
1/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Debugging

Ramses van Zon
SciNet HPC Consortium

University of Toronto

July 17, 2015

2/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Outline

I Debugging Basics

I Debugging with the command line: GDB

I Memory debugging with the command line: valgrind

I (Parallel) Debugging with DDT

3/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Debugging basics

4/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Debugging basics

Help, my program doesn’t work!
$ gcc -O3 answer.c
$./a.out
Segmentation fault↓

a miracle occurs
↓

My program works brilliantly!
$ gcc -O3 answer.c
$./a.out
42

I Unfortunately, “miracles” are not yet supported by SciNet.

Debugging:

Methodical process of finding and fixing flaws in software

4/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Debugging basics

Help, my program doesn’t work!

$ gcc -O3 answer.c
$./a.out
Segmentation fault↓

a miracle occurs
↓

My program works brilliantly!
$ gcc -O3 answer.c
$./a.out
42

I Unfortunately, “miracles” are not yet supported by SciNet.

Debugging:

Methodical process of finding and fixing flaws in software

4/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Debugging basics

Help, my program doesn’t work!
$ gcc -O3 answer.c
$./a.out
Segmentation fault

↓
a miracle occurs

↓
My program works brilliantly!

$ gcc -O3 answer.c
$./a.out
42

I Unfortunately, “miracles” are not yet supported by SciNet.

Debugging:

Methodical process of finding and fixing flaws in software

4/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Debugging basics

Help, my program doesn’t work!
$ gcc -O3 answer.c
$./a.out
Segmentation fault↓

a miracle occurs
↓

My program works brilliantly!
$ gcc -O3 answer.c
$./a.out
42

I Unfortunately, “miracles” are not yet supported by SciNet.

Debugging:

Methodical process of finding and fixing flaws in software

4/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Debugging basics

Help, my program doesn’t work!
$ gcc -O3 answer.c
$./a.out
Segmentation fault↓

a miracle occurs
↓

My program works brilliantly!

$ gcc -O3 answer.c
$./a.out
42

I Unfortunately, “miracles” are not yet supported by SciNet.

Debugging:

Methodical process of finding and fixing flaws in software

4/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Debugging basics

Help, my program doesn’t work!
$ gcc -O3 answer.c
$./a.out
Segmentation fault↓

a miracle occurs
↓

My program works brilliantly!
$ gcc -O3 answer.c
$./a.out
42

I Unfortunately, “miracles” are not yet supported by SciNet.

Debugging:

Methodical process of finding and fixing flaws in software

4/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Debugging basics

Help, my program doesn’t work!
$ gcc -O3 answer.c
$./a.out
Segmentation fault↓

a miracle occurs
↓

My program works brilliantly!
$ gcc -O3 answer.c
$./a.out
42

I Unfortunately, “miracles” are not yet supported by SciNet.

Debugging:

Methodical process of finding and fixing flaws in software

4/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Debugging basics

Help, my program doesn’t work!
$ gcc -O3 answer.c
$./a.out
Segmentation fault↓

a miracle occurs
↓

My program works brilliantly!
$ gcc -O3 answer.c
$./a.out
42

I Unfortunately, “miracles” are not yet supported by SciNet.

Debugging:

Methodical process of finding and fixing flaws in software

5/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Common symptoms

Errors at compile time

I Syntax errors: easy to fix

I Library issues

I Cross-compiling

I Compiler warnings
Always switch this on, and fix or understand them!

But just because it compiles does not mean it is correct!

Runtime errors

I Floating point exceptions

I Segmentation fault

I Aborted

I Incorrect output (nans)

5/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Common symptoms

Errors at compile time

I Syntax errors: easy to fix

I Library issues

I Cross-compiling

I Compiler warnings

Always switch this on, and fix or understand them!

But just because it compiles does not mean it is correct!

Runtime errors

I Floating point exceptions

I Segmentation fault

I Aborted

I Incorrect output (nans)

5/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Common symptoms

Errors at compile time

I Syntax errors: easy to fix

I Library issues

I Cross-compiling

I Compiler warnings
Always switch this on, and fix or understand them!

But just because it compiles does not mean it is correct!

Runtime errors

I Floating point exceptions

I Segmentation fault

I Aborted

I Incorrect output (nans)

5/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Common symptoms

Errors at compile time

I Syntax errors: easy to fix

I Library issues

I Cross-compiling

I Compiler warnings
Always switch this on, and fix or understand them!

But just because it compiles does not mean it is correct!

Runtime errors

I Floating point exceptions

I Segmentation fault

I Aborted

I Incorrect output (nans)

5/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Common symptoms

Errors at compile time

I Syntax errors: easy to fix

I Library issues

I Cross-compiling

I Compiler warnings
Always switch this on, and fix or understand them!

But just because it compiles does not mean it is correct!

Runtime errors

I Floating point exceptions

I Segmentation fault

I Aborted

I Incorrect output (nans)

5/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Common symptoms

Errors at compile time

I Syntax errors: easy to fix

I Library issues

I Cross-compiling

I Compiler warnings
Always switch this on, and fix or understand them!

But just because it compiles does not mean it is correct!

Runtime errors

I Floating point exceptions

I Segmentation fault

I Aborted

I Incorrect output (nans)

6/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Common issues

Arithmetic corner cases (sqrt(-0.0)), infinities

Memory access Index out of range, uninitialized pointers.

Logic Infinite loop, corner cases

Misuse wrong input, ignored error, no initialization

Syntax wrong operators/arguments

Resource starvation memory leak, quota overflow

Parallel race conditions, deadlock

7/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

What is going on?

I Almost always, a condition you are sure is satisfied, is not.

I But your programs likely relies on many such assumptions.

I First order of business is finding out what goes wrong, and
what assumption is not warranted.

I Debugger: program to help detect errors in other programs.

I You are the real debugger.

8/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

How to avoid debugging:

I Write better code.

I Simpler, clear, straightforward code.
I Modularity (no global variables or 10,000-line functions)
I Avoid ’cute’ tricks (no obfuscated C code winners)

I Don’t write code, use existing libraries

I Write (simple) tests for each part of your code

I Use version control so you can ’roll back’.

9/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Debugging Workflow

First things first:

I As soon as you are convinced there is a real problem, create
the simplest situation in which it reproducibly occurs.

I This is science: model, hypothesis, experiment, conclusion.

I Try a smaller problem size, turning off physical effects with
options, etc. until you have a simple, fast repeatable example
of the bug.

I Try to narrow it down to a particular module/function/class.
For fortran, switch on bounds checking (-fbounds-check.)

I Now you’re ready to start debugging.

10/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Ways to debug

I Preemptive:
I Turn on compiler warnings: fix or understand them!

$ gcc/gfortran -Wall

I Check your assumptions (e.g. use assert).

I Inspect the exit code and read the error messages!

I Use a debugger

I Add print statements←No way to debug!

10/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Ways to debug

I Preemptive:
I Turn on compiler warnings: fix or understand them!

$ gcc/gfortran -Wall

I Check your assumptions (e.g. use assert).

I Inspect the exit code and read the error messages!

I Use a debugger

I Add print statements←No way to debug!

10/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Ways to debug

I Preemptive:
I Turn on compiler warnings: fix or understand them!

$ gcc/gfortran -Wall

I Check your assumptions (e.g. use assert).

I Inspect the exit code and read the error messages!

I Use a debugger

I Add print statements←No way to debug!

10/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Ways to debug

I Preemptive:
I Turn on compiler warnings: fix or understand them!

$ gcc/gfortran -Wall

I Check your assumptions (e.g. use assert).

I Inspect the exit code and read the error messages!

I Use a debugger

I Add print statements←No way to debug!

10/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Ways to debug

I Preemptive:
I Turn on compiler warnings: fix or understand them!

$ gcc/gfortran -Wall

I Check your assumptions (e.g. use assert).

I Inspect the exit code and read the error messages!

I Use a debugger

I Add print statements

←No way to debug!

10/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Ways to debug

I Preemptive:
I Turn on compiler warnings: fix or understand them!

$ gcc/gfortran -Wall

I Check your assumptions (e.g. use assert).

I Inspect the exit code and read the error messages!

I Use a debugger

I Add print statements←No way to debug!

11/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements
2. compile
3. run
4. analyze output bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . . There’s a better way!

11/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements
2. compile
3. run
4. analyze output bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . . There’s a better way!

11/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements

2. compile
3. run
4. analyze output bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . . There’s a better way!

11/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements
2. compile

3. run
4. analyze output bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . . There’s a better way!

11/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements
2. compile
3. run

4. analyze output bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . . There’s a better way!

11/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements
2. compile
3. run
4. analyze output

bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . . There’s a better way!

11/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements
2. compile
3. run
4. analyze output bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . . There’s a better way!

11/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements
2. compile
3. run
4. analyze output bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . . There’s a better way!

11/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements
2. compile
3. run
4. analyze output bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . . There’s a better way!

11/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements
2. compile
3. run
4. analyze output bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . . There’s a better way!

11/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements
2. compile
3. run
4. analyze output bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . . There’s a better way!

11/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements
2. compile
3. run
4. analyze output bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . .

There’s a better way!

11/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements
2. compile
3. run
4. analyze output bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . . There’s a better way!

12/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Symbolic debuggers

13/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Symbolic debuggers

Features

1. Crash inspection

2. Function call stack

3. Step through code

4. Automated interruption

5. Variable checking and setting

Use a graphical debugger or not?

I Local work station: graphical is convenient

I Remotely (SciNet): can be slow

In any case, graphical and text-based debuggers use the same
concepts.

13/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Symbolic debuggers

Features

1. Crash inspection

2. Function call stack

3. Step through code

4. Automated interruption

5. Variable checking and setting

Use a graphical debugger or not?

I Local work station: graphical is convenient

I Remotely (SciNet): can be slow

In any case, graphical and text-based debuggers use the same
concepts.

13/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Symbolic debuggers

Features

1. Crash inspection

2. Function call stack

3. Step through code

4. Automated interruption

5. Variable checking and setting

Use a graphical debugger or not?

I Local work station: graphical is convenient

I Remotely (SciNet): can be slow

In any case, graphical and text-based debuggers use the same
concepts.

13/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Symbolic debuggers

Features

1. Crash inspection

2. Function call stack

3. Step through code

4. Automated interruption

5. Variable checking and setting

Use a graphical debugger or not?

I Local work station: graphical is convenient

I Remotely (SciNet): can be slow

In any case, graphical and text-based debuggers use the same
concepts.

14/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Symbolic debuggers

Preparing the executable

I Add required compilination flags:
$ gcc/g++/gfortran -g [-gstabs]

$ icc/icpc/ifort -g [-debug parallel]

$ nvcc -g -G

I Optional: switch off optimization -O0

Command-line based symbolic debuggers: gdb

14/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Symbolic debuggers

Preparing the executable

I Add required compilination flags:
$ gcc/g++/gfortran -g [-gstabs]

$ icc/icpc/ifort -g [-debug parallel]

$ nvcc -g -G

I Optional: switch off optimization -O0

Command-line based symbolic debuggers: gdb

15/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB

16/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

What is GDB?

I Free, GNU license, symbolic debugger.

I Available on many systems.

I Been around for a while, but still developed and up-to-date

I Text based, but has a ’-tui’ option.

$ module load gcc/4.7.2

$ gcc -Wall -g -O0 example.c -o example

$ module load gdb/7.6

$ gdb -tui example

...

(gdb)

17/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB basic building blocks

18/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Demonstration of GDB features

I We will look at the features of gdb using a running example.

I Example reads integers from command line and sums them.

I There’s a C and a Fortran version.

$ ssh USER@login.scinet.utoronto.ca -X

$ ssh gpc01 -X

$ qsub -l nodes=1:ppn=8,walltime=8:00:00 -I -X -qteach

$ cp -r /scinet/course/ss2015/debug $SCRATCH
$ source $SCRATCH/debug/code/setup
$ cd $SCRATCH/debug/code/bugexample
$ make bugexample #(or make bugexample f)

19/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB building block #1: Inspect crashes
Inspecting core files

Core = file containing state of program after a crash

I needs max core size set (ulimit -c <number>)

I gdb reads with gdb <executable> <corefile>

I it will show you where the program crashed

No core file?

I can start gdb as gdb <executable>

I type run to start program

I gdb will show you where the program crashed if it does.

Related gdb commands

run run the executable from the start
list list code lines (where current execution is, or range)

19/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB building block #1: Inspect crashes
Inspecting core files

Core = file containing state of program after a crash

I needs max core size set (ulimit -c <number>)

I gdb reads with gdb <executable> <corefile>

I it will show you where the program crashed

No core file?

I can start gdb as gdb <executable>

I type run to start program

I gdb will show you where the program crashed if it does.

Related gdb commands

run run the executable from the start
list list code lines (where current execution is, or range)

19/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB building block #1: Inspect crashes
Inspecting core files

Core = file containing state of program after a crash

I needs max core size set (ulimit -c <number>)

I gdb reads with gdb <executable> <corefile>

I it will show you where the program crashed

No core file?

I can start gdb as gdb <executable>

I type run to start program

I gdb will show you where the program crashed if it does.

Related gdb commands

run run the executable from the start
list list code lines (where current execution is, or range)

19/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB building block #1: Inspect crashes
Inspecting core files

Core = file containing state of program after a crash

I needs max core size set (ulimit -c <number>)

I gdb reads with gdb <executable> <corefile>

I it will show you where the program crashed

No core file?

I can start gdb as gdb <executable>

I type run to start program

I gdb will show you where the program crashed if it does.

Related gdb commands

run run the executable from the start
list list code lines (where current execution is, or range)

19/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB building block #1: Inspect crashes
Inspecting core files

Core = file containing state of program after a crash

I needs max core size set (ulimit -c <number>)

I gdb reads with gdb <executable> <corefile>

I it will show you where the program crashed

No core file?

I can start gdb as gdb <executable>

I type run to start program

I gdb will show you where the program crashed if it does.

Related gdb commands

run run the executable from the start
list list code lines (where current execution is, or range)

19/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB building block #1: Inspect crashes
Inspecting core files

Core = file containing state of program after a crash

I needs max core size set (ulimit -c <number>)

I gdb reads with gdb <executable> <corefile>

I it will show you where the program crashed

No core file?

I can start gdb as gdb <executable>

I type run to start program

I gdb will show you where the program crashed if it does.

Related gdb commands

run run the executable from the start
list list code lines (where current execution is, or range)

20/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB building block #1: Inspect crashes

$ ulimit -c 1024

$./bugexample #(or ./bugexample_f)

Give some integers as command-line arguments

$./bugexample 1 3 5

Segmentation fault (core dumped)

$ gdb ./bugexample core.2387 # core number varies

GNU gdb (GDB) 7.6

Copyright (C) 2013 Free Software Foundation, Inc.

...

Reading symbols from debug/code/bugexample/bugexample...done.

[New LWP 3817]

warning: Can’t read pathname for load map: Input/output error.

Core was generated by ‘./bugexample 1 3 5’.

Program terminated with signal 11, Segmentation fault.

#0 0x4007d5 in sum_integers (n=3, a=0x4) at intlisttools.c:30

30 s += a[i];

(gdb)

20/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB building block #1: Inspect crashes

$ ulimit -c 1024

$./bugexample #(or ./bugexample_f)

Give some integers as command-line arguments

$./bugexample 1 3 5

Segmentation fault (core dumped)

$ gdb ./bugexample core.2387 # core number varies

GNU gdb (GDB) 7.6

Copyright (C) 2013 Free Software Foundation, Inc.

...

Reading symbols from debug/code/bugexample/bugexample...done.

[New LWP 3817]

warning: Can’t read pathname for load map: Input/output error.

Core was generated by ‘./bugexample 1 3 5’.

Program terminated with signal 11, Segmentation fault.

#0 0x4007d5 in sum_integers (n=3, a=0x4) at intlisttools.c:30

30 s += a[i];

(gdb)

20/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB building block #1: Inspect crashes

$ ulimit -c 1024

$./bugexample #(or ./bugexample_f)

Give some integers as command-line arguments

$./bugexample 1 3 5

Segmentation fault (core dumped)

$ gdb ./bugexample core.2387 # core number varies

GNU gdb (GDB) 7.6

Copyright (C) 2013 Free Software Foundation, Inc.

...

Reading symbols from debug/code/bugexample/bugexample...done.

[New LWP 3817]

warning: Can’t read pathname for load map: Input/output error.

Core was generated by ‘./bugexample 1 3 5’.

Program terminated with signal 11, Segmentation fault.

#0 0x4007d5 in sum_integers (n=3, a=0x4) at intlisttools.c:30

30 s += a[i];

(gdb)

21/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB building block #1: Inspect crashes

...

Program terminated with signal 11, Segmentation fault.

#0 0x4007d5 in sum_integers (n=3, a=0x4) at intlisttools.c:30

30 s += a[i];

This points at the line where the error is detected.

More context:

(gdb) list

25 /* Compute the sum of the array of integers */

26 int sum_integers(int n, int* a)

27 {

28 int i, s;

29 for (i=0; i<n; i++)

30 s += a[i];

31 return s;

32 }

(gdb)

21/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB building block #1: Inspect crashes

...

Program terminated with signal 11, Segmentation fault.

#0 0x4007d5 in sum_integers (n=3, a=0x4) at intlisttools.c:30

30 s += a[i];

This points at the line where the error is detected. More context:

(gdb) list

25 /* Compute the sum of the array of integers */

26 int sum_integers(int n, int* a)

27 {

28 int i, s;

29 for (i=0; i<n; i++)

30 s += a[i];

31 return s;

32 }

(gdb)

21/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB building block #1: Inspect crashes

...

Program terminated with signal 11, Segmentation fault.

#0 0x4007d5 in sum_integers (n=3, a=0x4) at intlisttools.c:30

30 s += a[i];

This points at the line where the error is detected. More context:

(gdb) list

25 /* Compute the sum of the array of integers */

26 int sum_integers(int n, int* a)

27 {

28 int i, s;

29 for (i=0; i<n; i++)

30 s += a[i];

31 return s;

32 }

(gdb)

21/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB building block #1: Inspect crashes

...

Program terminated with signal 11, Segmentation fault.

#0 0x4007d5 in sum_integers (n=3, a=0x4) at intlisttools.c:30

30 s += a[i];

This points at the line where the error is detected. More context:

(gdb) list

25 /* Compute the sum of the array of integers */

26 int sum_integers(int n, int* a)

27 {

28 int i, s;

29 for (i=0; i<n; i++)

30 s += a[i];

31 return s;

32 }

(gdb)

22/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB building block #2: Function call stack

Interrupting program

I Press Crtl-C while program is running in gdb

I gdb will show you where the program was.

Stack trace

I From what functions was this line reached?

I What were the arguments of those function calls?

gdb commands

backtrace function call stack
continue continue
down go to called function
up go to caller

22/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB building block #2: Function call stack

Interrupting program

I Press Crtl-C while program is running in gdb

I gdb will show you where the program was.

Stack trace

I From what functions was this line reached?

I What were the arguments of those function calls?

gdb commands

backtrace function call stack
continue continue
down go to called function
up go to caller

22/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB building block #2: Function call stack

Interrupting program

I Press Crtl-C while program is running in gdb

I gdb will show you where the program was.

Stack trace

I From what functions was this line reached?

I What were the arguments of those function calls?

gdb commands

backtrace function call stack
continue continue
down go to called function
up go to caller

23/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB building block #2: Function call stack

...

(gdb) list

25 /* Compute the sum of the array of integers */

26 int sum_integers(int n, int* a)

27 {

28 int i, s;

29 for (i=0; i<n; i++)

30 s += a[i];

31 return s;

32 }

(gdb) backtrace

#0 0x4007d5 in sum_integers (n=3,a=0x4) at intlisttools.c:30

#1 0x40082a in process (argc=4,argv=0x7fff0b89ce58) at process.c:11

#2 0x4006d3 in main (argc=4,argv=0x7fff0b89ce58) at bugexample.c:12

(gdb)

24/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB building block #3: Variables

Checking a variable

I Can print the value of a variable

I Can keep track of variable (print at prompt)

I Can stop the program when variable changes

I Can change a variable (“what if . . . ”)

gdb commands

print print variable
display print at every prompt
set variable change variable
watch stop if variable changes

24/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB building block #3: Variables

Checking a variable

I Can print the value of a variable

I Can keep track of variable (print at prompt)

I Can stop the program when variable changes

I Can change a variable (“what if . . . ”)

gdb commands

print print variable
display print at every prompt
set variable change variable
watch stop if variable changes

25/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB building block #3: Variables
Remember: We were looking at a seg fault in s += a[i].

(gdb) print i

0

(gdb) print a[0]

Cannot access memory at address 0x4

(gdb) print a

0x4

(gdb) up

#1 0x000000000040082a in process (argc=4, argv=0x7fff0b89ce58) at process.c:11

11 int s = sum_integers(n, arg);

(gdb) print arg

$1 = (int *) 0x4

(gdb) list

7 void process(int argc, char** argv)

8 {

9 int* arg = read_integer_arguments(argc, argv);

10 int n = argc-1;

11 int s = sum_integers(n, arg);

12 print_integers(n, arg);

13 printf("Sum of integers is: %d\n", s);

14 free(arg);

15 }

26/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB building block #4: Automatic interruption

Breakpoints

I break [file:]<line>|<function>

I each breakpoint gets a number

I when run, automatically stops there

I can add conditions, temporarily remote breaks, etc.

Related gdb commands

delete unset breakpoint
condition break if condition met
disable disable breakpoint
enable enable breakpoint
info breakpoints list breakpoints
tbreak temporary breakpoint

26/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB building block #4: Automatic interruption

Breakpoints

I break [file:]<line>|<function>

I each breakpoint gets a number

I when run, automatically stops there

I can add conditions, temporarily remote breaks, etc.

Related gdb commands

delete unset breakpoint
condition break if condition met
disable disable breakpoint
enable enable breakpoint
info breakpoints list breakpoints
tbreak temporary breakpoint

27/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB building block #4: Automatic interruption
...

(gdb) list

7 void process(int argc, char** argv)

8 {

9 int* arg = read_integer_arguments(argc, argv);

10 int n = argc-1;

11 int s = sum_integers(n, arg);

12 print_integers(n, arg);

13 printf("Sum of integers is: %d\n", s);

14 free(arg);

15 }

(gdb) break read_integer_arguments

Breakpoint 1 at 0x4006ec: file intlisttools.c, line 8.

(gdb) run 1 3 5

Starting program: debug/code/bugexample/bugexample 1 3 5

Breakpoint 1, read_integer_arguments (n=4, a=0x7fffffffc9b8)

at intlisttools.c:8

8 int* result = malloc(sizeof(int)*(n-1));

(gdb)

27/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB building block #4: Automatic interruption
...

(gdb) list

7 void process(int argc, char** argv)

8 {

9 int* arg = read_integer_arguments(argc, argv);

10 int n = argc-1;

11 int s = sum_integers(n, arg);

12 print_integers(n, arg);

13 printf("Sum of integers is: %d\n", s);

14 free(arg);

15 }

(gdb) break read_integer_arguments

Breakpoint 1 at 0x4006ec: file intlisttools.c, line 8.

(gdb) run 1 3 5

Starting program: debug/code/bugexample/bugexample 1 3 5

Breakpoint 1, read_integer_arguments (n=4, a=0x7fffffffc9b8)

at intlisttools.c:8

8 int* result = malloc(sizeof(int)*(n-1));

(gdb)

27/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB building block #4: Automatic interruption
...

(gdb) list

7 void process(int argc, char** argv)

8 {

9 int* arg = read_integer_arguments(argc, argv);

10 int n = argc-1;

11 int s = sum_integers(n, arg);

12 print_integers(n, arg);

13 printf("Sum of integers is: %d\n", s);

14 free(arg);

15 }

(gdb) break read_integer_arguments

Breakpoint 1 at 0x4006ec: file intlisttools.c, line 8.

(gdb) run 1 3 5

Starting program: debug/code/bugexample/bugexample 1 3 5

Breakpoint 1, read_integer_arguments (n=4, a=0x7fffffffc9b8)

at intlisttools.c:8

8 int* result = malloc(sizeof(int)*(n-1));

(gdb)

28/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB building block #5: Step through code

Stepping through code

I Line-by-line

I Choose to step into or over functions

I Can show surrounding lines or use -tui

gdb commands

list list part of code
next continue until next line
step step into function
finish continue until function end
until continue until line/function

28/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB building block #5: Step through code

Stepping through code

I Line-by-line

I Choose to step into or over functions

I Can show surrounding lines or use -tui

gdb commands

list list part of code
next continue until next line
step step into function
finish continue until function end
until continue until line/function

29/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB building block #5: Step through code

...

(gdb) list 6,14

6 int* read_integer_arguments(int n, char** a)

7 {

8 int* result = malloc(sizeof(int)*(n-1));

9 int i;

10 /* convert every argument, but skip ’0’, because it is just the

11 executable name */

12 for (i=1;i<n;i++)

13 result[i] = atoi(a[i]);

14 }

(gdb) display result

1: result = (int *) 0x0

(gdb) next

12 for (i=1;i<n;i++)

1: result = (int *) 0x601010

(gdb) until 14

30/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB building block #5: Step through code

(gdb) until 14

read_integer_arguments (n=4,a=0x7fffffffc9b8) at intlisttools.c:14

14 }

1: result = (int *) 0x601010

(gdb) finish

Run till exit from #0 read_integer_arguments (n=4,

a=0x7fffffffc9b8) at intlisttools.c:14

0x000000000040080c in process (argc=4, argv=0x7fffffffc9b8)

at process.c:9

9 int* arg = read_integer_arguments(argc, argv);

Value returned is $3 = (int *) 0x4

(gdb)

He, why is the result variable equal to 0x601010 while the value
returned is 0x4?

Contradicts your assumption of what the program does.
The program is always right, you are wrong.

30/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB building block #5: Step through code

(gdb) until 14

read_integer_arguments (n=4,a=0x7fffffffc9b8) at intlisttools.c:14

14 }

1: result = (int *) 0x601010

(gdb) finish

Run till exit from #0 read_integer_arguments (n=4,

a=0x7fffffffc9b8) at intlisttools.c:14

0x000000000040080c in process (argc=4, argv=0x7fffffffc9b8)

at process.c:9

9 int* arg = read_integer_arguments(argc, argv);

Value returned is $3 = (int *) 0x4

(gdb)

He, why is the result variable equal to 0x601010 while the value
returned is 0x4?

Contradicts your assumption of what the program does.
The program is always right, you are wrong.

30/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB building block #5: Step through code

(gdb) until 14

read_integer_arguments (n=4,a=0x7fffffffc9b8) at intlisttools.c:14

14 }

1: result = (int *) 0x601010

(gdb) finish

Run till exit from #0 read_integer_arguments (n=4,

a=0x7fffffffc9b8) at intlisttools.c:14

0x000000000040080c in process (argc=4, argv=0x7fffffffc9b8)

at process.c:9

9 int* arg = read_integer_arguments(argc, argv);

Value returned is $3 = (int *) 0x4

(gdb)

He, why is the result variable equal to 0x601010 while the value
returned is 0x4?

Contradicts your assumption of what the program does.
The program is always right, you are wrong.

31/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB building block #5: Step through code

Why is the result variable equal to 0x601010 while the value
returned is 0x4?

(gdb) list read_integer_arguments,+7

7 {

8 int* result = malloc(sizeof(int)*(n-1));

9 int i;

10 /* convert every argument, but skip ’0’, because it is just the

11 executable name */

12 for (i=1;i<n;i++)

13 result[i] = atoi(a[i]);

14 }

Aargh! Forgot the return statement!

Feeling like an idiot is a common side-effect of debugging.

31/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB building block #5: Step through code

Why is the result variable equal to 0x601010 while the value
returned is 0x4?

(gdb) list read_integer_arguments,+7

7 {

8 int* result = malloc(sizeof(int)*(n-1));

9 int i;

10 /* convert every argument, but skip ’0’, because it is just the

11 executable name */

12 for (i=1;i<n;i++)

13 result[i] = atoi(a[i]);

14 }

Aargh! Forgot the return statement!

Feeling like an idiot is a common side-effect of debugging.

31/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB building block #5: Step through code

Why is the result variable equal to 0x601010 while the value
returned is 0x4?

(gdb) list read_integer_arguments,+7

7 {

8 int* result = malloc(sizeof(int)*(n-1));

9 int i;

10 /* convert every argument, but skip ’0’, because it is just the

11 executable name */

12 for (i=1;i<n;i++)

13 result[i] = atoi(a[i]);

14 }

Aargh! Forgot the return statement!

Feeling like an idiot is a common side-effect of debugging.

31/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB building block #5: Step through code

Why is the result variable equal to 0x601010 while the value
returned is 0x4?

(gdb) list read_integer_arguments,+7

7 {

8 int* result = malloc(sizeof(int)*(n-1));

9 int i;

10 /* convert every argument, but skip ’0’, because it is just the

11 executable name */

12 for (i=1;i<n;i++)

13 result[i] = atoi(a[i]);

14 }

Aargh! Forgot the return statement!

Feeling like an idiot is a common side-effect of debugging.

32/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

GDB command summary

help h print description of
run r run from the start (+args)
backtrace/where ba function call stack
list l list code lines
break b set breakpoint
delete d delete breakpoint
continue c continue
step s step into function
next n continue until next line
print p print variable
finish fin continue until function end
set variable set var change variable
down do go to called function
tbreak tb set temporary breakpoint
until unt continue until line/function
up up go to caller
watch wa stop if variable changes
quit q quit gdb

33/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Memory Debugging

34/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Memory Checking: Valgrind

I Memory errors do not always give segfaults

I Commonly have to go way out of bounds to get a segfault.

I Write into other variable - hard to find problem.

I Valgrind - intercepts each memory call and checks them.

I Finds illegal accesses, uninitialized values, memory leaks.

I Warning: Quite verbose, typically, and, if you use external
libraries, sometimes false positives. debugging too.

35/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Valgrind example

$ valgrind ./bugexample 1 3 5

==909== Memcheck, a memory error detector

==909== Copyright (C) 2002-2013, and GNU GPL’d, by Julian Seward et al.

==909== Using Valgrind-3.9.0 and LibVEX; rerun with -h for copyright info

==909== Command: ./bugexample 1 3 5

==909==

==909== Invalid write of size 4

==909== at 0x400741: read_integer_arguments (intlisttools.c:13)

==909== by 0x40080B: process (process.c:9)

==909== by 0x4006D2: main (bugexample.c:12)

==909== Address 0x51c304c is 0 bytes after a block of size 12 alloc’d

==909== at 0x4C2636D: malloc (vg_replace_malloc.c:291)

==909== by 0x4006FF: read_integer_arguments (intlisttools.c:8)

==909== by 0x40080B: process (process.c:9)

==909== by 0x4006D2: main (bugexample.c:12)

==909==

==909== Invalid read of size 4

...

36/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Valgrind example (continued)

==909== HEAP SUMMARY:

==909== in use at exit: 12 bytes in 1 blocks

==909== total heap usage: 1 allocs, 0 frees, 12 bytes allocated

==909==

==909== LEAK SUMMARY:

==909== definitely lost: 12 bytes in 1 blocks

==909== indirectly lost: 0 bytes in 0 blocks

==909== possibly lost: 0 bytes in 0 blocks

==909== still reachable: 0 bytes in 0 blocks

==909== suppressed: 0 bytes in 0 blocks

==909== Rerun with --leak-check=full to see details of leaked memory

==909==

==909== For counts of detected and suppressed errors, rerun with: -v

==909== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 6 from 6)

Segmentation fault

$ _

37/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Valgrind recommendations

I Using valgrind on mature codes often shows lots of errors.
Now, some may not be an issue (e.g. dead code or false
positives from libraries), but hard to know.

I So: start using valgrind early in development.

I Program modularly, and create small unit tests, on which you
can comfortably use valgrind.

I Apart from this basic valgrind usage, there are other tools
availble with valgrind to deal cache performance, to get more
detailed memory leak information, to detect race conditions,
etc. (some of which we’ll discuss later).

38/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Graphical symbolic debuggers

39/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Graphical symbolic debuggers

Features

I Nice, more intuitive graphical user interface

I Front to command-line based tools: Same concepts

I Need graphics support: X forwarding (or VNC)

Available on SciNet: ddd and ddt

I ddd

$ module load gcc ddd

$ ddd <executable compiled with -g flag>

I ddt

$ module load ddt

$ ddt <executable compiled with -g flag>

(more later)

39/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Graphical symbolic debuggers

Features

I Nice, more intuitive graphical user interface

I Front to command-line based tools: Same concepts

I Need graphics support: X forwarding (or VNC)

Available on SciNet: ddd and ddt

I ddd

$ module load gcc ddd

$ ddd <executable compiled with -g flag>

I ddt

$ module load ddt

$ ddt <executable compiled with -g flag>

(more later)

40/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Graphical symbolic debuggers - ddd

41/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Graphical symbolic debuggers - ddt

42/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

DDT

43/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

DDT

I “Distributed Debugging Tool”

I Powerful GUI-based commercial debugger by Allinea.

I Supports C, C++ and Fortran

I Supports MPI, OpenMP, threads, CUDA and more

I Available on all SciNet clusters (GPC, TCS, ARC, P7)

I Available on SHARCNET’s kraken, requin, orca and monk.

I Part of the “Allinea Forge” suite, which also includes a
’profiler’ called MAP.

44/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Launching ddt
I Load your compiler and MPI modules.
I Load the ddt module: $ module load ddt

I Start ddt with one of these:
$ ddt

$ ddt <executable compiled with -g flag>

$ ddt <executable compiled with -g flag> <arguments>
I First time: create config file: OpenMPI (skip other steps)
I Then gui for setting up debug session.

44/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Launching ddt
I Load your compiler and MPI modules.
I Load the ddt module: $ module load ddt

I Start ddt with one of these:
$ ddt

$ ddt <executable compiled with -g flag>

$ ddt <executable compiled with -g flag> <arguments>
I First time: create config file: OpenMPI (skip other steps)
I Then gui for setting up debug session.

45/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Run and Debug a Program (session setup)

45/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Run and Debug a Program (session setup)

45/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Run and Debug a Program (session setup)

45/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Run and Debug a Program (session setup)

45/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Run and Debug a Program (session setup)

45/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Run and Debug a Program (session setup)

45/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Run and Debug a Program (session setup)

45/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Run and Debug a Program (session setup)

46/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

User interface (1)

47/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

User interface (2)

DDT uses a tabbed-document interface.

@
@
@
@
@R?

�
�
�

�
�
�

�
�
�

�
�
�	

48/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

User interface (3)

When the session begins, DDT automatically
finds source code from information compiled in
the executable.

?

49/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

User interface (4)

Process Control and Process Groups:

I Can group process together.

I Predefined groups All, Root, Workers.
(Session→options, automatically create)

I Can create, delete modify groups (drag
drop, right click stacks, . . .)

6

50/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

User interface (5)

Different colour coding for each group’s current
source line.

?

51/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

User interface (6)

Session Control Dialog:
Control program execution, e.g., play/continue,
pause, step into, step over, step out

�

52/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

User interface (7)

Breakpoints Tab
Can suspend, jump to, delete, load, save

��
���

��

53/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

User interface (8)

Focus:
Choose between Group, process or thread

6

54/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

User interface (9)

Stacks: Current and Parallel

I Tree of functions (merged)

I Click on branch to see source

I Hover to see process ranks

I Use to gather processes in new groups

?

������������)

������������)

54/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

User interface (9)

Stacks: Current and Parallel

I Tree of functions (merged)

I Click on branch to see source

I Hover to see process ranks

I Use to gather processes in new groups

?

������������)

������������)

55/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

User interface (10)

Current line variables
HHH

HHH
HHH

HHHj

56/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

User interface (11)

Local variables for process

HH
HHHH

HHH
Hj

57/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

User interface (12)

Evaluate window

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
AU

58/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

First Demonstration DDT

$ cd $SCRATCH/debug/code
$ source setup

$ cd bugexample

$ make

$ ddt bugexample

59/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Other features of DDT (1)

I Some of the user-modified parameters and windows are saved
by right-clicking and selecting a save option in the
corresponding window (Groups; Evaluations)

I DDT can load and save sessions.

I Find and Find in Files in the Search menu.

I Goto line in Search menu (or Ctrl-G)

I Synchronize processes in group: Right-click, “Run to here”.

I View multiple source codes simultaneously: Right-click,
“Split”

I Right-click power!

60/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Other features of DDT (2)

I Signal handling: SEGV, FPE, PIPE,ILL

I Support for Fortran modules

I Change data values in evaluate window

I Examine pointers (vector, reference, dereference)

I Multi-dimensional arrays

I Viewer

61/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Other features of DDT (3)

Memory debugging

I Select “memory debug” in Run window

I Stops on error (before crash or corruption)

I Check pointer (right click in evaluate)

I View, overall memory stats

62/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Demonstration Memory Debugging with DDT

$ cd $SCRATCH/debug/code
$ source setup

$ cd ex4

$ make

$ ddt ex4

63/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Parallel debugging

64/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Parallel debugging - 1 Shared memory

Use gdb for

I Tracking each thread’s execution and variables

I OpenMP serialization: p omp set num threads(1)

I Stepping into OpenMP block: break at first line!

I Thread-specific breakpoint: b <line> thread <n>

Use helgrind for

I Finding race conditions:

$ module load valgrind

$ valgrind --tool=helgrind <exe> &> out

$ grep <source> out

where <source> is the name of the source file where you suspect
race conditions (valgrind reports a lot more)

64/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Parallel debugging - 1 Shared memory

Use gdb for

I Tracking each thread’s execution and variables

I OpenMP serialization: p omp set num threads(1)

I Stepping into OpenMP block: break at first line!

I Thread-specific breakpoint: b <line> thread <n>

Use helgrind for

I Finding race conditions:

$ module load valgrind

$ valgrind --tool=helgrind <exe> &> out

$ grep <source> out

where <source> is the name of the source file where you suspect
race conditions (valgrind reports a lot more)

65/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Shared memory debugging with DDT

Or use DDT:

Thread debugging example

$ cd $SCRATCH/debug/code
$ source setup

$ cd ex5

$ make

$ ddt ex5

66/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Parallel debugging - 2 Distributed memory

Multiple MPI processes

I Your code is running on different cores!

I Where to run debugger?

I Where to send debugger output?

I Much going on at same time.

I No universal free solution.

Good approach:

1. Write your code so it can run in serial: perfect that first.

2. Deal with communication, synchronization and deadlock on
smaller number of MPI processes/threads.

3. Only then try full size.

Parallel debugging demands specialized tools: ddt

66/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Parallel debugging - 2 Distributed memory

Multiple MPI processes

I Your code is running on different cores!

I Where to run debugger?

I Where to send debugger output?

I Much going on at same time.

I No universal free solution.

Good approach:

1. Write your code so it can run in serial: perfect that first.

2. Deal with communication, synchronization and deadlock on
smaller number of MPI processes/threads.

3. Only then try full size.

Parallel debugging demands specialized tools: ddt

67/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Demonstration MPI Debugging with DDT

$ cd $SCRATCH/debug/code
$ source setup

$ cd ex2

$ make

$ ddt ex2

68/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Detecting deadlock with DDT

Message Queue

I View→ show message queue

I produces both a graphical view and table for active
communications

I Helps to find e.g. deadlocks

69/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Demonstration MPI Message Queue in DDT

$ cd $SCRATCH/debug/code
$ source setup

$ cd ex3

$ make

$ ddt ex3

70/41 – Ontario HPC Summerschool 2015 – Central Edition: Toronto

Useful references

I N Matloff and PJ Salzman

The Art of Debugging with GDB, DDD and Eclipse

I GDB: sources.redhat.com/gdb

I DDT: www.allinea.com/knowledge-center/tutorials

I SciNet Wiki: wiki.scinethpc.ca: Tutorials & Manuals

http://sources.redhat.com/gdb
http://www.allinea.com/knowledge-center/tutorials
http://wiki.scinethpc.ca/wiki/index.php/Knowledge_Base:_Tutorials_and_Manuals

