundary 

conditions.

• Swap guardcells with 
neighbour.

1 2

1: u(:, nx:nx+ng, ng:ny-ng)
→ 2:  u(:,1:ng, ng:ny-ng)

2: u(:, ng+1:2*ng, ng:ny-ng)
→ 1: u(:, nx+ng+1:nx+2*ng, ng:ny-ng)

(ny-2*ng)*ng values to swap



Cute way for 
Periodic BCs

• Actually make the 
decomposed mesh periodic;

• Make the far ends of the mesh 
neighbors

• Don’t know the difference 
between that and any other 
neighboring grid

• Cart_create sets this up for us 
automatically upon request.

1 2



Implementing in 
MPI

• No different in principle than 
diffusion 

• Just more values

• And more variables: dens, 
ener, imomx....

• Simplest way: copy all the 
variables into an 
NVARS*(ny-2*ng)*ng sized 

1 2

1: u(:, nx:nx+ng, ng:ny-ng)
→ 2:  u(:,1:ng, ng:ny-ng)

2: u(:, ng+1:2*ng, ng:ny-ng)
→ 1: u(:, nx+ng+1:nx+2*ng, ng:ny-ng)

nvars*(ny-2*ng)*ng values to swap



Implementing in 
MPI

• No different in principle than 
diffusion 

• Just more values

• And more variables: dens, 
ener, temp....

• Simplest way: copy all the 
variables into an 
NVARS*(ny-2*ng)*ng sized 

1

2



Implementing in 
MPI

• Even simpler way:

• Loop over values, sending 
each one, rather than 
copying into buffer.

• NVARS*nguard*(ny-2*nguard
) latency hit.

• Would completely dominate 
communications cost.  

1 2



Implementing in 
MPI

• Let’s do this together

• solver.f90/solver.c; implement  
to bufferGuardcells

• When do we call this in 
timestep?



Implementing in 
MPI

• This approach is simple, but 
introduces extraneous copies

• Memory bandwidth is already 
a bottleneck for these codes

• It would be nice to just point 
at the start of the guardcell 
data and have MPI read it 
from there.

1

2



Implementing in 
MPI

• Let me make one 
simplification for now; copy 
whole stripes

• This isn’t necessary, but will 
make stuff simpler at first

• Only a cost of 2xNg2 = 8 
extra cells (small fraction of 
~200-2000 that would 
normally be copied)

1

2



Implementing in 
MPI

• Recall how 2d memory is 
laid out

• y-direction guardcells 
contiguous

i

j



Implementing in 
MPI

• Can send in one go:

i

j

          call MPI_Send(u(1,1,ny), nvars*nguard*ny, MPI_REAL, ....)
          ierr = MPI_Send(&(u[ny][0][0]), nvars*nguard*ny, MPI_FLOAT, ....)



Implementing in 
MPI

• Creating MPI Data types.

• MPI_Type_contiguous: 
simplest case.  Lets you build 
a string of some other type.

1

          MPI_Datatype ybctype;

ierr = MPI_Type_contiguous(nvals*nguard*(ny), MPI_REAL, &ybctype);
          ierr = MPI_Type_commit(&ybctype);

          MPI_Send(&(u[ny][0][0]), 1, ybctype, ....)

ierr = MPI_Type_free(&ybctype);

Count OldType &NewType



Implementing in 
MPI

• Creating MPI Data types.

• MPI_Type_contiguous: 
simplest case.  Lets you build 
a string of some other type.

1

          integer :: ybctype

call MPI_Type_contiguous(nvals*nguard*(ny), MPI_REAL, ybctype, ierr)
          call MPI_Type_commit(ybctype, ierr)

          MPI_Send(u(1,1,ny), 1, ybctype, ....)

call MPI_Type_free(ybctype, ierr)

Count OldType NewType



Implementing in 
MPI

• Recall how 2d memory is 
laid out

• x gcs or boundary values not 
contiguous

• How do we do something 
like this for the x-direction?

i

j



Implementing in 
MPI

i

jint MPI_Type_vector( 
        int count, 
        int blocklen, 
        int stride, 
        MPI_Datatype old_type, 
        MPI_Datatype *newtype );

stride = nx*nvars

blocklen = ng*nvars

count = ny



Implementing in 
MPI

i

jierr = MPI_Type_vector(ny, nguard*nvars,
        nx*nvars, MPI_FLOAT, &xbctype);

ierr = MPI_Type_commit(&xbctype);

ierr = MPI_Send(&(u[0][nx][0]), 1, xbctype, ....)

ierr = MPI_Type_free(&xbctype);

stride = nx*nvars

blocklen = ng*nvars

count = ny



Implementing in 
MPI

i

jcall MPI_Type_vector(ny, nguard*nvars,
        nx*nvars, MPI_REAL, xbctype, ierr)

call MPI_Type_commit(xbctype, ierr)

call MPI_Send(u(1,nx,1), 1, ybctype, ....)

call MPI_Type_free(xbctype, ierr)

stride = nx*nvars

blocklen = ng*nvars

count = ny



Implementing in 
MPI

i

j• Check: total amount of data = 
blocklen*count = ny*ng*nvars

• Skipped over stride*count = 
nx*ny*nvars

stride = nx*nvars

blocklen = ng*nvars

count = ny



Implementing in 
MPI

• Hands-On: Implement X 
guardcell filling with types.

• Implement vectorGuardCells

• For now, create/free type each 
cycle through; ideally, we’d 
create/free these once.



In MPI, there’s 
always more 

than one way..
• MPI_Type_create_subarray ; 

piece of a multi-dimensional 
array.

• Much more convenient for 
higher-dimensional arrays

• (Otherwise, need vectors of 
vectors of vectors...)

int MPI_Type_create_subarray(
      int ndims, int *array_of_sizes,
      int *array_of_subsizes,
      int *array_of_starts,
      int order,
      MPI_Datatype oldtype,
      MPI_Datatype &newtype);

call MPI_Type_create_subarray(
      integer ndims, [array_of_sizes],
      [array_of_subsizes],
      [array_of_starts],
      order, oldtype,
      newtype, ierr)
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