HPC Best Practices

Ontario Summer School on
High Performance Computing

Scott Northrup
SciNet HPC Consortium
Compute Canada

June 13th, 2013

cSCﬁ?\let

AAAA

@ Workflow & Batch Computing

© Data Management
@ File Systems and 1/0
@ Data Management
@ Parallel I/O

© Software Development
@ Version Control
o Compilers
@ Numerical Libraries

@ Performance Profiling
@ Profiling
@ Memory Profiling

Scilet

Acknowledgments

Contributing Material
@ HPC Best Practices - G. Baolai, SHARCNET
@ The Parallel File System and |/O - R. van Zon, SciNet
@ Monitoring Job Efficiently - R. van Zon, SciNet
@ Profiling and Tuning - L. J. Dursi, SciNet
@ Tuning MPI - L. J. Dursi, SciNet

Scilet

@ Workflow & Batch Computing

Scilet

Workflow

Typical Simulation/Analysis Work-flow
@ pre-process (grid creation, partitioning)
@ solve/analysis

@ postprocessing (data-mining, generate plots)

Scilet

Workflow

Typical Simulation/Analysis Work-flow
@ pre-process (grid creation, partitioning)
@ solve/analysis

@ postprocessing (data-mining, generate plots)

Automate
@ learn and use script languages (bash, python)

@ use scheduler efficiently (job size, dependencies)

@ add data management into workflow from beginning

Scilet

Batch computing

SciNet systems are batch compute clusters
e Computing by submitting batch jobs to the scheduler.
@ When you submit a job, it gets placed in a queue.
@ Job priority is based on allocation and fairshare.

@ When sufficient nodes are free to execute a job, it starts the
job on the appropriate compute nodes.

@ Jobs remain ‘idle’ until resources become available.

@ Jobs can be temporarily ‘blocked’ if you submit too much.

Scilet

Batch computing

Components

Torque: Resource manager providing control over batch jobs and
distributed compute nodes.

Moab: A policy-based job scheduler and event engine that
enables utility-based computing for clusters.

Fairshare: Mechanism using past utilization for prioritization.

Scilet

Preparation
e Compile
@ Test on devel
node
@ Determine
resources
o Write job
script
[lsubmit
gsub

5@?\Iet

AAAAAA

Preparation
e Compile

@ Test on devel
node

@ Determine
resources
@ Write job
script
[lsubmit
gsub

Monitor

@ Job queued?

@ When will it
run?

@ What else is
queued?

o Efficiency?

gstat -f

checkjob
showstart

showbf
showq

Scilet

Preparation
e Compile
@ Test on devel
node
@ Determine
resources
@ Write job
script
[lsubmit
gsub

Monitor

@ Job queued?

@ When will it
run?

@ What else is
queued?

o Efficiency?

gstat -f

checkjob
showstart

showbf
showq

Control
Cancel job

Ssh to nodes
Interactive jobs
Debug queue

canceljob
top
gsub -1
gsub -q debug

Scilet

Preparation
e Compile

@ Test on devel
node

@ Determine
resources
@ Write job
script
[lsubmit
gsub

Monitor

@ Job queued?

@ When will it
run?

@ What else is
queued?

o Efficiency?

gstat -f

checkjob
showstart

showbf
showq

Control
Cancel job

Ssh to nodes
Interactive jobs
Debug queue

canceljob
top
gsub -1
gsub -q debug

Reports

o Check .0/.e
Jjobname.{o,e}

@ usage stats on
ccdb webpage

showstats -u

Scilet

Monitoring not-yet-running jobs

gstat and checkjob
@ Show torque status right away on GPC: gstat
@ Show moab status (better): checkjob jobid

@ See more details of the job: checkjob -v jobid
(e.g., why is my job blocked?)

showq
@ See all the jobs in the queue: showq (from gpc or tcs)

@ See your jobs in the queue: showq -u user

showstart and showbf
@ Estimate when a job may start: showbf
@ Estimate when a queued job may start: showstart jobid

@ Estimates only!

Monitoring running jobs

checkjob
@ checkjob jobid

showq

@ showq -r -u $USER

ssh

@ ssh node (node name from checkjob)

@ top: shows process state, memory and cpu usage

Job stdout/stderr files
o {jobname}.o{jobid}
o {jobname}.e{jobid}

—=ret
() comrixits; Ei\cu\

Top example

gpc-£103n084-$ ssh gpc-£109n001
gpc-£109n001-$ top

top - 21 56 45 up 5:56, 1 user, load average 5.55, 1.73, 0.88

Mem: 16410900k total, 42768 g ree, buffers
Swap: 0k total, 0k used, 0k free, 294628k cached

PID USER PR NI VIRT RES SHR S %CPU SMEM TIME+ P COMMAND
22479 ljdursi 18 © 108m 4816 3212 S 98.5 0.0 1:04.81 6 gameoflife
22480 ljdursi 18 © 108m 4856 3260 S 98.5 0.0 1:04.85 13 gameoflife
22482 ljdursi 18 @ 108m 4868 3276 S 98.5 0.0 1:04.83 2 gameoflife
22483 ljdursi 18 © 108m 4868 3276 S 98.5 0.0 1:04.82 8 gameoflife
22484 ljdursi 18 © 108m 4832 3232 S 98.5 0.0 1:04.80 9 gameoflife
22481 ljdursi 18 © 108m 4856 3256 S 98.2 0.0 1:04.81 3 gameoflife
22485 ljdursi 18 © 108m 4808 3208 S 98.2 0.0 1:04.80 4 gameoflife
22478 ljdursi 18 @ 117m 5724 3268 D 69.6 0.0 0:46.07 15 gameoflife
8042 root @ -20 2235m 1.1g 16m S 2.3 6.8 ©:30.59 8 mmfsd
10738 rant 18 a 2707 ARY 277 < 12 0o D+1R A0 O rat

Scilet

’ computeoca\cu\

Top example

gpc-£f103n084-$ ssh gpc-£109n001
gpc-£109n001-$ top

top - 21:56:45 up 5:56, 1 user, load average: 5.55, 1.73, 0.88
Tasks: 234 total, 1 running, 233 sleeping, @ stopped, © zombie
Cpu(s): 11.4%us, 36.2%sy, 0.0%ni, 52.2%id, 0.0%wa, 0.0%hi, 0.2%si, 0.0%st

Mem: 16410900k total, 1542768k used, 14868132k free, 0k buffers
Swap: 0k total, 0k used, ok free, 294628k cached
PID USER PR NI VIRT RES SHR S %CPU SMEM TIME+ P COMMAND

22479 ljdursi 18 @ 108m 4816 3212 S 98.5 0.0 1:04.81 6 gameoflife
22480 ljdursi 18 © 108m 4856 3260 S 98.5 0.0 1:04.85 13 gameoflife
22482 ljdursi 18 @ 108m 4868 3276 S 98.5 0.0 1:04.83 2 gameoflife
22483 ljdursi 18 © 108m 4868 3276 S 98.5 0.0 1:04.82 8 gameoflife
22484 ljdursi 18 © 108m 4832 3232 S 98.5 0.0 1:04.80 9 gameoflife
22481 ljdursi 18 © 108m 4856 3256 S 98.2 0.0 1:04.81 3 gameofllfe
22485 ljdursi 18 © 108m 4808 3208 S 0.0 1:04 ameo
22478 ljdursi 18 © 117m 5724 3268 D g.0 0:46.

8042 root @ -20 2235m 1.1g 16m S T30

107K rant 18 o 2702 AR 272 <

() compute «calcul
CANADA

canceljob

@ If you spot a mistake: canceljob jobid

gsub for interactive and debug jobs
o -I:
o Interactive
o After gsub, waits for jobs to start.
e Usually combined with:
@ -q debug:
o Debug queue has 10 nodes reserved for short jobs.

e You can get 1 node for 2 hours, but also
e 8 nodes, for half an hour.

4

Scilet

Job output/error files (*.e / *.0)

Begin PBS Prologue Tue Sep 14 17:14:48 EDT 2010 1284498888

Job ID: 3053514 .gpc-sched

Username: ljdursi

Group: scinet

Nodes: gpc-£134n009 gpc-£134n010 gpc-£134n011 gpc-£f134n012

gpc-£134n043 gpc-£f134n044 gpc-£f134n045 gpc-£f134n046 gpc-£134n047 gpc-£134n048
[...1
End PBS Prologue Tue Sep 14 17:14:50 EDT 2010 1284498890

Begin PBS Epilogue Tue Sep 14 17:36:07 EDT 2010 1284500167

Job ID: 3053514 .gpc-sched

Username: ljdursi

Group: scinet

Job Name: £ft_8192 procs_2048

Session: 18758

Limits: neednode ~ib. d 256:1ib: walltime=01.00:00
Resources ut=713:42:30,mem=3463854672kb,vmem=3759656372kb,walltime=00:21:
Queue: batch 1b

Account:

Nodes: gpc-£134n009 gpc-£134n010 gpc-£134n011 gpc-£f134n012 gpe-£134n043
[...1]

Killing leftovers...

gpc-£141n054: killing gpc-£141n054 12412

End PBS Epilogue Tue Sep 14 17:36:09 EDT 2010 1284500169

QP Cvaoa T

© Data Management
@ File Systems and 1/0
@ Data Management
@ Parallel I/O

Scilet

Data Management

To much of a good thing?

@ Increase in computing power makes simulations larger/more
frequent

Increase in sensor technology makes experiments/observations
larger

o Large Hadron: ~ 50-100 PB to date (4 years)
o Square Kilometer Array: ~ 1 EB /day !

@ Data sizes that used to be measured in MB/GB now
measured in TB/PB.

Easier to make big data than to do something useful with it!

Data access is the now the bottleneck.

Scilet

THI

[IISK g
R =

S SR g

ML
“"J T

NERAET B ""T[EHNULIJI]I[S*

IANABENENT Eﬁnsngasfg NELED i S e AR

SIS pognr-S ML =, C

bf'" P'Tm'ﬁsj
UGG CONES STIEH.I_
s COMPLEX e

ANALYTII]S

T

n L‘

SIZE RESEARCH = om
STORAGE™E 5
& PRI % ™
- il

UIFTCRLTY

Ben Chams - Fotolia

Scilet

‘) compute «calcul
CANADA

Big Data

THE WORLD OF

DATA

29 30 20 24

Information
Explosion
A ————
AVolume
AVariety T
AVelocity
Analysis
Gap

Jity 1O
ALY *2 'l'

Scilet

Big Data

COMMUNICATIONS
: ""_'_I'ACM

rSur\mnng the
. - Data Deluge

o
= Dpen Infarmation
Extraction

from the Web

CT0s on
Virtualizatien

Living Machines.

High-Performance
Web Sites.

Scilet

) compute-ca\cul

Big Data

Obama the warrior
Th e Misguv'em%r{g Argentina |
E cono mi St The economic shift from West to East
Genetically m'o'njiffed‘cfopjs blassom

| b e e eononisteons | | | The right to eat cats and dogs |

The data deluge ‘

ANDHOW TO HANDI.E IT A 14- PAGE SPECIAL REPORT

Scilet

) compute-ca\cul

Big Data

. Astronomical Data Deluge

_‘

of 1 Exabyte of raw data
in a sing more than the
entire daily internat traffic

Square Kilometre Array

€15b A £1.5 billon glabal science
- praject

Astronomers and engineers
from more than 70 institutes
in 20 countries

3000 dishes, each 15m wide

Hggﬂﬂ + Novel aptical interconnect technolagies
Using enough optical fibre to and nanophotonics te optimize large data
wrop twice around the Earth transfers

caw i i rar + High-perfarmance storage systems based
jon 64GB Pode on next_generation tape systems an
o novel phase change memory

DOME Focus Areas

+ Advanced accelerators and 3D stacked
chips for more energy-efficient computing

A combined collecting area of
about one square kiometre

ASTRON

() compute «calcul
CANADA

Things to think about

@ Big is Relative
e Too Big to Fit in Memory (16-256 GB today)
e Too Big to Fit on Disk (1-100 TB today)
@ Plan for Data Analysis
e Don't just save everything.
e On the fly analysis, post-processing automation.
e Is it worth storing or just recomputing?

Scilet

Disk 1/0

Common Uses
Checkpoint/Restart Files
Data Analysis

Time accurate and/or Optimization Runs

°
°

e Data Organization
°

@ Batch and Data processing
°

Database

Scilet

Disk 1/0

Common Bottlenecks
@ Mechanical disks are slow!
@ System call overhead (open, close, read, write)
@ Shared file system (nfs, lustre, gpfs, etc)

e HPC systems typically designed for high bandwidth (GB/s)
not I0OPs

@ Uncoordinated independent accesses

Scilet

Disk Access Rates over Time

1000
g L Cheetah |5K.
E 100 = Savvio 15K.1
& Ultrastar 73LZX A%,
g L Ultrastar 18ZX
Y oL Ultrastar 18ES& Ujtragtar A7K1000
k] r Spitfi
o e
@ 3380 A 90
g i 33508
< I = A
g g
£
a [
T o0l
b
£ f perf
The rate of performance
[RAMAC P
& 001 In 1956 1BM produced the improvement in supercomputing
;)’ r first computer to include a systems, as measured by
L disk drive. Linpack, since 1993.
0.001 ‘ ! | | | |
1950 1960 1970 1980 1990 2000 2010
Figure by R. Ross, Argonne National Laboratory, CScADS09 Smet

) computeoca\cu\

Century oS
10°
108
Year
107
2
s Month 108
2
=) on 10°
£ |Day c
= £ 10
s o
Hour e 103
[
102
— Lo
Second U

TAPE access (40s)

> Storage

DISK (5ms)

FLASH read (20 us)

Phase Change Memory (100 — 1000 ns)

DRAM (60ns)
L2 cache (10ns) Memory
CPU operations (1ns) Freitas & Chu, FAST'10

DCINet

Figure by R. Freitas and L Chiu, IBM Almaden Labs, FAST'10 QP comrute;galed!

IOPs
Input/Output Operations Per Second (read,write,open,close,seek)

y

|/O Bandwidth
Quantity you read/write (think network bandwidth)

Comparisons

Device Bandwidth (MB/s) | per-node | IOPs | per-node

SATA HDD 100 100 100 100

SSD HDD 250 250 4000 4000

SciNet 5000 1.25 30000 7.5
Scifet

SciNet Filesystem

| File System

@ 1,790 1TB SATA disk drives, for a total
of 1.4PB

Two DCS9900 couplets, each delivering:

e 4-5 GB/s read/write access (bandwidth)
e 30,000 IOPs max (open, close, seek, ...)

Single GPFS file system on TCS and GPC
I/O goes over infiniband (as of April 2012)

File system is parallel!

Scilet

/O Software Stack

110 Software Stack

Application

Maps application abstractions to storage
abstractions and provides data portability.
(HDF5, Parallel netCDf, ADIOS)

High Level I/O Library

. Organizes accesses from many processes,
/10 Middleware { 9 P

especially collective /0. (MPI-10)

Maintains logical space and provides
efficient access to data.
(GPFS, Lustre, PVFS)

Parallel File System

1I0 Hardware

SCHet
() comexits; Ei\cu\

Parallel File System

Basic Components

User
Apps

?

cul

Parallel File System

Basic Components

User
Apps

General Parallel File System el

Parallel File System

Basic Components

Parallel Reads

cul

Parallel File System

Basic Components

Parallel Reads

cul

Parallel File System

Basic Components

Parallel Writes

Parallel File System

Basic Components
(scaled)

3

How can we push the limit?

£
(D]
s’
(%)
>
w
QL
e
o
“©
—
(L)
o

Parallel File System

How can we BREAK the l[imit?

cul

Parallel File System

File Locks

Most parallel file systems use locks to manage concurrent file
access

o Files are broken up into lock units

o Clients obtain locks on units that they will access before 1/0
occurs

@ Enables caching on clients as well (as long as client has a
lock, it knows its cached data is valid)

@ Locks are reclaimed from clients when others desire access

cSél?\let

CANADA

Parallel File System

@ Optimal for large shared files.
@ Behaves poorly under many small reads and writes, high |OPs

@ Your use of it affects everybody!
(Different from case with CPU and RAM which are not
shared.)

@ How you read and write, your file format, the number of files
in a directory, and how often you 1s, affects every user!

@ The file system is shared over the network on GPC:
Hammering the file system can hurt process communications.

o File systems are not infinite!
Bandwidth, metadata, IOPs, number of files, space, ...

SCiet

Parallel File System

@ 2 jobs doing simultaneous 1/O can take much longer than
twice a single job duration due to disk contention and
directory locking.

@ SciNet: 500+ users doing 1/O from 4000 nodes.
That's a lot of sharing and contention!

Scifet

AAAAAAA

Data Management

Formats
e ASCII
@ Binary
e MetaData (XML)
@ Databases
e Standard Library’s (HDF5,NetCDF)

Scilet

ASCII

American Standard Code for Information Interchange
Pros

@ Human Readable

@ Portable (architecture independent)
Cons

@ Inefficient Storage

e Expensive for Read/Write (conversions)

Scilet

100100100

Pros
o Efficient Storage (256 x floats @4bytes takes 1024 bytes)
o Efficient Read/Write (native)

Cons
@ Have to know the format to read

e Portability (Endianness)

Scilet

ASCII vs. binary

Writing 128M doubles

Format || /scratch (GPCS) | /dev/shm (RAM) | /tmp (disk)

ASCII 173s 174s 260s

Binary 6s 1s 20s

Syntax

Format || C FORTRAN

ASCIl || fprintf() | open(6,file="test',form="'formatted")
write(6,%)

Binary || fwrite() | open(6,file="test’,form="unformatted’)
write(6)

SCiet

Data Management

File(s)
@ Human-interpretable filenames lose their charm after few
dozen files (or even after a few months pass)...
Need to avoid thousands of files in a flat directory.
A few big files are more efficient that many little ones.

°
°

o Keep parallel 1/0 in mind.

@ Rigorously maintained metadata becomes essential.
°

Possibly use a database or version control (i.e. git-annex).

cSél?\let

CANADA

Data Management

= A STORY TOLD IN FILE NAMES:

& C:\user\research\data
Filename Date Modified Size

& data_2010.05.28_test.dat 3:37 PM 5/28/2010 420KB DAT file
@ data_2010.05.28 re-test.dat 4:20 M 5/28/2010 421 KB DAT file
@ data_2010.05.28_re-re-test.dat 543 PM 5/28/2010 420KB DAT file
{3 data_2010.05.28_calibrate dat 717 PM 5/28/2010 1,256 KB DAT file
i data_2010.05.28_huh??.dat 7:20 PM 5/28/2010 30KB DAT file
@ data_2010.05.28_WTF.dat 9:58 PM 5/28/2010 0KE DAT file
@ data_2010.05.29_aaarrrgh.dat 12:37 AM 5/29/2010 30KB DAT file
i@ data_2010.05.29_#$@*&!|.dat 2:40 AM 5/29/2010 OKB DAT file
@ data_2010.05.29_crap dat 3:22 AM 5/29/2010 437 KB DAT file
3 data_2010.05.29_notbad.dat 4:16 AM 5/29/2010 E70KB DAT file
& data_2010.05.29_wochoo!l dat 4:47 AM 5/29/2010 1,349KB DAT file
@ data_2010.05.29_USETHISONE.dat 5:08 AM 5/29/2010 2,894 KB DAT file
B analysis_graphs.xls 7:13 AM 5/29/2010 455 KB KLS file
) TheslsOutlinel.doc 7:26 AM 5/29/2010 3BKE DOCfile
[E Notes_Meeting_with_ProfSmith. bt 11:38 AM 5/29/2010 1673KB TXT file
UMK, 2:45PM 5/29/2010 Folder
& |dala_2010.05,30_starlingoverdal | 8:37 AM 5/30/2010 420KB DAT file

< >
Type: Ph.D Thesis Modified: too mary times Copyright: Jorge Cham wvew phdcomics.com

http://www.phdcomics.com /comics/archive.php?comicid=1323 Sm
et

’ computeoca\cu\

Metadata

What is Metadata?
Data about Data
@ File System: size, location, date, owner, etc.

@ App Data: File format, version, iteration, etc.

Example: XML

<?7xml version="1.0" encoding="UTF-8" 7>
<slice_data>
<format>UTF1000</format>
<verstion>6.8</version>

<date> January 15th, 2010 </date>
<loc> 47 23.516 -122 02.625 </loc>
</slice_data>

Jlet

Beyond flat files
@ Very powerful and flexible storage approach
e Data organization and analysis can be greatly simplified
@ Enhanced performance over seek/sort depending on usage

@ Open Source Software

e SQLite (serverless)
o PostgreSQL
e mySQL

Scilet

“Standard” Formats

CGNS (CFD General Notation System)
IGES/STEP (CAD Geometry)

HDF5 (Hierarchical Data Format)
NetCDF (Network Common Data Format)

disciplineX version

Scilet

Parallel 1/0

Sequential I/O (only proc 0 Writes/Reads)

e Pro
e Trivially simple for small I/O
e Some /O libraries not parallel
e Con

e Bandwidth limited by rate one client can sustain
e May not have enough memory on node to hold all data
o Won't scale (built in bottleneck)

Scilet

Common Ways of Doing Parallel 1/0

N files for N Processes
e Pro

e No interprocess communication or coordination necessary
o Possibly better scaling than single sequential 1/0

e Con

o As process counts increase, lots of (small) files, won't scale
e Data often must be post-processed into one file
e Uncoordinated 1/0O may swamp file system (File LOCKS!)

. o . ‘éeiNet

CANADA

Common Ways of Doing Parallel 1/0

All Processes Access One File
e Pro
e Only one file

e Data can be stored canonically, avoiding post-processing
e Will scale if done correctly

e Con

o Uncoordinated I/O WILL swamp file system (File LOCKS!)
e Requires more design and thought

Parallel 1/0

What is Parallel 1/07?

Multiple processes of a parallel program accessing data (reading or
writing) from a common file.

FILE
| |
N —
PO P1 P2 P(n-1)

Scilet

Parallel 1/0

Why Parallel 1/07

@ Non-parallel 1/0 is simple but:
e Poor performance (single process writes to one file)
o Awkward and not interoperable with other tools (each process
writes a separate file)

e Parallel 1/0
o Higher performance through collective and contiguous |/0

o Single file (visualization, data management, storage, etc)
e Works with file system not against it

cSél?\let

AAAAAA

Parallel 1/0

Available Approaches
e MPI-IO: MPI-2 Language Standard
e HDF (Hierarchical Data Format)

@ NetCDF (Network Common Data Format)
e Adaptable 10 System (ADIOS)

o Actively developed (OLCF,SandiaNL,GeorgiaTech) and used
on largest HPC systems (Jaguar,Blue Gene/P)

o External to the code XML file describing the various elements

o Uses MPI-IO, can work with HDF/NetCDF

Scilet

|/O Best Practices

Make a plan

@ Make a plan for your data needs:

e How much will you generate,
e How much do you need to save,
e And where will you keep it?

@ Note that /scratch is temporary storage for 3 months or less.

Options?
@ Save on your departmental/local server/workstation
(it is possible to transfer TBs per day on a gigabit link);

@ Apply for a project space/HPSS allocation at next RAC call
(but space is very limited);

© Change storage format.

Okﬁ\let

|/O Best Practices

Monitor and control usage
@ Minimize use of filesystem commands like 1s and du.

@ Regularly check your disk usage using
/scinet/gpc/bin/diskUsage.
e Warning signs which should prompt careful consideration:
e More than 100,000 files in your space
o Average file size less than 100 MB

@ Monitor disk actions with top and strace

o RAM is always faster than disk; think about using ramdisk.

@ Use gzip and tar to compress files to bundle many files into
one

e Try gziping your data files. 30% not atypical!
@ Delete files that are no longer needed

@ Do "housekeeping” (gzip, tar, delete) regularly. let

«calcul
j.ADA

|/O Best Practices

Do's
@ Write binary format files
Faster I/O and less space than ASCII files.
@ Use parallel 1/0 if writing from many nodes
@ Maximize size of files. Large block /0O optimal!

@ Minimize number of files. Makes filesystem more responsive!

o’

Don'ts
@ Don't write lots of ASCII files. Lazy, slow, and wastes space!

@ Don't write many hundreds of files in a 1 directory. (File
Locks)

@ Don't write many small files (< 10MB).
System is optimized for large-block 1/0.

Wli\let

© Software Development
@ Version Control
o Compilers
@ Numerical Libraries

5@?\Iet

AAAAAA

Software Development

Tools of the Trade
e Editors/IDE

o’

Scilet

Software Development

Tools of the Trade
e Editors/IDE

@ Version Control

o’

Scilet

Software Development

Tools of the Trade
e Editors/IDE
@ Version Control
@ Build System (make)

o’

Scilet

Software Development

Tools of the Trade
e Editors/IDE
@ Version Control
@ Build System (make)

o Compilers

o’

Scilet

Software Development

Tools of the Trade
e Editors/IDE
@ Version Control
@ Build System (make)
o Compilers

@ Libraries

o’

Scilet

Software Development

Tools of the Trade

e Editors/IDE

@ Version Control
Build System (make)

Compilers

Libraries
Debuggers (gdb,idb, Allinea DDT)

o’

Scilet

Software Development

Tools of the Trade

e Editors/IDE

@ Version Control
Build System (make)

Compilers

Libraries
Debuggers (gdb,idb, Allinea DDT)
Performance (gprof,Scalasa,IPM)

Memory (valgrind)

o’

Scilet

Software Development

Tools of the Trade
e Editors/IDE
Version Control
Build System (make)
Compilers
Libraries
Debuggers (gdb,idb, Allinea DDT)
Performance (gprof,Scalasa,IPM)
Memory (valgrind)
[/O (strace)

o’

Scilet

Software Development

Tools of the Trade
e Editors/IDE
Version Control
Build System (make)
Compilers
Libraries
Debuggers (gdb,idb, Allinea DDT)
Performance (gprof,Scalasa,IPM)
Memory (valgrind)
[/O (strace)

o’

Scilet

@ Workflow & Batch Computing

© Data Management

© Software Development
@ Version Control

@ Performance Profiling

Scilet

Version Control

What is it?
@ A tool for managing changes in a set of files.

Scilet

Version Control

What is it?
@ A tool for managing changes in a set of files.

e Figuring out who broke what where and when.

Scilet

Version Control

What is it?
@ A tool for managing changes in a set of files.

e Figuring out who broke what where and when.

Why Do it?

Collaboration

Organization
Track Changes

o
o
o Faster Development
o

Reduce Errors

Scilet

Collaboration

With others and yourself

Questions

ch?\let

AAAAAA

Collaboration

With others and yourself

Questions

e What if two (or more) people want to edit the same file at the
same time?

cSc:I?\let

AAAAAA

Collaboration

With others and yourself

Questions

e What if two (or more) people want to edit the same file at the
same time?

@ What if you work on SciNet and on your own computer?

cSc:I?\let

AAAAAA

Collaboration

With others and yourself

Questions

e What if two (or more) people want to edit the same file at the
same time?

@ What if you work on SciNet and on your own computer?

Answers

Collaboration

With others and yourself

Questions

e What if two (or more) people want to edit the same file at the
same time?

@ What if you work on SciNet and on your own computer?

Answers

@ Option 1: make them take turns

e But then only one person can be working at any time
e And how do you enforce the rule?

Collaboration

With others and yourself

Questions

e What if two (or more) people want to edit the same file at the
same time?

@ What if you work on SciNet and on your own computer?

Answers

@ Option 1: make them take turns

e But then only one person can be working at any time
e And how do you enforce the rule?

@ Option 2: patch up differences afterwards

o Requires a lot of re-working
o Stuff always gets lost

Collaboration

With others and yourself

Questions

e What if two (or more) people want to edit the same file at the
same time?

@ What if you work on SciNet and on your own computer?

Answers

@ Option 1: make them take turns

e But then only one person can be working at any time
e And how do you enforce the rule?

@ Option 2: patch up differences afterwards
o Requires a lot of re-working
o Stuff always gets lost

@ Option 3: Version Control

Organize and Track Changes

Question

Scilet

Organize and Track Changes

Question

@ Want to undo changes to a file

e Start work, realize it's the wrong approach, want to get back
to starting point

o Like "undo” in an editor...
...but keep the whole history of every file, forever

cSél?\let

AAAAAA

Organize and Track Changes

Question

@ Want to undo changes to a file
e Start work, realize it's the wrong approach, want to get back
to starting point
o Like "undo” in an editor...
...but keep the whole history of every file, forever
@ Also want to be able to see who changed what, when

e The best way to find out how something works is often to ask
the person who wrote it

cSél?\let

AAAAAA

Organize and Track Changes

Question

@ Want to undo changes to a file
e Start work, realize it's the wrong approach, want to get back
to starting point
o Like "undo” in an editor...
...but keep the whole history of every file, forever
@ Also want to be able to see who changed what, when

e The best way to find out how something works is often to ask
the person who wrote it

Answer

@ Version Control

V.

cSél?\let

CANADA

What Software to Use

Software

@ Open Source

e Subversion, CVS, RCS
e Git, Mercurial, Bazaar

o Commercial
o Perforce, ClearCase

available as modules on SciNet

Scilet

Version Control Software

Subversion (svn)
@ Centralized Version Control
@ Replaces CVS
@ Lots of web and GUI integration
@ Users: GCC, KDE, FreeBSD

Git

Distributed Version Control

*nix command line driven design model

advanced features git-stash, git-rebase, git-cherry-pick
Users: Linux kernel, GNOME, Wine, X.org

SCiet

@ Workflow & Batch Computing

© Data Management

© Software Development

o Compilers

@ Performance Profiling

Scilet

GPC x86_64 Compilers

GNU Compiler Collection (v4.9.0)
e C (gco)
o C++ (g++)
e FORTRAN (gfortran)

Intel Composer XE 2013 (v14.0) *recommended
C (icc)

C++ (icpc)

FORTRAN (ifort)

Threaded Building Blocks (TBB)

Integrated Performance Primitives (IPP)

Math Kernel Libraries (MKL)

Saanet

Optimizations

Optimization Levels
@ -O0 disable optimization
@ -01 optimizes for code size

@ -02 optimizes for speed (default)

@ -O3 -02 plus more aggressive optimizations

Scilet

Optimizations

Optimization Levels
@ -O0 disable optimization
@ -01 optimizes for code size
@ -02 optimizes for speed (default)

@ -O3 -02 plus more aggressive optimizations

From the Intel Manual

“The -03 option is particularly recommended for applications that
have loops that do many floating-point calculations or process
large data sets.”

Scilet

Optimizations

-02 Optimizations

intrinsic inlining

inlining

constant propagation

forward substitution

routine attribute propagation
variable address-taken analysis
dead static function elimination
removal of unreferenced variables
constant propagation

copy propagation

dead-code elimination

global register allocation

global instruction scheduling and
control speculation

loop unrolling
optimized code selection
partial redundancy elimination

strength reduction/induction
variable simplification

variable renaming

exception handling optimizations
tail recursions

peephole optimizations

structure assignment lowering
and optimizations

dead store elimination

i
rNet
(’ comeukthe; Ei\cu\

Optimization Terminology

Inlining

Inlining J

Replaces the function call with the actual functions code.

ch?\let

AAAAAA

Optimization Terminology

Inlining

Inlining
Replaces the function call with the actual functions code.

Original

int func(int &x,int &y) { return 4*x+3xy; }

int main(){
int x=4, y=3;
int b=fun(x,y)
}

Scilet

’ compute ca\cu\

Optimization Terminology

Inlining

Inlining
Replaces the function call with the actual functions code.

Original

int func(int &x,int &y) { return 4*x+3xy; }

int main(){
int x=4, y=3;
int b=fun(x,y)
¥

Inlined

int main(){
int x=4,y=3;
int b= 4*x+3x%y;

’ let

o -ecalcul
- CANADA

Optimization Terminology

Branch Elimination

Original

if (x<x1) {
a = a0 + al;

} else if (x < x2) {
a = a0 - al;

} else if (x < x3) {
a = a0 * al;

} else if (x < x4) {

a =a0 / al;
} else Ao

a = a0;
¥

Optimizer Approaches
@ static branch elimination
@ compute all cases and conditions, then pick the correct one
@ replace with switch statements, jump tables

@ branch re-alignment

let

«calcul
ADA

Optimizatio

-03 Additional Optimizations

Loop Blocking for cache

Loop Permutation or
Interchange

Loop Distribution

Loop Fusion

Loop Unrolling

Unroll and Jam

Loop Blocking or Tiling

Loop Reversal

Loop Peeling

Loop Rerolling

Profile-Guided Loop Unrolling

Code Replication to eliminate
branches

Memory-access optimizations
Data Prefetching

Scalar Replacement
Partial-Sum Optimization
Predicate Optimization

Data Transformation: Malloc
Combining and Memset Combining

Memset and Memcpy Recognition

Statement Sinking for Creating
Perfect Loopnests

cSél?\let

’ compute ca\cu\

Optimization Terminology

Loop Unrolling

Original

for (int x=0; x < 100; x++)
{
func(x);

}

ch?\let

AAAAAA

Optimization Terminology

Loop Unrolling

Original

for (int x=0; x < 100; x++)
{
func(x);

}

Optimized

for (int x = 0; x < 100; x+=5)
{

func(x);

func(x+1);

func(x+2);

func (x+3) ;

func(x+4);

v
tiNet
() comrixits; Ei\cu\

Optimization Terminology

Loop Collapsing

Original

int a[100] [300];
for (int i = 0; i < 300; i++)
for (int j = 0; j < 100; j++)
aljl[il = 0;

Scilet

) compute ca\cu\

Optimization Terminology

Loop Collapsing

Original

int a[100] [300];
for (int i = 0; i < 300; i++)
for (int j = 0; j < 100; j++)
aljl[il = 0;

Optimized
int a[100] [300];
int *p = &a[0][0];

for (int i = 0; i < 30000; i++)
*p++ = 0;

cSél?\let

’ compute ca\cu\

Optimization Terminology

Loop Fusion

Original
int x[100], y[100];
for (int i = 0; i < 100; i++)
x[i] = 1;
for (int i = 0; i < 100; i++)
y[i] =

Scilet

) compute ca\cu\

Optimization Terminology

Loop Fusion

Original

int x[100], y[100];

for (int i = 0; i < 100; i++)
x[i] = 1;

for (int i = O; i < 100; i++)
y[i] =

Optimized

int x[100], y[100];
for (int i = 0; i < 100; i++)
{
x[i]
y[i]

13
2;

cSGi?\let

’ compute ca\cu\

Optimization Terminology

Loop Peeling

Original

int p = 10;
for (int i=0; i<10; ++i)

ylil = x[i] + x[pl;

cSc:I?\let

AAAAAA

Optimization Terminology

Loop Peeling

Original
int p = 10;
for (int i=0; i<10; ++i)
{
y[il = x[i] + x[pl;
p=1i;
}
Optimized
y[0]l = x[0] + x[10];
for (int i=1; i<10; ++i)
{
y[il = x[i] + x[i-1];
}

cSGﬁ\let

’ compute ca\cu\

Optimizations

System Specific

-march="cpu” optimize for a specific cpu
-mtune="cpu” produce code only for a specific cpu

-msse3,-msse4,-mavx, etc. level of SIMD and vector
instructions

Scilet

Optimizations

System Specific
@ -march="cpu” optimize for a specific cpu
@ -mtune="cpu” produce code only for a specific cpu

@ -msse3,-msse4,-mavx, etc. level of SIMD and vector
instructions

Use this instead!
-xHost optimize and tune for the compiling CPU

Scilet

Optimizations

System Specific
@ -march="cpu” optimize for a specific cpu
@ -mtune="cpu” produce code only for a specific cpu

@ -msse3,-msse4,-mavx, etc. level of SIMD and vector
instructions

Use this instead!
-xHost optimize and tune for the compiling CPU

GPC Recommendations
-xHost -03

v

Scilet

Optimization Terminology

Vector Extensions

Intel x86_64 extensions

@ Streaming SIMD Extensions (SEE1 - SSE4.2)
@ AVX, AVX2, AVX512

Original x86

Add two single precision vectors requires four floating-point addition instructions.

vec_res.
vec_res.
vec_res.
vec_res.

s N< X

= vl.
= vl.
vi.
vi.

= N9 K
+ o+ o+ o+

v2.
v2.
v2.
v2.

X3
Y
Zz;
w;

Scilet

’ compute ca\cu\

Optimization Terminology

Vector Extensions

Intel x86_64 extensions

@ Streaming SIMD Extensions (SEE1 - SSE4.2)
@ AVX, AVX2, AVX512

Original x86

Add two single precision vectors requires four floating-point addition instructions.

vec_res.x = vl.x + v2.x;
vec_res.y = vl.y + v2.y;
vec_res.z = vl.z + v2.z;
vec_res.w = vl.w + v2.w;

SSE

A single 128-bit 'packed-add’ replaces four scalar addition instructions.

movaps xmmO, [v1]; xmmO viw | vi.z | vi.y | vi.x
addps xmmO, [v2]; xmm0 = vi.w+v2.w | vi.z+v2.z | vi.y+v2.y | vi.x+v2.x
movaps [vec_res], xmmO Iet

Floating Point Math

-fpmodel
o fast=1 default
o fast=2 most aggressive
@ precise value-safe optimizations on intermediate operations
@ except strict floating point semantics

@ strict disables all “fast-math” options

If Required

For floating point consistency and reproducibility use:
-fpmodel precise -fpmodel except

Scilet

Memory Model

Seen this error?
relocation truncated to fit: R_X86_64_PC32 J

Scilet

Memory Model

Seen this error?
relocation truncated to fit: R_X86_64_PC32

-mcmodel=

@ small code and data restricted to the first 2GB of address
space

@ medium code restricted to the first 2GB of address space

e large no restrictions

Scilet

Intel Math Kernel Library

MKL Components
e BLAS
o LAPACK

@ ScaLAPACK

o FFT

e PBLAS

e BLACS

(*]

plus others

Scilet

Intel Math Kernel Library

Dynamic Link Line for MKL >10.3
o -L mkl_rt

Link Line - Composer XE 2013
o -mkl=sequential no-threaded versions (serial)
e -mkl=parallel threaded (openmp)
o -mkl=cluster for ScaLAPACK, FFT, BLACS

Link Line Advisor

http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/

Scilet

Documentation

Intel Documentation

http://software.intel.com/en-us/articles/intel-parallel-studio-xe-for-linux-
documentation/

Compiler Optimization flags
http://software.intel.com /sites/products/collateral /hpc/compilers/compiler_qrg12.pdf

White Paper on Floating Point
https://support.scinet.utoronto.ca/wiki/images/f/f2/FP_Consistency.pdf

Scilet

’ compute ca\cu\

@ Workflow & Batch Computing

© Data Management

© Software Development

@ Numerical Libraries

@ Performance Profiling

Scilet

Numerical Computing

Numerical Methods
@ Linear algebra
@ Nonlinear equations
o Optimization
@ Interpolation/Approximation
@ Integration and differentiation
@ Solving ODEs
@ Solving PDEs
o FFT

@ Random numbers and stochastic simulations

@ Special functions

SCiet

Numerical Algorithms

Top Ten Algorithms for Science (Jack Dongarra, 2000)

1. Metropolis Algorithm for Monte Carlo

2. Simplex Method for Linear Programming

3. Krylov Subspace Iteration Methods

4. The Decompositional Approach to Matrix Computations
5. The Fortran Optimizing Compiler

6. QR Algorithm for Computing Eigenvalues

7. Quicksort Algorithm for Sorting

8. Fast Fourier Transform

9. Integer Relation Detection

10. Fast Multipole Method

SCiNet

Numerical Algorithms

B
Neural Networks

i

P BiospherelGeosphere
T f
Chemical cloud
Dynamics "‘\;wm:_ \ /‘ e
SeriNgS — esoctronic

Fumhr rsmmc / /
N-Body Transport _pF
S

cvD

Condensed Matter
U
Electronic Slmclnre Structure

uantum
— Clumlslry gﬂem“
asmology
R e —— S i A T
wilitary / Numerical Ordinary \\\"
o Methods L EQ'
Fields
'‘Geophysical Fluids
\ Ecosystems
Mcnnnmiu

<IN *

o Chemical
Reactors

Nucjear
Structure

Loglstics
Raster
Pattern
Matching

Quantum Neutron
romo Tansi
Dymanics)
Inteligent
" / Search
Virtu Multimedia
Prototypes jon Databases
otype: Gglizboration \
Scientific cAp

Computational Number Theory
mm Visualization Intelligent

Agents.

Argonne National Laboratory GBB

Numerical Libraries

BLAS (gotoblas, ATLAS)
LAPACK (ESSL, MKL, ACML)
ScaLAPACK

GSL (GNU Scientific Library)
FFTW

PETSc

TAO

IMSL

NAG

Scilet

Numerical Libraries

BLAS (gotoblas, ATLAS)
LAPACK (ESSL, MKL, ACML)
ScaLAPACK

GSL (GNU Scientific Library)
FFTW

PETSc

TAO

IMSL

NAG

<

Don’t re-invent the wheel!

)
SCHlet

@ Performance Profiling
@ Profiling
@ Memory Profiling

Scilet

Profiling

® Like debuggers for
debugging, profilers
are evidence-based
methods to find

performance

problems. Find # IMELGE
bottlenecks improvements

e Can’timprove what s [& & -

you don’t measure.

Scifet

Proﬁling |

* Where in your program
is time being spent?

* Find the expensive parts
* Don’t waste time
optimizing parts that
don’t matter

* Find bottlenecks.

wzeTivel

compute « calcul
CANADA

Al

Profiling

Tracing vs. Sampling

Instrumenting vs.
instrumentation-free

IM_PROJECTILE

wzeTivel

o compute « calcul
CANADA i

Timing whole program

Very simple; can run $ time ./a.out
on any command.

In serial, real = user + [your job output]
sys Elapsed
“walltime”
In parallel, ideally user real 0m2.4485/
= nprocs x real user O0m2.383s« Actual user
time
Can run on tests to sys 0m0.027s '
" identify performance System time:
regressions. Disk, I/0O...

Scifet

o compute « calcul
CANADA i

Watching program run
$ top

top - 21:56:45 up 5:56, 1 user, load average: 5.55, 1.73, 0.88
2 1 2.zonhie

0.0%wa, 0.0%hi, 0.2%si

Mem: 16410900k total, ree, buffers
Swap: ok total, 0k used, 0k free, 294628k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ P COMMAND
22479 ljdursi 18 @ 108m 4816 3212 S 98.5 0.0 1:04.81 6 gameoflife
22480 ljdursi 18 © 108m 4856 3260 S 98.5 0.0 1:04.85 13 gameoflife
22482 ljdursi 18 © 108m 4868 3276 S 98.5 0.0 1:04.83 2 gameoflife
22483 ljdursi 18 © 108m 4868 3276 S 98.5 0.0 1:04.82 8 gameoflife
22484 ljdursi 18 © 108m 4832 3232 S 98.5 0.0 1:04.80 9 gameoflife
22481 ljdursi 18 © 108m 4856 3256 S 98.2 0.0 1:04.81 3 gameoflife
22485 ljdursi 18 © 108m 4808 3208 S 98.2 0.0 1:04.80 4 gameoflife
22478 1ljdursi 18 @ 117m 5724 3268 D 69.6 0.0 0:46.07 15 gameoflife

8042 root 0 -20 2235m 1.1g 16m S 2.3 6.8 ©0:30.59 8 mmfsd
12728 rant 1= a 2Ta”? AR? W C 12 an A1R 20 O rat

More system then user time - SCHlet

not very efficient © s

Instrumenting regions
of code

struct timeval calc;

Instrumenting the ok il

code calctime = tock(&calc);
printf("Timing summary:\n");

Simple, but incrediby printf(nCalc 3,50, calctine);

useful.

. void tick(struct timeval xt) {
Runs every time gettineofday(t, NULL);
}

your code is run

double tock(struct timeval xt) {

Can trivially see if struct timeval now;
h ke thi gettimeofday(&now, NULL);
changes make things (double) (now. tv_sec - t->tv_sec) +

((double) (now. tv_usec - t->tv_usec)/1000000.) ;

Scifet

o compute « calcul
CANADA N

better or worse

Instrumenting regions
of code

Simple example -
matrix-vector multiply

Initializes data, does
multiply, saves result

Look to see where it
spends its time, speed it

up.

Options for how to
access data, output data.

}

tic

}

}

(

xli
yli)

tick(&init);
lgetts tnh:ay(hl NULL);
seec = Jt.tv_sec;

;g {
) rand_r(&seed) /RAND_MAX;

)(rand_r(&seed)) /RANO_MAX;

(tronspose) {
(int ie0; i<size; doe) {
(int j=0; jesize; joo) {
alalfjl = (
}
)
«
Gine 1=8; gessaes feo) L
Cint i=0; i<size;
alil(j) = (
)

}

k(&cale);

inittine = tock(&init);

(transpose) {

(

}
{

(

}
3

im0; i<size; ..1(

tint §o0
yli) o= ll IIJI l)l

Ja)xue)l(

y[) en ati) tiexts)

{
ran a r(seed)) /RmN

) {

Net

(,—COTTrpulecu\cu\
AN A

Al

Matrix-vector multiply

® Simple example -
matrix-vector multiply

® |nitializes data, does
multiply, saves result

® ook to see where it
spends its time, speed it

up.

e Options for how to
access data, output data.

tick(&4
lgetts tnh:a,(u NULL);
seed = (
(int i=0
x[i) MA
yli)

(transpose) {
(int ie0,

}
}
inittine = tock(&init);

tick(&calc);
(transpose) {

265 joe) {
)(rand_r(&seed)) /AANO_MAX;

(
alil (i)
}
)
) «
Gine 1=8; gessaes feo) L
Cint i=0; i<size; t
alilly) = () ran d ri&seed)) /RAND_MAX;
)

Net

(,—COTTrpulecu\cu\
AN A

Al

Matrix-vector multiply

e Can get an overview of
the time spent easily,
because we
instrumented our code
(~12 lines!)

® |/O huge bottleneck.

$ mvm --matsize=2500

Timing summary:
Init: 0.00952 sec
Calc: 0.06638 sec
I/O : 5.07121 sec

5Gi?\|et

LLLLLLL

Al

Matrix-vector multiply

® |/O being done in ASCII

® having to loop over
data, convert to string,
write to output.

® 6,252,500 write
operations!

® Let’s try a --binary
option:

out = fopen("Mat-vec.dat","w");
fprintf(out,"%d\n",size);

(int i=0; i<size; i++)
fprintf(out,"sf *, x[il);

fprintf(out,"\n",out);

(int i=0; i<size; i++)
fprintf(out,"sf *, y[il);

fprintf(out,"\n",out);
(int i=0; i<size; i++) {
(int j=0; j<size; j++) {
fprintf(out,"sf *, alil[jl);
}
fprintf(out,"\n",out);

fclose(out);

Scifet

o compute « calcul
CANADA i

Matrix-vector multiply

® Let’s try a --binary
option:

e Shorter...

out = fopen("Mat-vec.dat","wb");

fwrite(&size, out);
fwrite(x, t out);
fwrite(y, (float), size, out);
fwrite(&(a[0][0]), (float), size*size, out);
fclose(out);

Scifet

o compute « calcul
CANADA N

Matrix-vector multiply

® And much (36x!) faster
® File 4x smaller

e Still slow, but file /O is
always going to be
slower than a
multiplication.

e On to calculation...

S mvm --matsize=2500
--binary
Timing summary:

Init: 0.00976 sec
Calc: 0.06695 sec
I/0 0.14218 sec
$./mvm --binary
S du -h Mat-vec.dat
89M Mat-vec.dat
$./mvm --binary
$ du -h Mat-vec.dat
20M Mat-vec.dat

=2 TINTT

" compute « calcul
CANADA
Jl

Sampling for Profiling

® How to get finer-grained information about
where time is being spent?

® Can’t instrument every single line.

® Compilers have tools for sampling execution
paths.

(’ compute « calcul
CANADA ,

Sampling for Profiling

® As program executes,
every so often
(~100ms) a timer goes
off, and the current
location of execution
is recored

® Shows where time is
being spent.

ltick (&4
lgetts cen:mu NULL)
seec = Jt.tv_sec;
(int = e; i) {
«h)) rand_r(&seed) /RAND_MAX;

yli)

(transpose) {
(-v‘; fostzer doo) {
=0; j<size; je
a[IIJI =
}

{n 2-0v guuizes Jor) {
(0; i<size;

Sli103] = ¢

3

b
inittine = tock(&init);

ltick(&cale);
(transpose) {

) L
) (rand_r(&seed)) /RAND_MAX;

{
iran a rlEseed)) /RAN

Line 7
Line 18
Line 223
Line 9

_LiNet

o (ompule . La\cu\
Jl

Sampling for Profiling

® Advantages:

Very low overhead

No extra
instrumentation

® Disadvantages:

Don’t know why
code was there

Statistics - have to
run long enough
job

ltick (&4
lgetts cen:mu NULL)
seec = Jt.tv_sec;
(int = e; i) {
«h)) rand_r(&seed) /RAND_MAX;

yli)

(transpose) {
(-v‘; fostzer doo) {
e; j+

=0; j<siz K
AT)(rand_r(&seed))
)

{n 2-0v guuizes Jor) {
(0; i<size;

Sli103] = ¢

3

b
inittine = tock(&init);

ltick(&cale);
(transpose) {

{
iran a rlEseed)) /RAN

Line 7
Line 18
Line 223
Line 9

_LiNet

o (ompule . La\cu\

gprof for sampling

$ gcc -03 £pg mat-vec-mult.c --std=c99

$ icc -03 -pg at-vec-mult.c -c99
turn on debugging symbols
profiling (optional, but more info)

$./mvm-profile --matsize=2500

[output]
$ 1s
Makefile Mat-vec.dat gmon.out
mat-vec-mult.c mvm-profile
P ScCiNet

gprof examines gmon.out

$ gprof mvm-profile gmon.out
Flat profile:
Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls Ts/call Ts/call
100.24 0.41 0.41 3 0.00
0.00 0.41 0.00 3 0.00 0.00
0.00 0.41 0.00 3 0.00 0.00
0.00 0.41 0.00 2 0.00 0.00
0.00 0.41 0.00 2 0.00 0.00
0.00 0.41 0.00 1 0.00 0.00
0.00 0.41 0.00 1 0.00 0.00
0.00 0.41 0.00 1 0.00 0.00
[+--]

name

main

tick

tock
allocld
freeld
alloc2d
free2d
get_options

Gives data by function -- usually handy, not so useful in this

toy problem

Scifet

’ (ompule . La\cu\
Al

gprof --line

gpc-£103n084-$ gprof --line mvm-profile gmon.out | more
Flat profile:
Each sample counts as 0.01 seconds.

%

time

68

~

O O O O O O O b b

.46
14.
.33
.89
.89
.00
.00
.00
.00
.00
.00
.00

67

cumulative
seconds
0.
0.34
0.37
0.39
0.41
0.41
0.
0
0
0
0
0

28

41

.41
.41
.41
.41
.41

self
seconds

0.28
0.06
0.03
0.02
0.02
0.00
0.00
0.00
0.00
0.00
0.00
0.00

H R P NMNNDWW

calls

(==l N Ne

S

elf

total

Ts/call Ts/call name

.00
.00
.00
.00
.00
.00
.00

main (mat-vec-mult.
main (mat-vec-mult.
main (mat-vec-mult.
main (mat-vec-mult.

:82 @ 401
:113 @ 40
:63 @ 401

c
c
c
c:112 @ 40

main (mat-vec-mult.c:113 @ 40

0.00
0.00
0.00
0.00
0.00
0.00
0.00

tick (mat-vec-mult.c:159 @ 40
tock (mat-vec-mult.c:164 @ 40
allocld (mat-vec-mult.c:152 @
freeld (mat-vec-mult.c:171 @

alloc2d (mat-vec-mult.c:130 @
free2d (mat-vec-mult.c:144 @

get_options (mat-vec-mult.c:1

Scifet

’ (ompule . La\cu\

Then can compare to
source

Code is spending most
time deep in loops

#1 - multiplication

#2 - 1/O (old way)

(int j-e,]<sue, j++) {
=0; i<size; i++) {
le] += alil[jlxx[j]; <€——

out = fopen("Mat-vec.dat","w");
fprintf(out,"%d\n",size);

(int i=0; i<size; i++)
fprintf(out,"sf ", x[i]);

fprintf(out,"\n");

(int i=0; i<size; i++)
fprintf(out,"sf , yl[il]);

fprintf(out,"\n");
(int i=0; i<size; i++) {
(int j=0; j<size; j++) {
fprintf(out,"sf ", alil[j]); €
fprintf(out,"\n");

fclose(out);

Scifet

o compute « calcul
CANADA i

gprof pros/cons

Exists (almost) everywhere
Easy to script, put in batch jobs
Low overhead

As with graphical debuggers, many nice graphical
profilers exist as well

<SGH\| et
(’ (om;i‘.its:ﬂ\cu\)

Memory Profiling

Most profilers use time as a the metric, but what about memory?

Valgrind
@ Massif: Memory Heap Profiler

@ valgrind --tool=massif ./mycode
@ ms_print massif.out
@ Cachegrind: Cache Profiler

@ valgrind --tool=cachegrind ./mycode

o Kcachegrind (gui frontend for cachegrind)

http://valgrind.org/

cSél?\let

AAAAAA

Memory Profiling: Valgrind Massif

Example of output from ms print, showing heap memory usage.

n time (i) total(B) useful-heap(B) extra-heap(B) stacks(B)
11 17,558,376,865 108,721,536 108,079,702 641,834 0
12 18,730,053,265 108,746,848 108,104,510 642,338 0
13 19,748,755,982 108,742,200 108,099,974 642,226 0
14 21,351,204,796 108,745,520 108,103,214 642,306 0
15 22,575,905,502 108,742,200 108,099,974 642,226 0
16 24,344,627,331 108,742,200 108,099,974 642,226 0
17 25,780,057,465 108,742,200 108,099,974 642,226 0
18 27,215,452,841 108,742,200 108,099,974 642,226 0

99.41% (108,099,974B) (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
->55.61% (60,466,176B) 0x873A8A: BlockMat::setup() (in navierstokes3Dthermallyperfect.5)
| ->55.61% (60,466,176B) Ox4TAOF5: Hexa_NKS_Solver<State>::allocate() (NKS.h:192)

| ->55.61Y% (60,466,176B) 0x477796: int HexaSolver<State>(char*, int) (HexaSolver.h:150)
| ->55.617, (60,466,176B) 0x476A9F: main (NavierStokes3DThermallyPerfect.cc:226)

|

->10.07% (10,948,608B) 0x47A3B2: Hexa_NKS_Solver<State>::allocate() (NKS.h:186)

| ->10.07% (10,948,608B) 0x477796: int HexaSolver<State>(char*, int) (HexaSolver.h:150)
| ->10.07% (10,948,608B) 0x476A9F: main (NavierStokes3DThermallyPerfect.cc:226)

|

->09.15% (9,953,280B) 0x47A390: Hexa_NKS_Solver<Statee>::allocate() (NKS.h:186)

| ->09.15% (9,953,280B) 0x477796: int HexaSolver<State>(charx, int) (HexaSolver.h:150)

| ->09.15% (9,953,280B) 0x476A9F: main (NavierStokes3DThermallyPerfect.cc:226)

Scilet

() compute «calcul
CANADA

Cache Thrashing

Cache

Memory bandwidth is |:]

key to getting good
performance on
modern systems

Main Mem - big, slow

Cache - small, fast

® Saves recent

accesses, a line of

data at a time. Array

Main mem

‘‘‘‘‘‘‘‘

Cache Thrashing

Cache

® When accessing
memory in order, only
one access to slow \
main mem for many
data points

® Much faster

Array

Main mem

‘‘‘‘‘‘‘‘

Cache Thrashing

Cache
® When accessing

memory out of order,
much worse

® FEach access is new
cache line (cache

miss)- slow access to

main memory

® Can see ~|0x

slowdown

Array

Main mem

Cache Thrashing

In C, cache-friendly
order is to make last
index most quickly
varying

/* do multiplication x*/ (;()()(j

tick(&calc); (
if (transpose) {

for (int i=0; i<size; i++) {
for (int j=0; j<size; j++) {
y[i]l += alil [j1*x[j];

}
} else {
for (int j=0; j<size; j++) {
for (int i=0; i<size; i++) {
y[i]l += alil [j1*xx[j];

y ! \Bad
}

calctime = tock(&calc);

ScChlet

o compute « calcul
CANADA i

Cache Thrashing

® Can see cache
problems with
valgrind + visualizer:

® valgrind --
tool=cachegrind

e KDE tool kcachegrind
available for window,s
linux, mac os x.

/* do multiplication x/

Good
tick(&calc);

if (transpose) { (

for (int i=0; i<size; i++) {
for (int j=0; j<size; j++) {
y[i]l += alil [j1*x[j];

}
} else {
for (int j=0; j<size; j++) {
for (int i=0; i<size; i++) {
y[i]l += alil [j1*xx[j];

y ! \Bad
}

calctime = tock(&calc);

ScChlet

o compute « calcul
CANAD A i

8006

Eile

B“@AQ>.$

View Go Settings Help

Search: [:] No Grouping)

Self

R0

Function

99.97 F main

0.01 m_di_addr

0.01 m_dI_relocate_object
0.00 mdo_lookup_x

0.00 ®_dI_lookup_symbol_x
0.00 mptmalloc_init

0.00 M getenv

0.00 M check_match.8514
0.00 W_dI_fixup

0.00 W_dI_next_Id_env_entr
0.00 mistrcmp

0.00 Wdi_main

0.00 M_dI_start

0.00 W _dI_sysdep_start
0.00 &/_dI_map_object_from_
0.00 W __printf_fp

0.00 M_IO_do_write@@GLIB!
0.00 mindex

[L1 Data Read Miss [~]
main
Types l Callers | All Callers J Source [Callee Map [
‘ Dlmr j Source (‘mat-vec-mult.c’)
73 for (int i=0; i<size; i++) {
74 for (int j=0; j<size; j++) {
79 #pragma omp parallel for default(none) shared(x.y,a,size)
80 for (int j=0; j<size; j++) {
81 for (int i=0; i<size; i++) {
82/ 96.87 ylil += alilfI*xIjl:
83 }
84 }
85 }
87
88 /* Now output files */
#I Dlmr m ‘Assembler Source Position
There is no instruction info in the profile data file.
2 For the Valgrind Calltree Skin, rerun with option
3 --dump-instr=yes

kcachegrind viewing output of

module load valgrind
valgrind --tool=cachegrind ./mvm --matsize=250
kcachegrind cachegrind.out.20275

Cache Thrashing

® Once cache thrashing $./mvm-omp --matsize=2500
is fixed, and assuming __T-transpose --binary
, Timing summary:
I/O can’t be Init: 0.00947 sec
improved, Init is now Calc: 0.00811 sec

the bottleneck! 1/0 = 0.14881 sec

® So it goes...

Scifet

o compute « calcul
CANADA i

Other Profiling Tools

@ Scalasca

Open SpeedShop

TAU Performance System
HPC Tool Kit

Allinea MAP

Intel Tools (Vtune, ITAC)
Xcode (OS X)

Scilet

Profiling Summary

@ Put your own timers in the code in/around important
sections, find out where time is being spent.
o if something changes, know in what section

@ gprof is easy to use and excellent at finding where the time is
spent.

@ Know the 'expensive’ parts of your code and spend your
programming time accordingly.

@ valgrind is good for all things memory; performance, cache,
and usage.

cScfl?\let

AAAAAA

	Workflow & Batch Computing
	
	Data Management
	File Systems and I/O
	Data Management
	Parallel I/O

	Software Development
	Version Control
	Compilers
	Numerical Libraries

	Performance Profiling
	Profiling
	Memory Profiling

