
Programming Distributed Memory Systems
with MPI

2016 Ontario Summer School
on High Performance Computing

Scott Northrup
July 12-13

SciNet - Toronto

Intro to Message Passing Interface (MPI)

Distributed Memory Computing

MPI: Basics

MPI: Send & Receive

MPI: Collectives

Example: 1D Diffusion

MPI: Performance/Scaling

MPI: Non-Blocking Communications

MPI: More Collectives

MPI: MPI-IO

Example: CFD Code

HPC Systems

Architectures

I Clusters, or, distributed memory machines
I A bunch of servers linked together by a network

(“interconnect”).
I GigE, Infiniband, Cray Gemini/Aries, IBM BGQ Torus

I Symmetric Multiprocessor (SMP) machines, or, shared
memory machines

I These can all see the same memory, typically a limited number
of cores.

I IBM Pseries, Cray SMT, SGI Altix/UV

I Vector machines.
I No longer dominant in HPC anymore.
I Cray, NEC

I Accelerator (GPU, Cell, MIC, FPGA)
I Heterogeneous use of standard CPU’s with a specialized

accelerator.
I NVIDIA, AMD, Intel, Xilinx, Altera

Distributed Memory: Clusters

Simplest type of parallel com-
puter to build

I Take existing powerful
standalone computers

I And network them

(source: http://flickr.com/photos/eurleif)

Distributed Memory: Clusters
Each node is
independent!
Parallel code consists of
programs running on
separate computers,
communicating with
each other.
Could be entirely
different programs.

Each node has own
memory!
Whenever it needs data
from another region,
requests it from that
CPU.

Usual model: “message passing”

~ ~
~

~

n n
n

n

CPU1

CPU2

CPU3

CPU4

�
�
�
�
�
�
�
�
�
�
�
���

��
��*

6

�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
��

��
���

?

�
�

�
�	

Distributed Memory: Clusters
Each node is
independent!
Parallel code consists of
programs running on
separate computers,
communicating with
each other.
Could be entirely
different programs.

Each node has own
memory!
Whenever it needs data
from another region,
requests it from that
CPU.

Usual model: “message passing”

~ ~
~

~

n n
n

n

CPU1

CPU2

CPU3

CPU4

�
�
�
�
�
�
�
�
�
�
�
���

��
��*

6

�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
��

��
���

?

�
�

�
�	

Clusters+Message Passing
Hardware:
Easy to build
(Harder to build well)
Can build larger and
larger clusters relatively
easily

Software:
Every communication
has to be hand-coded:
hard to program

~ ~
~

~

n n
n

n

CPU1

CPU2

CPU3

CPU4

�
�
�
�
�
�
�
�
�
�
�
���

�
��

�*

6

�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
��

���
��

?

�
�

�
�	

HPC Programming Models

Languages

I serial
I C, C++, Fortran

I threaded (shared memory)
I OpenMP, pthreads

I message passing (distributed memory)
I MPI, PGAS (UPC, Coarray Fortran)

I accelerator (GPU, Cell, MIC, FPGA)
I CUDA, OpenCL, OpenACC

Task (function, control) Parallelism

Work to be done is decomposed across processors

I e.g. divide and conquer

I each processor responsible for some part of the algorithm

I communication mechanism is significant

I must be possible for different processors to be performing
different tasks

Intro to Message Passing Interface (MPI)

Distributed Memory Computing

MPI: Basics

MPI: Send & Receive

MPI: Collectives

Example: 1D Diffusion

MPI: Performance/Scaling

MPI: Non-Blocking Communications

MPI: More Collectives

MPI: MPI-IO

Example: CFD Code

Message Passing Interface (MPI)

What is it?

I An open standard library interface for message passing,
ratified by the MPI Forum

I Version: 1.0 (1994), 1.1 (1995), 1.2 (1997), 1.3 (2008)

I Version: 2.0 (1997), 2.1 (2008), 2.2 (2009)

I Version: 3.0 (2012)

MPI Implementations

I OpenMPI (www.open-mpi.org)
I OpenMPI 1.8.x
I SciNet GPC: module load gcc openmpi
I SciNet GPC: module load intel openmpi

I MPICH2 (www.mpich.org)
I MPICH 3.x, MVAPICH2 2.x , IntelMPI 5.x
I SciNet GPC: module load intel intelmpi

• Not built in to compiler

• Function calls that can be
made from any compiler,
many languages

• Just link to it

• Wrappers: mpicc, mpif77

MPI is a Library for
 Message-Passing

Fortran

C

MPI is a Library for
 Message-Passing

• Communication/coordination
between tasks done by
sending and receiving
messages.

• Each message involves a
function call from each of the
programs.

CPU1

CPU2

CPU3

CPU0

MPI is a Library for
 Message-Passing

• Three basic sets of
functionality:

• Pairwise communications via
messages

• Collective operations via
messages

• Efficient routines for getting
data from memory into
messages and vice versa

CPU1

CPU2

CPU3

CPU0

Messages
• Messages have a sender and

a receiver

• When you are sending a
message, don’t need to specify
sender (it’s the current
processor),

• A sent message has to be
actively received by the
receiving process

CPU1 CPU3

count of MPI_SOMETYPE

tag

Messages
• MPI messages are a string of

length count all of some
fixed MPI type

• MPI types exist for
characters, integers, floating
point numbers, etc.

• An arbitrary integer tag is
also included - helps keep
things straight if lots of
messages are sent.

CPU1 CPU3

count of MPI_SOMETYPE

tag

Size of MPI
Library

• Many, many functions (>200)

• Not nearly so many concepts

• We’ll get started with just
10-12, use more as needed.

MPI_Init()
MPI_Comm_size()
MPI_Comm_rank()
MPI_Ssend()
MPI_Recv()
MPI_Finalize()

SciNet Access

Access to SciNet

I Log into SciNet and get a copy of the source.

I Guest SciNet accounts available from instructor.

$ssh -Y USER@login.scinet.utoronto.ca

$ssh -Y gpc0[1-8]

$cd $SCRATCH
$cp -r /scinet/course/ssc2016/mpi .

$source mpi/setup

Submit a job

$qsub -l nodes=1:ppn=8,walltime=8:00:00 -I -X -q

teach

Hello World
• The obligatory starting point

• cd mpi/mpi-intro

• Type it in, compile and run it
together

Fortran

edit hello-world.c or .f90
$ mpif90 hello-world.f90
 -o hello-world
or
$ mpicc hello-world.c
 -o hello-world
$ mpirun -np 1 hello-world
$ mpirun -np 2 hello-world
$ mpirun -np 8 hello-world

C

What mpicc/
mpif77 do

• Just wrappers for the system
C, Fortran compilers that have
the various -I, -L clauses in
there automaticaly

• -v option (sharcnet) or
--showme (OpenMPI) shows
which options are being used

$ mpicc --showme hello-world.c
-o hello-world

gcc -I/usr/local/include
 -pthread hello-world.c -o
hello-world -L/usr/local/lib
-lmpi -lopen-rte -lopen-pal
-ldl -Wl,--export-dynamic -lnsl
-lutil -lm -ldl

What mpirun
does

• Launches n processes, assigns
each an MPI rank and starts
the program

• For multinode run, has a list of
nodes, ssh’s to each node and
launches the program

ssh node1

ssh node2

ssh node3

hello-world

hello-world

hello-world

hello-world

Number of
Processes

• Number of processes to use is
almost always equal to the
number of processors

• But not necessarily.

• On your nodes, what happens
when you run this?

$ mpirun -np 24 hello-world

mpirun runs
any program

• mpirun will start that process-
launching procedure for any
progam

• Sets variables somehow that
mpi programs recognize so
that they know which process
they are

$ hostname
$ mpirun -np 4 hostname
$ ls
$ mpirun -np 4 ls

Example: “Hello World”

$mpirun -np 4 ./hello-world

Hello from task 2 of 4 world

Hello from task 1 of 4 world

Hello from task 0 of 4 world

Hello from task 3 of 4 world

$mpirun -tag-output -np 4 ./hello-world

[1,3]<stdout>:Hello from task 3 of 4 world

[1,2]<stdout>:Hello from task 2 of 4 world

[1,0]<stdout>:Hello from task 0 of 4 world

[1,1]<stdout>:Hello from task 1 of 4 world

Example: “Hello World”

$mpirun -np 4 ./hello-world

Hello from task 2 of 4 world

Hello from task 1 of 4 world

Hello from task 0 of 4 world

Hello from task 3 of 4 world

$mpirun -tag-output -np 4 ./hello-world

[1,3]<stdout>:Hello from task 3 of 4 world

[1,2]<stdout>:Hello from task 2 of 4 world

[1,0]<stdout>:Hello from task 0 of 4 world

[1,1]<stdout>:Hello from task 1 of 4 world

make
• Make builds an executable from a

list of source code files and rules

• Many files to do, of which order
doesn’t matter for most

• Parallelism!

• make -j N - launches N
processes to do it

• make -j 2 often shows speed
increase even on single processor
systems

$ make
$ make -j 2
$ make -j

Overlapping
Computation with I/O

P=1 Get file1.c Write file1.o file2.c file2.oCompile Compile

P=2
Get file1.c Write file1.oCompile

file2.c file2.oCompile

What the code
does

• (FORTRAN version; C is similar)

use mpi : imports declarations for MPI
function calls

call MPI_INIT(ierr):
initialization for MPI library.
Must come first.
ierr: Returns any error code.

call MPI_FINALIZE(ierr):
close up MPI stuff.
Must come last.
ierr: Returns any error code.

call MPI_COMM_RANK,
call MPI_COMM_SIZE:

requires a little more exposition.

MPI Basics

Basic MPI Components

I #include <mpi.h> : MPI library details

I MPI Init(&argc, &argv); : MPI Intialization, must come
first

I MPI Finalize() : Finializes MPI, must come last

I ierr : Returns error code

Communicator Components

I MPI Comm rank(MPI COMM WORLD, &rank)

I MPI Comm size(MPI COMM WORLD, &size)

MPI Basics

Basic MPI Components

I #include <mpi.h> : MPI library details

I MPI Init(&argc, &argv); : MPI Intialization, must come
first

I MPI Finalize() : Finializes MPI, must come last

I ierr : Returns error code

Communicator Components

I MPI Comm rank(MPI COMM WORLD, &rank)

I MPI Comm size(MPI COMM WORLD, &size)

Communicators

• MPI groups processes into
communicators.

• Each communicator has some
size -- number of tasks.

• Each task has a rank 0..size-1

• Every task in your program
belongs to
MPI_COMM_WORLD

0

1

2

3
MPI_COMM_WORLD:

size=4, ranks=0..3

Communicators
• Can create our own

communicators over the same
tasks

• May break the tasks up into
subgroups

• May just re-order them for
some reason

0

1

2

3

MPI_COMM_WORLD:
size=4, ranks=0..3

2

0

1

new_comm
size=3, ranks=0..2

MPI Basics

Communicator Components

I MPI COMM WORLD :
Global Communicator

I MPI Comm rank(MPI COMM WORLD, &rank) :
Get current tasks rank

I MPI Comm size(MPI COMM WORLD, &size) :
Get communicator size

call MPI_COMM_RANK,
call MPI_COMM_SIZE:

get the size of communicator,
the current tasks’s rank within
communicator.

put answers in rank and
size

Rank and Size much
more important in
MPI than OpenMP

• In OpenMP, compiler assigns
jobs to each thread; don’t
need to know which one you
are.

• MPI: processes determine
amongst themselves which
piece of puzzle to work on,
then communicate with
appropriate others.

rank = 1

rank = 2

rank = 3

rank = 0

C Fortran

• #include <mpi.h> vs use mpi

• C - functions return ierr;

• Fortran - pass ierr

• MPI_Init

Intro to Message Passing Interface (MPI)

Distributed Memory Computing

MPI: Basics

MPI: Send & Receive

MPI: Collectives

Example: 1D Diffusion

MPI: Performance/Scaling

MPI: Non-Blocking Communications

MPI: More Collectives

MPI: MPI-IO

Example: CFD Code

Our first real
MPI program
- but no Ms

are P’ed!
• Let’s fix this

• mpicc -o firstmessage
firstmessage.c

• mpirun -np 2 ./firstmessage

• Note: C - MPI_CHAR

Fortran
version

• Let’s fix this

• mpif90 -o
firstmessage
firstmessage.f90

• mpirun -np 2 ./
firstmessage

• FORTRAN -
MPI_CHARACTER

MPI_Status status;

ierr = MPI_Ssend(sendptr, count, MPI_TYPE, destination,
 tag, Communicator);

ierr = MPI_Recv(rcvptr, count, MPI_TYPE, source, tag,
 Communicator, status);

C - Send and Receive

integer status(MPI_STATUS_SIZE)

call MPI_SSEND(sendarr, count, MPI_TYPE, destination,
 tag, Communicator, ierr)

call MPI_RECV(rcvarr, count, MPI_TYPE, source, tag,
 Communicator, status, ierr)

Fortran - Send and Receive

Special Source/Dest:
MPI_PROC_NULL

MPI_PROC_NULL basically ignores the relevant
operation; can lead to cleaner code.

Special Source:
 MPI_ANY_SOURCE

MPI_ANY_SOURCE is a wildcard; matches any source
when receiving.

More
complicated

example:
• Let’s look at

secondmessage.f90,
secondmessage.c

More
complicated

example:
• Let’s look at

secondmessage.f90,
secondmessage.c

Compile and
run

• mpi{cc,f90} -o secondmessage
secondmessage.{c,f90}

• mpirun -np 4 ./secondmessage

$ mpirun -np 4 ./secondmessage
3: Sent 9.000000 and got 4.000000
0: Sent 0.000000 and got -999.000000
1: Sent 1.000000 and got 0.000000
2: Sent 4.000000 and got 1.000000

0 1 2

“Hello” “Hello”

0 1 2

“Hello” “Hello”

“Hello”Implement
periodic boundary

conditions
• cp secondmessage.{c,f90}

thirdmessage.{c,f90}

• edit so it `wraps around’

• mpi{cc,f90} thirdmessage.
{c,f90} -o thirdmessage

• mpirun -np 3 thirdmessage

0 1 2

Send Send
0 1 2

Send RecvSend

0 1 2

RecvSend

0 1 2

0 1 2

Send Send

Send

0,1,2

0 1 2

Send Send

Send

Deadlock
• A classic parallel bug

• Occurs when a cycle of tasks
are for the others to finish.

• Whenever you see a closed
cycle, you likely have (or risk)
deadlock.

Big MPI
Lesson #1

All sends and receives must be paired, at
time of sending

Big MPI
Lesson #1

All sends and receives must be paired, at
time of sending

Different
versions of

SEND
• SSEND: safe send; doesn’t

return until receive has
started. Blocking, no buffering.

• SEND: Undefined. Blocking,
probably buffering

• ISEND : Unblocking, no
buffering

• IBSEND: Unblocking, buffering

Send

System buffer

Buffering

(Non) Blocking

Buffering is
dangerous!

• Worst kind of danger: will
usually work.

• Think voice mail; message
sent, reader reads when ready

• But voice mail boxes do fill

• Message fails.

• Program fails/hangs
mysteriously.

• (Can allocate your own
buffers)

Send

System buffer

Buffering

Without using new MPI
routines, how can we fix

this?

• First: evens send, odds receive

• Then: odds send, evens receive

• Will this work with an odd # of processes?

• How about 2? 1?

0 1

Send Recv

2

Send

3

Recv

0 1

SendRecv

2

Send

3

Recv

Evens send first

Then odds

fourthmessage.f90

Evens send first

Then odds

fourthmessage.c

• A blocking send and
receive built in together

• Lets them happen
simultaneously

• Can automatically pair
the sends/recvs!

• dest, source does not
have to be same; nor do
types or size. fifthmessage.c

Something
new: Sendrecv

• A blocking send and
receive built in together

• Lets them happen
simultaneously

• Can automatically pair
the sends/recvs!

• dest, source does not
have to be same; nor do
types or size. fifthmessage.f90

Something
new: Sendrecv

MPI_Status status;

ierr = MPI_Sendrecv(sendptr, count, MPI_TYPE, destination,tag,
 recvptr, count, MPI_TYPE, source, tag,
 Communicator, &status);

integer status(MPI_STATUS_SIZE)

call MPI_SENDRECV(sendptr, count, MPI_TYPE, destination,tag,
 recvptr, count, MPI_TYPE, source, tag,
 Communicator, status, ierr)

C syntax

FORTRAN syntax

Sendrecv = Send + Recv

Send Args

Recv Args

Why are there two different tags/types/counts?

Intro to Message Passing Interface (MPI)

Distributed Memory Computing

MPI: Basics

MPI: Send & Receive

MPI: Collectives

Example: 1D Diffusion

MPI: Performance/Scaling

MPI: Non-Blocking Communications

MPI: More Collectives

MPI: MPI-IO

Example: CFD Code

Min, Mean, Max
of numbers

• Lets try some code that calculates
the min/mean/max of a bunch of
random numbers -1..1. Should go
to -1,0,+1 for large N.

• Each gets their partial results and
sends it to some node, say node 0
(why node 0?)

• ~/mpi/mpi-intro/minmeanmax.
{c,f90}

• How to MPI it?

(min,mean,max)2

(min,mean,max)1

(min,mean,max)0

(min,mean,max)2

(min,mean,max)1

(min,mean,max)0

minmeanmax-mpi.f90

Q: are these sends/recvd
adequately paired?

(min,mean,max)2

(min,mean,max)1

(min,mean,max)0

minmeanmax-mpi.c

Q: are these sends/recvd
adequately paired?

Inefficient!

• Requires (P-1) messages,
2(P-1) if everyone then needs
to get the answer.

sum1
sum2
sum3

sum1
sum2
sum3

sum1
sum2
sum3

CPU1 CPU2 CPU3

total total total

+ + +

Better
Summing

• Pairs of processors; send
partial sums

• Max messages received log2(P)

• Can repeat to send total back

sum1

CPU1 CPU2 CPU3

sum2

sum1+
sum2

sum3

CPU4

sum4

sum3+
sum4

sum1+
sum2+
sum3+
sum4=
total

Reduction; works for
a variety of operators

(+,*,min,max...)

Tcomm = 2 log2(P)Ccomm

minmeanmax-allreduce.f

MPI_Reduce and
MPI_Allreduce

Performs a reduction
and sends answer to

one PE (Reduce)
or all PEs (Allreduce)

MPI Collectives

ierr = MPI Allreduce(sendptr, rcvptr, count,

MPI TYPE, MPI OP, Communicator);

I sendptr/rcvptr: pointer to buffers

I count: number of elements in ptr

I MPI TYPE: one of MPI DOUBLE, MPI FLOAT, MPI INT,
MPI CHAR, etc.

I MPI OP: one of MPI SUM, MPI PROD, MPI MIN, MPI MAX,
etc.

I Communicator: MPI COMM WORLD or user created

Collective
Operations

• As opposed to the pairwise
messages we’ve seen

• All processes in the
communicator must
participate

• Cannot proceed until all have
participated

• Don’t necessarily know what
goes on ‘under the hood’

CPU 1

CPU 2

CPU 3

CPU 0

Intro to Message Passing Interface (MPI)

Distributed Memory Computing

MPI: Basics

MPI: Send & Receive

MPI: Collectives

Example: 1D Diffusion

MPI: Performance/Scaling

MPI: Non-Blocking Communications

MPI: More Collectives

MPI: MPI-IO

Example: CFD Code

Scientific MPI Example

MPI “Real” problems

I Finite Difference Stencils

I Time-Marching Method

I Domain Decomposition

I Load Balancing

I Global Norms

I BC’s

1d diffusion
equation

cd mpi/diffusion .
make diffusionf or make diffusionc
./diffusionf or ./diffusionc

Discretizing
Derivatives

• Done by finite differencing the
discretized values

• Implicitly or explicitly involves
interpolating data and taking
derivative of the interpolant

• More accuracy - larger
‘stencils’

i-2 i-1 i i+1 i+2

+1 -2 +1

d2Q

dx2

����
i

⇥ Qi+1 � 2Qi + Qi�1

�x2

Diffusion
Equation

• Simple 1d PDE

• Each timestep, new data for
T[i] requires old data for
T[i+1], T[i],T[i-1]

�T

�t
= D

�2T

�x2

�T
(n)
i

�t
⇥ T

(n)
i + T

(n�1)
i

�t

�T
(n)
i

�x
⇥ T

(n)
i+1 � 2T

(n)
i + T

(n)
i�1

�x2

T
(n+1)
i ⇥ T

(n)
i +

D�t

�x2

�
T

(n)
i+1 � 2T

(n)
i + T

(n)
i�1

⇥

Guardcells
• How to deal with boundaries?

• Because stencil juts out, need
information on cells beyond
those you are updating

• Pad domain with ‘guard cells’
so that stencil works even for
the first point in domain

• Fill guard cells with values
such that the required
boundary conditions are met

Global Domain

0 1 2 3 4 5 6 7

ng = 1
loop from ng, N - 2 ng

Domain
Decomposition http://www.uea.ac.uk/cmp/research/cmpbio/

Protein+Dynamics,+Structure+and+Function

http://sivo.gsfc.nasa.gov
/cubedsphere_comp.html

http://adg.stanford.edu/aa241
/design/compaero.html

http://www.cita.utoronto.ca/~dubinski
/treecode/node8.html

• A very common approach to
parallelizing on distributed
memory computers

• Maintain Locality; need local
data mostly, this means only
surface data needs to be sent
between processes.

Implement a
diffusion

equation in MPI
• Need one neighboring number

per neighbor per timestep

dT

dt
= D

d2T

dx2

Tn+1
i = Tn

i +
D�t

�x2

�
Tn

i+1 � 2Tn
i + Tn

i�1

⇥

Guardcells
• Works for parallel

decomposition!

• Job 1 needs info on Job 2s 0th
zone, Job 2 needs info on Job
1s last zone

• Pad array with ‘guardcells’ and
fill them with the info from the
appropriate node by message
passing or shared memory

• Hydro code: need guardcells 2
deep

n-4 n-3 n-2 n-1 n

-1 0 1 2 3

Global Domain

Job 1

Job 2

• Do computation

• guardcell exchange: each cell has to do 2 sendrecvs

• its rightmost cell with neighbors leftmost

• its leftmost cell with neighbors rightmost

• Everyone do right-filling first, then left-filling (say)

• For simplicity, start with periodic BCs

• then (re-)implement fixed-temperature BCs;
temperature in first, last zones are fixed

n-4 n-3 n-2 n-1 n

-1 0 1 2 3

Job 1

Job 2

Hands-on:
MPI diffusion

• cp diffusionf.f90 diffusionf-
mpi.f90 or

• cp diffusionc.c diffusionc-mpi.c
or

• Make an MPI-ed version of
diffusion equation

• (Build: make diffusionf-mpi
or make diffusionc-mpi)

• Test on 1..8 procs

• add standard MPI calls: init, finalize,
comm_size, comm_rank

• Figure out how many points PE is
responsible for (~totpoints/size)

• Figure out neighbors

• Start at 1, but end at totpoints/size

• At end of step, exchange guardcells;
use sendrecv

• Get total error

C syntax
MPI_Status status;

ierr = MPI_Init(&argc, &argv);
ierr = MPI_Comm_{size,rank}(Communicator, &{size,rank});
ierr = MPI_Send(sendptr, count, MPI_TYPE, destination,
 tag, Communicator);
ierr = MPI_Recv(rcvptr, count, MPI_TYPE, source, tag,
 Communicator, &status);
ierr = MPI_Sendrecv(sendptr, count, MPI_TYPE, destination,tag,
 recvptr, count, MPI_TYPE, source, tag,
 Communicator, &status);
ierr = MPI_Allreduce(&mydata, &globaldata, count, MPI_TYPE,
 MPI_OP, Communicator);

Communicator -> MPI_COMM_WORLD
MPI_Type -> MPI_FLOAT, MPI_DOUBLE, MPI_INT, MPI_CHAR...
MPI_OP -> MPI_SUM, MPI_MIN, MPI_MAX,...

FORTRAN syntax

integer status(MPI_STATUS_SIZE)

call MPI_INIT(ierr)
call MPI_COMM_{SIZE,RANK}(Communicator, {size,rank},ierr)
call MPI_SSEND(sendarr, count, MPI_TYPE, destination,
 tag, Communicator)
call MPI_RECV(rcvarr, count, MPI_TYPE, destination,tag,
 Communicator, status, ierr)
call MPI_SENDRECV(sendptr, count, MPI_TYPE, destination,tag,
 recvptr, count, MPI_TYPE, source, tag,
 Communicator, status, ierr)
call MPI_ALLREDUCE(&mydata, &globaldata, count, MPI_TYPE,
 MPI_OP, Communicator, ierr)

Communicator -> MPI_COMM_WORLD
MPI_Type -> MPI_REAL, MPI_DOUBLE_PRECISION,
 MPI_INTEGER, MPI_CHARACTER
MPI_OP -> MPI_SUM, MPI_MIN, MPI_MAX,...

Intro to Message Passing Interface (MPI)

Distributed Memory Computing

MPI: Basics

MPI: Send & Receive

MPI: Collectives

Example: 1D Diffusion

MPI: Performance/Scaling

MPI: Non-Blocking Communications

MPI: More Collectives

MPI: MPI-IO

Example: CFD Code

Scaling — Throughput

I How a problem’s throughput scales as processor number
increases (“strong scaling”).

I In this case, linear scaling:

H ∝ P

I This is Perfect scaling.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

T
as

ks
 p

er
 u

ni
t t

im
e

P

Scaling – Time

I How a problem’s timing scales as processor number increases.

I Measured by the time to do one unit. In this case, inverse
linear scaling:

T ∝ 1/P

I Again this is the ideal case, or “embarrassingly parallel”.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

T
im

e
pe

r
un

it
ta

sk

P

Scaling – Time

I How a problem’s timing scales as processor number increases.

I Measured by the time to do one unit. In this case, inverse
linear scaling:

T ∝ 1/P

I Again this is the ideal case, or “embarrassingly parallel”.

 0.1

 1

 1 10

T
im

e
pe

r
un

it
ta

sk

P

Scaling – Speedup

I How much faster the problem is solved as processor number
increases.

I Measured by the serial time divided by the parallel time

S =
Tserial

T(P)
∝ P

I For embarrassingly parallel applications: Linear speed up.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
pe

ed
-u

p

P

Serial Overhead

Parallel region⇒


Perfectly Parallel
(for large N)

Serial portion ⇒

Parallel overhead ⇒
�� ��Partition data

? ? ? ?'

&

$

%

region 1

'

&

$

%

region 2

'

&

$

%

region 3

'

&

$

%

region 4

? ? ? ?�� ��Reduction

?

&%
'$
Answer

Serial Overhead

Parallel region⇒


Perfectly Parallel
(for large N)

Serial portion ⇒

Parallel overhead ⇒
�� ��Partition data

? ? ? ?'

&

$

%

region 1

'

&

$

%

region 2

'

&

$

%

region 3

'

&

$

%

region 4

? ? ? ?�� ��Reduction

?

&%
'$
Answer

Suppose non-parallel part const: Ts

Amdahl’s law
Speed-up (without parallel overhead):

S =
NT1 + Ts

NT1
P + Ts

or, calling f = Ts/(Ts + NT1) the serial fraction,

S =
1

f + (1− f)/P

P→∞−→
1

f

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16 (for f = 5%)

Serial part dominates asymptotically.

Speed-up limited, no matter size of P.

And this is the overly optimistic case!

Amdahl’s law
Speed-up (without parallel overhead):

S =
NT1 + Ts

NT1
P + Ts

or, calling f = Ts/(Ts + NT1) the serial fraction,

S =
1

f + (1− f)/P

P→∞−→
1

f

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16 (for f = 5%)

Serial part dominates asymptotically.

Speed-up limited, no matter size of P.

And this is the overly optimistic case!

Trying to beat Amdahl’s law

Scale up!

The larger N, the smaller
the serial fraction:

f(P) =
P

N
 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 5 10 15 20 25 30 35 40 45 50

S
pe

ed
-u

p

Number of processors P

N=100
N=1,000

N=10,000
N=100,000

Ideal

Weak scaling: Increase problem size while increasing P

Timeweak(P) = Time(N = n× P, P)

Good weak scaling means this time approaches a constant for large P.

Gustafson’s Law
Any large enough problem can be efficiently parallelized
(Efficiency→1).

Trying to beat Amdahl’s law

Scale up!

The larger N, the smaller
the serial fraction:

f(P) =
P

N
 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 5 10 15 20 25 30 35 40 45 50

S
pe

ed
-u

p

Number of processors P

N=100
N=1,000

N=10,000
N=100,000

Ideal

Weak scaling: Increase problem size while increasing P

Timeweak(P) = Time(N = n× P, P)

Good weak scaling means this time approaches a constant for large P.

Gustafson’s Law
Any large enough problem can be efficiently parallelized
(Efficiency→1).

Trying to beat Amdahl’s law

Scale up!

The larger N, the smaller
the serial fraction:

f(P) =
P

N
 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 5 10 15 20 25 30 35 40 45 50

S
pe

ed
-u

p

Number of processors P

N=100
N=1,000

N=10,000
N=100,000

Ideal

Weak scaling: Increase problem size while increasing P

Timeweak(P) = Time(N = n× P, P)

Good weak scaling means this time approaches a constant for large P.

Gustafson’s Law
Any large enough problem can be efficiently parallelized
(Efficiency→1).

Synchronization Overhead

I Most problems are not
purely concurrent.

I Some level of
synchronization or exchange
of information is needed
between tasks.

I While synchronizing,
nothing else happens:
increases Amdahl’s f.

I And synchronizations are
themselves costly.

Load Balancing

I The division of calculations
among the processors may
not be equal.

I Some processors would
already be done, while
others are still going.

I Effectively using less than P
processors: This reduces
the efficiency.

I Aim for load balanced
algorithms.

Intro to Message Passing Interface (MPI)

Distributed Memory Computing

MPI: Basics

MPI: Send & Receive

MPI: Collectives

Example: 1D Diffusion

MPI: Performance/Scaling

MPI: Non-Blocking Communications

MPI: More Collectives

MPI: MPI-IO

Example: CFD Code

MPI: Blocking

Message Passing Interface (MPI)

Non-Blocking Communications

I Mechanism for overlapping/interleaving communications and
useful computations

I Avoid deadlocks

I Can avoid system buffering, memory-to-memory copying and
improve performance

Non-Blocking: MPI Isend, MPI Irecv

I Returns immediately, posting request to system to initiate
communication.

I However, communication is not completed yet.

I Cannot tamper with the memory provided in these calls until
the communication is completed.

Message Passing Interface (MPI)

Non-Blocking Communications

I Mechanism for overlapping/interleaving communications and
useful computations

I Avoid deadlocks

I Can avoid system buffering, memory-to-memory copying and
improve performance

Non-Blocking: MPI Isend, MPI Irecv

I Returns immediately, posting request to system to initiate
communication.

I However, communication is not completed yet.

I Cannot tamper with the memory provided in these calls until
the communication is completed.

Diffusion: Had to
wait for

communications to
compute

• Could not compute end
points without guardcell data

• All work halted while all
communications occurred

• Significant parallel overhead

n-4 n-3 n-2 n-1 n

-1 0 1 2 3

Global Domain

Job 1

Job 2

Diffusion: Had to
wait?

• But inner zones could have
been computed just fine

• Ideally, would do inner zones
work while communications is
being done; then go back and
do end points.

n-4 n-3 n-2 n-1 n

-1 0 1 2 3

Global Domain

Job 1

Job 2

Nonblocking
Sends

• Allows you to get work done while
message is ‘in flight’

• Must not alter send buffer until send
has completed.

• C: MPI_Isend(void *buf, int
count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm
comm, MPI_Request *request)

• FORTRAN: MPI_ISEND(BUF,INTEGER
COUNT,INTEGER DATATYPE,INTEGER
DEST,INTEGER TAG, INTEGER COMM,
INTEGER REQUEST,INTEGER IERROR)

work..

work...

MPI_Isend(...)

Nonblocking
Recv

• Allows you to get work done while
message is ‘in flight’

• Must not access recv buffer until recv
has completed.

• C: MPI_Irecv(void *buf, int
count, MPI_Datatype datatype,
int source, int tag, MPI_Comm
comm, MPI_Request *request)

• FORTRAN: MPI_IREV(BUF,INTEGER
COUNT,INTEGER DATATYPE,INTEGER
SOURCE,INTEGER TAG, INTEGER
COMM, INTEGER REQUEST,INTEGER
IERROR) work..

work...

MPI_Irecv(...)

MPI: Non-Blocking Isend & Irecv

ierr = MPI Isend(sendptr, count, MPI TYPE,

destination,tag, Communicator, MPI Request)

ierr = MPI Irecv(rcvptr, count, MPI TYPE,

source, tag,Communicator, MPI Request)

I sendptr/rcvptr: pointer to message

I count: number of elements in ptr

I MPI TYPE: one of MPI DOUBLE, MPI FLOAT, MPI INT,
MPI CHAR, etc.

I destination/source: rank of sender/reciever

I tag: unique id for message pair

I Communicator: MPI COMM WORLD or user created

I MPI Request: Identify comm operations

How to tell if message is
completed?

• int MPI_Wait(MPI_Request *request,MPI_Status
*status);

• MPI_WAIT(INTEGER REQUEST,INTEGER
STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

• int MPI_Waitall(int count,MPI_Request
*array_of_requests, MPI_Status
*array_of_statuses);

• MPI_WAITALL(INTEGER COUNT,INTEGER ARRAY_OF_
REQUESTS(*),INTEGER
ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*),INTEGER

Also: MPI_Waitany, MPI_Test...

MPI: Wait & Waitall

I Will block until the communication(s) complete

ierr = MPI Wait(MPI Request *, MPI Status *)

ierr = MPI Waitall(count, MPI Request *, MPI Status

*)

I MPI Request: Identify comm operation(s)

I MPI Status: Status of comm operation(s)

I count: Number of comm operations(s)

MPI: Test

I Does not block, returns immediately

I Provides a mechanism for overlapping communication and
computation

ierr = MPI Test(MPI Request *, flag, MPI Status *)

I MPI Request: Identify comm operation(s)

I MPI Status: Status of comm operation(s)

I flag: true if comm complete; false if not sent/recv yet

Hands On
• In diffusion directory, cp diffusion{c,f}-mpi.{c,f90} to

diffusion{c,f}-mpi-nonblocking.{c,f90}

• Change to do non-blocking IO; post sends/recvs, do
inner work, wait for messages to clear, do end points

Intro to Message Passing Interface (MPI)

Distributed Memory Computing

MPI: Basics

MPI: Send & Receive

MPI: Collectives

Example: 1D Diffusion

MPI: Performance/Scaling

MPI: Non-Blocking Communications

MPI: More Collectives

MPI: MPI-IO

Example: CFD Code

MPI Collectives

I All processes in a group participate in communication, by
calling the same function with matching arguments.

I Types:
I Synchronization: MPI Barrier
I Data Movement: MPI Bcast, MPI Scatter, MPI Gather,

MPI Alltoall
I Collective Computation: MPI Allreduce

I Collective routines are blocking

MPI Collectives

MPI Collectives

MPI Collectives: Broadcast

I Broadcasts a message from process with rank “root” to all
processes in group, including itself.

I Amount of data sent must be equal to amount of data
received.

ierr = MPI Bcast(void *buf, count, MPI Type, root,

Comm)

I buf: buffer of data to send/recv

I count: number of elements in buf

I MPI TYPE: one of MPI DOUBLE, MPI FLOAT, MPI INT,
MPI CHAR, etc.

I root: “root” processor to send from

I Communicator: MPI COMM WORLD or user created

MPI Collectives: Scatter/Gather

I Scatter: Sends data from “root” to all processes in group.

I Gather: Recives data on “root” from all processes in group.

ierr = MPI Scatter(void *send buf, send count,

MPI Type, void *recv buf, recv count, MPI Type,

root, Comm)

ierr = MPI Gather(void *send buf, send count,

MPI Type, void *recv buf, recv count, MPI Type,

root, Comm)

I send buf: buffer of data to send

I send count: number of elements in send buf

I MPI TYPE: one of MPI DOUBLE, MPI INT, MPI CHAR, etc.

I recv buf: buffer of data to recv

I recv count: number of elements in recv buf

I root: “root” processor to send from

I Communicator: MPI COMM WORLD or user created

Example: Scatter/Gather

Scatter

I Simple Scatter example sending data from root to 4 procesors.

$cd mpi/collectives

$make

$mpirun -np 4 ./scatter

Gather

I Copy Scatter.c to Gather.c and reverse the process.

I Send from 4 processes and collect on root using MPI Gather()

Example: Scatter/Gather

Scatter

I Simple Scatter example sending data from root to 4 procesors.

$cd mpi/collectives

$make

$mpirun -np 4 ./scatter

Gather

I Copy Scatter.c to Gather.c and reverse the process.

I Send from 4 processes and collect on root using MPI Gather()

MPI Collectives: Barrier

I Blocks calling process until all group members have called it.

I Decreases performance. Try to avoid using it explicitly.

ierr = MPI Barrier(Comm)

I Communicator: MPI COMM WORLD or user created

Intro to Message Passing Interface (MPI)

Distributed Memory Computing

MPI: Basics

MPI: Send & Receive

MPI: Collectives

Example: 1D Diffusion

MPI: Performance/Scaling

MPI: Non-Blocking Communications

MPI: More Collectives

MPI: MPI-IO

Example: CFD Code

MPI-IO
• Would like the new, parallel

version to still be able to
write out single output files.

• But at no point does a single
processor have entire
domain...

Parallel I/O
• Each processor has to write

its own piece of the domain..

• without overwriting the other.

• Easier if there is global
coordination

• Uses MPI to coordinate
reading/writing to single file

• Coordination -- collective
operations.

MPI-IO

...stuff...

MPI-IO: Example

{

. . .
MPI Offset offset = (msgsize*rank);

MPI File file;

MPI Status stat;

MPI File open(MPI COMM WORLD, "helloworld.txt",

MPI MODE CREATE | MPI MODE WRONLY, MPI INFO NULL,

&file);

MPI File seek(file, offset, MPI SEEK SET);

MPI File write(file, msg, msgsize, MPI CHAR,

&stat);

MPI File close(&file);

. . .
}

MPI-IO: Example

{

. . .
MPI Offset offset = (msgsize*rank);

MPI File file;

MPI Status stat;

MPI File open(MPI COMM WORLD, "helloworld.txt",

MPI MODE CREATE | MPI MODE WRONLY, MPI INFO NULL,

&file);

//Collective Coordinated Write

MPI File write at all(file, offset, msg, msg-

size, MPI CHAR, &stat);

MPI File close(&file);

. . .
}

MPI-IO: MPI File open

I MPI File open

ierr = MPI File open(communicator, filename, mode,

MPI Info, MPI File);

ierr = MPI File close(MPI File);

I communicator: MPI COMM WORLD or user created

I char * filename: character string filename

I int mode: Access modes, MPI MODE CREATE,
MPI MODE WRONLY, MPI MODE RDWR, etc.

I MPI Info: extra info or MPI INFO NULL

I MPI File: MPI file handle

MPI-IO: MPI File write at all

I Collective operation across all Comm processors

ierr = MPI File write at all(MPI File,

MPI Offset,buffer, count, MPI Type, MPI Status)

I MPI File: MPI file handle

I MPI Offset: MPI file offset location

I void * buffer: buffer of data to write

I int count: number of elements in ptr

I MPI TYPE: one of MPI FLOAT, MPI INT, MPI CHAR, etc.

I MPI Request: Identify comm operations

MPI-IO File View
• Each process has a view of the file that consists of only of the parts

accessible to it.

• For writing, hopefully non-overlapping!

• Describing this - how data is laid out in a file - is very similar to
describing how data is laid out in memory...

MPI-IO File View
• int MPI_File_set_view(

 MPI_File fh,
 MPI_Offset disp,
 MPI_Datatype etype,
 MPI_Datatype filetype,
 char *datarep,
 MPI_Info info)

disp

/* displacement in bytes from start */
/* elementary type */
/* file type; prob different for each proc */
/* ‘native’ or ‘internal’ */
/* MPI_INFO_NULL for today */

etypes

MPI-IO File View
• int MPI_File_set_view(

 MPI_File fh,
 MPI_Offset disp,
 MPI_Datatype etype,
 MPI_Datatype filetype,
 char *datarep,
 MPI_Info info)

/* displacement in bytes from start */
/* elementary type */
/* file type; prob different for each proc */
/* ‘native’ or ‘internal’ */
/* MPI_INFO_NULL */

{ { {

Filetypes (made up of etypes;
repeat as necessary)

MPI-IO File Write
• int MPI_File_write_all(

 MPI_File fh,
 void *buf,
 int count,
 MPI_Datatype datatype,
 MPI_Status *status)

Writes (_all: collectively) to part of file within view.

Example: MPI-IO

MPI-IO Example

I Simple Example showing MPI writing to a single file.

$cd mpi/mpiio

$make

$mpirun -np 4 ./sine

$./dosineplot

Anything wrong with this code?

Intro to Message Passing Interface (MPI)

Distributed Memory Computing

MPI: Basics

MPI: Send & Receive

MPI: Collectives

Example: 1D Diffusion

MPI: Performance/Scaling

MPI: Non-Blocking Communications

MPI: More Collectives

MPI: MPI-IO

Example: CFD Code

Compressible Fluid
Dynamics

⇥

⇥t
� +⇤ · (�v) = 0

⇥

⇥t
(�v) +⇤ · (�vv) = �⇤p

⇥

⇥t
(�E) +⇤ · ((�E + p)v) = 0

Equations of
Hydrodynamics
• Density, momentum, and

energy equations

• Supplemented by an equation
of state - pressure as a
function of dens, energy

Discretizing
Derivatives

• Done by finite differencing the
discretized values

• Implicitly or explicitly involves
interpolating data and taking
derivative of the interpolant

• More accuracy - larger
‘stencils’

i-2 i-1 i i+1 i+2

+1 -2 +1

d2Q

dx2

����
i

⇥ Qi+1 � 2Qi + Qi�1

�x2

Guardcells
• How to deal with boundaries?

• Because stencil juts out, need
information on cells beyond
those you are updating

• Pad domain with ‘guard cells’
so that stencil works even for
the 0th point in domain

• Fill guard cells with values
such that the required
boundary conditions are met

Global Domain

0 1 2 3 4 5 6 7

ng = 1
loop from ng, N - 2 ng

Finite Volume
Method

• Conservative; very well suited
to high-speed flows with
shocks

• At each timestep, calculate
fluxes using interpolation/finite
differences, and update cell
quantities.

• Use conserved variables -- eg,
momentum, not velocity.

Fx

Fy

Single-Processor
hydro code

• cd hydro{c,f}; make

• ./hydro 100

• Takes options:
• number of points to write

• Outputs image (ppm) of initial
conditions, final state (plots
density)

• display ics.ppm

• display dens.ppm

• Set initial conditions

• Loop, calling timestep() and
maybe some output routines
(plot() - contours)

• At beginning and end, save an
image file with outputppm()

• All data stored in array u.

hydro.c

Single-Processor
hydro code

• Set initial conditions

• Loop, calling timestep() and
maybe some output routines
(plot() - contours)

• At beginning and end, save an
image file with outputppm()

• All data stored in array u.

hydro.f90

Single-Processor
hydro code

Plotting to
screen

• plot.c, plot.f90

• Every 10 timesteps

• Find min, max of pressure,
density

• Plot 5 contours of density
(red) and pressure (green)

• pgplot library (old, but works).

Plotting to file
• ppm.c, ppm.f90

• PPM format -- binary (w/ ascii
header)

• Find min, max of density

• Calculate r,g,b values for
scaled density (black = min,
yellow = max)

• Write header, then data.

Data structure
• u : 3 dimensional array

containing each variable in 2d
space

• eg, u[j][i][IDENS]

• or u(idens, i, j)

solver.f90 (initialconditions)

domain.h

solver.c (initialconditions)

domain.h

Nx

nguardnguard

0 1 2 3 4 5 6
q

7

u[2][3][DENSVAR];
u[2][3][MOMXVAR];
u[2][3][MOMYVAR];
u[2][3][ENERVAR];

y

x

u(idens,4,3)
u(imomx,4,3)
u(imomy,4,3)
u(iener,4,3)

x

Laid out in
memory (C)

x

y = 2
y = 3

0 1 2 3 4 5 6 7x = 0 1 2 3 4 5 6 7

Same way as in an image file
(one horizontal row at a time)

4 floats: dens, momx, momy, ener

Laid out in memory
(FORTRAN)

x

y = 3
y = 4

1 2 3 4 5 6 7 8x = 1 2 3 4 5 6 7 8

Same way as in an image file
(one horizontal row at a time)

4 floats: dens, momx, momy, ener

Timestep
routine

• Apply boundary conditions

• X sweep, Y sweep

• Transpose entire domain , so Y
sweep is just an X sweep

• (unusual approach! But has
advantages. Like matrix multiply.)

• Note - dt calculated each step
(minimum across domain.)

timestep
solver.f90

Timestep
routine

• Apply boundary conditions

• X sweep, Y sweep

• Transpose entire domain , so Y
sweep is just an X sweep

• (unusual approach! But has
advantages. Like matrix multiply.)

• Note - dt calculated each step
(minimum across domain.)

timestep
solver.c

Xsweep routine

• Go through each x “pencil” of
cells

• Do 1d hydrodynamics routine on
that pencil.

xsweep
solver.c

xsweep
solver.f90

What do data
dependancies
look like for

this?

Data
dependencies

• Previous timestep must be
completed before next one
started.

• Within each timestep,

• Each tvd1d “pencil” can be
done independently

• All must be done before
transpose, BCs

BCs

tvd1d tvd1d tvd1d tvd1d...

transpose

BCs

tvd1d tvd1d tvd1d tvd1d...

MPIing the
code

• Domain decomposition

MPIing the
code

• Domain decomposition

• For simplicity, for now we’ll
just implement decomposition
in one direction, but we will
design for full 2d
decomposition

MPIing the
code

• Domain decomposition

• We can do as with diffusion
and figure out out neighbours
by hand, but MPI has a better
way...

Create new
communicator

with new topology
• MPI_Cart_create

(MPI_Comm comm_old,
int ndims, int *dims,
int *periods, int reorder,
MPI_Comm *comm_cart) (0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

size = 9
dims = (2,2)
rank = 3

Create new
communicator

with new topology
• MPI_Cart_create (

integer comm_old,
integer ndims,
integer [dims],
logical [periods],
integer reorder,
integer comm_cart,
integer ierr)

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

size = 9
dims = (2,2)
rank = 3

Create new
communicator

with new topology

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

size = 9
dims = (2,2)
rank = 3

C
ierr = MPI_Cart_shift(MPI_COMM new_comm, int dim,
 int shift, int *left, int *right)
ierr = MPI_Cart_coords(MPI_COMM new_comm, int rank,
 int ndims, int *gridcoords)

Create new
communicator

with new topology

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

size = 9
dims = (2,2)
rank = 3

FORTRAN
call MPI_Cart_shift(integer new_comm, dim, shift,
 left, right, ierr)
call MPI_Cart_coords(integer new_comm, rank,
 ndims, [gridcoords], ierr)

Let’s try starting
to do this
together

• In a new directory:

• add mpi_init, _finalize,
comm_size.

• mpi_cart_create

• rank on new communicator.

• neighbours

• Only do part of domain

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

size = 9
dims = (2,2)
rank = 3

Next
• File IO - have each process

write its own file so don’t
overwrite

• Coordinate min, max across
processes for contours,
images.

• Coordinate min in cfl routine.

MPIing the
code

• Domain decomposition

• Lots of data - ensures locality

• How are we going to handle
getting non-local information
across processors?

Guardcells
• Works for parallel

decomposition!

• Job 1 needs info on Job 2s 0th
zone, Job 2 needs info on Job
1s last zone

• Pad array with ‘guardcells’ and
fill them with the info from the
appropriate node by message
passing or shared memory

• Hydro code: need guardcells 2
deep

n-4 n-3 n-2 n-1 n

-1 0 1 2 3

Global Domain

Job 1

Job 2

Guard cell fill
• When we’re doing boundary

conditions.

• Swap guardcells with
neighbour.

1 2

1: u(:, nx:nx+ng, ng:ny-ng)
→ 2: u(:,1:ng, ng:ny-ng)

2: u(:, ng+1:2*ng, ng:ny-ng)
→ 1: u(:, nx+ng+1:nx+2*ng, ng:ny-ng)

(ny-2*ng)*ng values to swap

Cute way for
Periodic BCs

• Actually make the
decomposed mesh periodic;

• Make the far ends of the mesh
neighbors

• Don’t know the difference
between that and any other
neighboring grid

• Cart_create sets this up for us
automatically upon request.

1 2

Implementing in
MPI

• No different in principle than
diffusion

• Just more values

• And more variables: dens,
ener, imomx....

• Simplest way: copy all the
variables into an
NVARS*(ny-2*ng)*ng sized

1 2

1: u(:, nx:nx+ng, ng:ny-ng)
→ 2: u(:,1:ng, ng:ny-ng)

2: u(:, ng+1:2*ng, ng:ny-ng)
→ 1: u(:, nx+ng+1:nx+2*ng, ng:ny-ng)

nvars*(ny-2*ng)*ng values to swap

Implementing in
MPI

• No different in principle than
diffusion

• Just more values

• And more variables: dens,
ener, temp....

• Simplest way: copy all the
variables into an
NVARS*(ny-2*ng)*ng sized

1

2

Implementing in
MPI

• Even simpler way:

• Loop over values, sending
each one, rather than
copying into buffer.

• NVARS*nguard*(ny-2*nguard
) latency hit.

• Would completely dominate
communications cost.

1 2

Implementing in
MPI

• Let’s do this together

• solver.f90/solver.c; implement
to bufferGuardcells

• When do we call this in
timestep?

Implementing in
MPI

• This approach is simple, but
introduces extraneous copies

• Memory bandwidth is already
a bottleneck for these codes

• It would be nice to just point
at the start of the guardcell
data and have MPI read it
from there.

1

2

Implementing in
MPI

• Let me make one
simplification for now; copy
whole stripes

• This isn’t necessary, but will
make stuff simpler at first

• Only a cost of 2xNg2 = 8
extra cells (small fraction of
~200-2000 that would
normally be copied)

1

2

Implementing in
MPI

• Recall how 2d memory is
laid out

• y-direction guardcells
contiguous

i

j

Implementing in
MPI

• Can send in one go:

i

j

 call MPI_Send(u(1,1,ny), nvars*nguard*ny, MPI_REAL,)
 ierr = MPI_Send(&(u[ny][0][0]), nvars*nguard*ny, MPI_FLOAT,)

Implementing in
MPI

• Creating MPI Data types.

• MPI_Type_contiguous:
simplest case. Lets you build
a string of some other type.

1

 MPI_Datatype ybctype;

ierr = MPI_Type_contiguous(nvals*nguard*(ny), MPI_REAL, &ybctype);
 ierr = MPI_Type_commit(&ybctype);

 MPI_Send(&(u[ny][0][0]), 1, ybctype,)

ierr = MPI_Type_free(&ybctype);

Count OldType &NewType

Implementing in
MPI

• Creating MPI Data types.

• MPI_Type_contiguous:
simplest case. Lets you build
a string of some other type.

1

 integer :: ybctype

call MPI_Type_contiguous(nvals*nguard*(ny), MPI_REAL, ybctype, ierr)
 call MPI_Type_commit(ybctype, ierr)

 MPI_Send(u(1,1,ny), 1, ybctype,)

call MPI_Type_free(ybctype, ierr)

Count OldType NewType

Implementing in
MPI

• Recall how 2d memory is
laid out

• x gcs or boundary values not
contiguous

• How do we do something
like this for the x-direction?

i

j

Implementing in
MPI

i

jint MPI_Type_vector(
 int count,
 int blocklen,
 int stride,
 MPI_Datatype old_type,
 MPI_Datatype *newtype);

stride = nx*nvars

blocklen = ng*nvars

count = ny

Implementing in
MPI

i

jierr = MPI_Type_vector(ny, nguard*nvars,
 nx*nvars, MPI_FLOAT, &xbctype);

ierr = MPI_Type_commit(&xbctype);

ierr = MPI_Send(&(u[0][nx][0]), 1, xbctype,)

ierr = MPI_Type_free(&xbctype);

stride = nx*nvars

blocklen = ng*nvars

count = ny

Implementing in
MPI

i

jcall MPI_Type_vector(ny, nguard*nvars,
 nx*nvars, MPI_REAL, xbctype, ierr)

call MPI_Type_commit(xbctype, ierr)

call MPI_Send(u(1,nx,1), 1, ybctype,)

call MPI_Type_free(xbctype, ierr)

stride = nx*nvars

blocklen = ng*nvars

count = ny

Implementing in
MPI

i

j• Check: total amount of data =
blocklen*count = ny*ng*nvars

• Skipped over stride*count =
nx*ny*nvars

stride = nx*nvars

blocklen = ng*nvars

count = ny

Implementing in
MPI

• Hands-On: Implement X
guardcell filling with types.

• Implement vectorGuardCells

• For now, create/free type each
cycle through; ideally, we’d
create/free these once.

In MPI, there’s
always more

than one way..
• MPI_Type_create_subarray ;

piece of a multi-dimensional
array.

• Much more convenient for
higher-dimensional arrays

• (Otherwise, need vectors of
vectors of vectors...)

int MPI_Type_create_subarray(
 int ndims, int *array_of_sizes,
 int *array_of_subsizes,
 int *array_of_starts,
 int order,
 MPI_Datatype oldtype,
 MPI_Datatype &newtype);

call MPI_Type_create_subarray(
 integer ndims, [array_of_sizes],
 [array_of_subsizes],
 [array_of_starts],
 order, oldtype,
 newtype, ierr)

	Distributed Memory Computing
	MPI: Basics
	MPI: Send & Receive
	MPI: Collectives
	Example: 1D Diffusion
	MPI: Performance/Scaling
	MPI: Non-Blocking Communications
	MPI: More Collectives
	MPI: MPI-IO
	Example: CFD Code

