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Workflow

Typical Simulation/Analysis Work-flow

pre-process (grid creation, partitioning)

solve/analysis

postprocessing (data-mining, generate plots)

Automate

learn and use script languages (bash, python)

use scheduler efficiently (job size, dependencies)

add data management into workflow from beginning
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Batch computing

SciNet systems are batch compute clusters

Computing by submitting batch jobs to the scheduler.

When you submit a job, it gets placed in a queue.

Job priority is based on allocation and fairshare.

When sufficient nodes are free to execute a job, it starts the
job on the appropriate compute nodes.

Jobs remain ‘idle’ until resources become available.

Jobs can be temporarily ‘blocked’ if you submit too much.



Batch computing

Components

Torque: Resource manager providing control over batch jobs and
distributed compute nodes.

Moab: A policy-based job scheduler and event engine that
enables utility-based computing for clusters.

Fairshare: Mechanism using past utilization for prioritization.



Job cycle

Preparation

Compile

Test on devel
node

Determine
resources

Write job
script

llsubmit
qsub

Monitor

Job queued?

When will it
run?

What else is
queued?

Efficiency?

qstat -f
checkjob
showstart

showbf
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Control

Cancel job

Ssh to nodes

Interactive jobs

Debug queue

canceljob
top

qsub -I
qsub -q debug

Reports

Check .o/.e
jobname.{o,e}
usage stats on:
ccdb webpage

showstats -u
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Monitoring not-yet-running jobs

qstat and checkjob

Show torque status right away on GPC: qstat

Show moab status (better): checkjob jobid

See more details of the job: checkjob -v jobid
(e.g., why is my job blocked?)

showq

See all the jobs in the queue: showq (from gpc or tcs)

See your jobs in the queue: showq -u user

showstart and showbf

Estimate when a job may start: showbf

Estimate when a queued job may start: showstart jobid

Estimates only!



Monitoring running jobs

checkjob

checkjob jobid

showq

showq -r -u $USER

ssh

ssh node (node name from checkjob)

top: shows process state, memory and cpu usage

Job stdout/stderr files

{jobname}.o{jobid}
{jobname}.e{jobid}



Top example



Top example



Control

canceljob

If you spot a mistake: canceljob jobid

qsub for interactive and debug jobs
-I:

Interactive
After qsub, waits for jobs to start.
Usually combined with:

-q debug:

Debug queue has 10 nodes reserved for short jobs.
You can get 1 node for 2 hours, but also
8 nodes, for half an hour.



Job output/error files (*.e / *.o)
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Data Management

To much of a good thing?

Increase in computing power makes simulations larger/more
frequent

Increase in sensor technology makes experiments/observations
larger

Large Hadron: ∼ 50-100 PB to date (4 years)
Square Kilometer Array: ∼ 1 EB /day !

Data sizes that used to be measured in MB/GB now
measured in TB/PB.

Easier to make big data than to do something useful with it!

Data access is the now the bottleneck.



Big Data
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Data

Things to think about

Big is Relative

Too Big to Fit in Memory (16-256 GB today)
Too Big to Fit on Disk (1-100 TB today)

Plan for Data Analysis

Don’t just save everything.
On the fly analysis, post-processing automation.
Is it worth storing or just recomputing?



Disk I/O

Common Uses

Checkpoint/Restart Files

Data Analysis

Data Organization

Time accurate and/or Optimization Runs

Batch and Data processing

Database



Disk I/O

Common Bottlenecks

Mechanical disks are slow!

System call overhead (open, close, read, write)

Shared file system (nfs, lustre, gpfs, etc)

HPC systems typically designed for high bandwidth (GB/s)
not IOPs

Uncoordinated independent accesses



Disk Access Rates over Time

Figure by R. Ross, Argonne National Laboratory, CScADS09



Memory/Storage Latency

Figure by R. Freitas and L Chiu, IBM Almaden Labs, FAST’10



Definitions

IOPs

Input/Output Operations Per Second (read,write,open,close,seek)

I/O Bandwidth

Quantity you read/write (think network bandwidth)

Comparisons

Device Bandwidth (MB/s) per-node IOPs per-node

SATA HDD 100 100 100 100
SSD HDD 250 250 4000 4000
SciNet 5000 1.25 30000 7.5



SciNet Filesystem

File System

1,790 1TB SATA disk drives, for a total
of 1.4PB

Two DCS9900 couplets, each delivering:

4-5 GB/s read/write access (bandwidth)
30,000 IOPs max (open, close, seek, . . . )

Single GPFS file system on TCS and GPC

I/O goes over infiniband (as of April 2012)

File system is parallel!



I/O Software Stack



Parallel File System
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Parallel File System

File Locks

Most parallel file systems use locks to manage concurrent file
access

Files are broken up into lock units

Clients obtain locks on units that they will access before I/O
occurs

Enables caching on clients as well (as long as client has a
lock, it knows its cached data is valid)

Locks are reclaimed from clients when others desire access



Parallel File System

Optimal for large shared files.

Behaves poorly under many small reads and writes, high IOPs

Your use of it affects everybody!
(Different from case with CPU and RAM which are not
shared.)

How you read and write, your file format, the number of files
in a directory, and how often you ls, affects every user!

The file system is shared over the network on GPC:
Hammering the file system can hurt process communications.

File systems are not infinite!
Bandwidth, metadata, IOPs, number of files, space, . . .



Parallel File System

2 jobs doing simultaneous I/O can take much longer than
twice a single job duration due to disk contention and
directory locking.

SciNet: 500+ users doing I/O from 4000 nodes.
That’s a lot of sharing and contention!



Data Management

Formats

ASCII

Binary

MetaData (XML)

Databases

Standard Library’s (HDF5,NetCDF)



ASCII

American Standard Code for Information Interchange

Pros

Human Readable

Portable (architecture independent)

Cons

Inefficient Storage

Expensive for Read/Write (conversions)



Native Binary

100100100

Pros

Efficient Storage (256 x floats @4bytes takes 1024 bytes)

Efficient Read/Write (native)

Cons

Have to know the format to read

Portability (Endianness)



ASCII vs. binary

Writing 128M doubles

Format /scratch (GPCS) /dev/shm (RAM) /tmp (disk)

ASCII 173s 174s 260s
Binary 6s 1s 20s

Syntax

Format C FORTRAN

ASCII fprintf() open(6,file=’test’,form=’formatted’)
write(6,*)

Binary fwrite() open(6,file=’test’,form=’unformatted’)
write(6)



Data Management

File(s)

Human-interpretable filenames lose their charm after few
dozen files (or even after a few months pass)...

Need to avoid thousands of files in a flat directory.

A few big files are more efficient that many little ones.

Keep parallel I/O in mind.

Rigorously maintained metadata becomes essential.

Possibly use a database or version control (i.e. git-annex).



Data Management

http://www.phdcomics.com/comics/archive.php?comicid=1323



Metadata

What is Metadata?

Data about Data

File System: size, location, date, owner, etc.

App Data: File format, version, iteration, etc.

Example: XML

<?xml version="1.0" encoding="UTF-8" ?>
<slice_data>

<format>UTF1000</format>
<verstion>6.8</version>
<img src="slice1_2010.img" alt=’Slice 1 of Data’/>
<date> January 15th, 2010 </date>
<loc> 47 23.516 -122 02.625 </loc>

</slice_data>



Databases

Beyond flat files

Very powerful and flexible storage approach

Data organization and analysis can be greatly simplified

Enhanced performance over seek/sort depending on usage

Open Source Software

SQLite (serverless)
PostgreSQL
mySQL



“Standard” Formats

CGNS (CFD General Notation System)

IGES/STEP (CAD Geometry)

HDF5 (Hierarchical Data Format)

NetCDF (Network Common Data Format)

disciplineX version



Parallel I/O

Sequential I/O (only proc 0 Writes/Reads)

Pro

Trivially simple for small I/O
Some I/O libraries not parallel

Con

Bandwidth limited by rate one client can sustain
May not have enough memory on node to hold all data
Won’t scale (built in bottleneck)



Common Ways of Doing Parallel I/O

N files for N Processes

Pro

No interprocess communication or coordination necessary
Possibly better scaling than single sequential I/O

Con

As process counts increase, lots of (small) files, won’t scale
Data often must be post-processed into one file
Uncoordinated I/O may swamp file system (File LOCKS!)



Common Ways of Doing Parallel I/O

All Processes Access One File

Pro

Only one file
Data can be stored canonically, avoiding post-processing
Will scale if done correctly

Con

Uncoordinated I/O WILL swamp file system (File LOCKS!)
Requires more design and thought



Parallel I/O

What is Parallel I/O?

Multiple processes of a parallel program accessing data (reading or
writing) from a common file.



Parallel I/O

Why Parallel I/O?

Non-parallel I/O is simple but:

Poor performance (single process writes to one file)
Awkward and not interoperable with other tools (each process
writes a separate file)

Parallel I/O

Higher performance through collective and contiguous I/O
Single file (visualization, data management, storage, etc)
Works with file system not against it



Parallel I/O

Available Approaches

MPI-IO: MPI-2 Language Standard

HDF (Hierarchical Data Format)

NetCDF (Network Common Data Format)

Adaptable IO System (ADIOS)

Actively developed (OLCF,SandiaNL,GeorgiaTech) and used
on largest HPC systems (Jaguar,Blue Gene/P)
External to the code XML file describing the various elements
Uses MPI-IO, can work with HDF/NetCDF



I/O Best Practices

Make a plan

Make a plan for your data needs:

How much will you generate,
How much do you need to save,
And where will you keep it?

Note that /scratch is temporary storage for 3 months or less.

Options?

1 Save on your departmental/local server/workstation
(it is possible to transfer TBs per day on a gigabit link);

2 Apply for a project space/HPSS allocation at next RAC call
(but space is very limited);

3 Change storage format.



I/O Best Practices

Monitor and control usage

Minimize use of filesystem commands like ls and du.

Regularly check your disk usage using
/scinet/gpc/bin/diskUsage.

Warning signs which should prompt careful consideration:

More than 100,000 files in your space
Average file size less than 100 MB

Monitor disk actions with top and strace

RAM is always faster than disk; think about using ramdisk.

Use gzip and tar to compress files to bundle many files into
one

Try gziping your data files. 30% not atypical!

Delete files that are no longer needed

Do ”housekeeping” (gzip, tar, delete) regularly.



I/O Best Practices

Do’s

Write binary format files
Faster I/O and less space than ASCII files.

Use parallel I/O if writing from many nodes

Maximize size of files. Large block I/O optimal!

Minimize number of files. Makes filesystem more responsive!

Don’ts

Don’t write lots of ASCII files. Lazy, slow, and wastes space!

Don’t write many hundreds of files in a 1 directory. (File
Locks)

Don’t write many small files (< 10MB).
System is optimized for large-block I/O.
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Software Development

Tools of the Trade

Editors/IDE

Version Control

Build System (make)

Compilers

Libraries

Debuggers (gdb,idb, Allinea DDT)

Performance (gprof,Scalasa,IPM)

Memory (valgrind)

I/O (strace)
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Version Control

What is it?

A tool for managing changes in a set of files.

Figuring out who broke what where and when.

Why Do it?

Collaboration

Organization

Track Changes

Faster Development

Reduce Errors
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Collaboration
With others and yourself

Questions

What if two (or more) people want to edit the same file at the
same time?

What if you work on SciNet and on your own computer?

Answers

Option 1: make them take turns

But then only one person can be working at any time
And how do you enforce the rule?

Option 2: patch up differences afterwards

Requires a lot of re-working
Stuff always gets lost

Option 3: Version Control
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Organize and Track Changes

Question

Want to undo changes to a file

Start work, realize it’s the wrong approach, want to get back
to starting point
Like ”undo” in an editor...
...but keep the whole history of every file, forever

Also want to be able to see who changed what, when

The best way to find out how something works is often to ask
the person who wrote it

Answer

Version Control
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What Software to Use

Software

Open Source

Subversion, CVS, RCS
Git, Mercurial, Bazaar

Commercial

Perforce, ClearCase

available as modules on SciNet



Version Control Software

Subversion (svn)

Centralized Version Control

Replaces CVS

Lots of web and GUI integration

Users: GCC, KDE, FreeBSD

Git

Distributed Version Control

*nix command line driven design model

advanced features git-stash, git-rebase, git-cherry-pick

Users: Linux kernel, GNOME, Wine, X.org



Outline

1 Workflow & Batch Computing

2 Data Management
File Systems and I/O
Data Management
Parallel I/O

3 Software Development
Version Control
Compilers
Numerical Libraries

4 Performance Profiling
Profiling
Memory Profiling



GPC x86 64 Compilers

GNU Compiler Collection (v4.9.0)

C (gcc)

C++ (g++)

FORTRAN (gfortran)

Intel Composer XE 2013 (v14.0) *recommended

C (icc)

C++ (icpc)

FORTRAN (ifort)

Threaded Building Blocks (TBB)

Integrated Performance Primitives (IPP)

Math Kernel Libraries (MKL)



Optimizations

Optimization Levels

-O0 disable optimization

-O1 optimizes for code size

-O2 optimizes for speed (default)

-O3 -O2 plus more aggressive optimizations

From the Intel Manual

“The -O3 option is particularly recommended for applications that
have loops that do many floating-point calculations or process
large data sets.”
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Optimizations

-O2 Optimizations

intrinsic inlining

inlining

constant propagation

forward substitution

routine attribute propagation

variable address-taken analysis

dead static function elimination

removal of unreferenced variables

constant propagation

copy propagation

dead-code elimination

global register allocation

global instruction scheduling and
control speculation

loop unrolling

optimized code selection

partial redundancy elimination

strength reduction/induction
variable simplification

variable renaming

exception handling optimizations

tail recursions

peephole optimizations

structure assignment lowering
and optimizations

dead store elimination



Optimization Terminology
Inlining

Inlining

Replaces the function call with the actual functions code.

Original
int func(int &x,int &y) { return 4*x+3*y; }

int main(){

int x=4, y=3;

int b=fun(x,y)

}

Inlined
int main(){

int x=4,y=3;

int b= 4*x+3*y;

}
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Optimization Terminology
Branch Elimination

Original
if ( x < x1 ) {

a = a0 + a1;

} else if ( x < x2 ) {

a = a0 - a1;

} else if ( x < x3 ) {

a = a0 * a1;

} else if ( x < x4 ) {

a = a0 / a1;

} else {

a = a0;

}

Optimizer Approaches

static branch elimination

compute all cases and conditions, then pick the correct one

replace with switch statements, jump tables

branch re-alignment



Optimizations

-O3 Additional Optimizations

Loop Blocking for cache

Loop Permutation or
Interchange

Loop Distribution

Loop Fusion

Loop Unrolling

Unroll and Jam

Loop Blocking or Tiling

Loop Reversal

Loop Peeling

Loop Rerolling

Profile-Guided Loop Unrolling

Code Replication to eliminate
branches

Memory-access optimizations

Data Prefetching

Scalar Replacement

Partial-Sum Optimization

Predicate Optimization

Data Transformation: Malloc
Combining and Memset Combining

Memset and Memcpy Recognition

Statement Sinking for Creating
Perfect Loopnests



Optimization Terminology
Loop Unrolling

Original
for (int x=0; x < 100; x++)

{

func(x);

}

Optimized
for (int x = 0; x < 100; x+=5)

{

func(x);

func(x+1);

func(x+2);

func(x+3);

func(x+4);

}
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Optimization Terminology
Loop Collapsing

Original

int a[100][300];

for (int i = 0; i < 300; i++)

for (int j = 0; j < 100; j++)

a[j][i] = 0;

Optimized
int a[100][300];

int *p = &a[0][0];

for (int i = 0; i < 30000; i++)

*p++ = 0;



Optimization Terminology
Loop Collapsing

Original

int a[100][300];

for (int i = 0; i < 300; i++)

for (int j = 0; j < 100; j++)

a[j][i] = 0;

Optimized
int a[100][300];

int *p = &a[0][0];

for (int i = 0; i < 30000; i++)

*p++ = 0;



Optimization Terminology
Loop Fusion

Original
int x[100], y[100];

for (int i = 0; i < 100; i++)

x[i] = 1;

for (int i = 0; i < 100; i++)

y[i] = 2;

Optimized
int x[100], y[100];

for (int i = 0; i < 100; i++)

{

x[i] = 1;

y[i] = 2;

}



Optimization Terminology
Loop Fusion

Original
int x[100], y[100];

for (int i = 0; i < 100; i++)

x[i] = 1;

for (int i = 0; i < 100; i++)

y[i] = 2;

Optimized
int x[100], y[100];

for (int i = 0; i < 100; i++)

{

x[i] = 1;

y[i] = 2;

}



Optimization Terminology
Loop Peeling

Original
int p = 10;

for (int i=0; i<10; ++i)

{

y[i] = x[i] + x[p];

p = i;

}

Optimized
y[0] = x[0] + x[10];

for (int i=1; i<10; ++i)

{

y[i] = x[i] + x[i-1];

}



Optimization Terminology
Loop Peeling

Original
int p = 10;

for (int i=0; i<10; ++i)

{

y[i] = x[i] + x[p];

p = i;

}

Optimized
y[0] = x[0] + x[10];

for (int i=1; i<10; ++i)

{

y[i] = x[i] + x[i-1];

}



Optimizations

System Specific

-march=”cpu” optimize for a specific cpu

-mtune=”cpu” produce code only for a specific cpu

-msse3,-msse4,-mavx, etc. level of SIMD and vector
instructions

Use this instead!

-xHost optimize and tune for the compiling CPU

GPC Recommendations

-xHost -O3
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Optimizations

System Specific

-march=”cpu” optimize for a specific cpu

-mtune=”cpu” produce code only for a specific cpu

-msse3,-msse4,-mavx, etc. level of SIMD and vector
instructions

Use this instead!

-xHost optimize and tune for the compiling CPU

GPC Recommendations

-xHost -O3



Optimization Terminology
Vector Extensions

Intel x86 64 extensions
Streaming SIMD Extensions (SEE1 - SSE4.2)

AVX, AVX2, AVX512

Original x86
Add two single precision vectors requires four floating-point addition instructions.

vec_res.x = v1.x + v2.x;

vec_res.y = v1.y + v2.y;

vec_res.z = v1.z + v2.z;

vec_res.w = v1.w + v2.w;

SSE
A single 128-bit ’packed-add’ replaces four scalar addition instructions.

movaps xmm0, [v1]; xmm0 = v1.w | v1.z | v1.y | v1.x

addps xmm0, [v2]; xmm0 = v1.w+v2.w | v1.z+v2.z | v1.y+v2.y | v1.x+v2.x

movaps [vec_res], xmm0



Optimization Terminology
Vector Extensions

Intel x86 64 extensions
Streaming SIMD Extensions (SEE1 - SSE4.2)

AVX, AVX2, AVX512

Original x86
Add two single precision vectors requires four floating-point addition instructions.

vec_res.x = v1.x + v2.x;

vec_res.y = v1.y + v2.y;

vec_res.z = v1.z + v2.z;

vec_res.w = v1.w + v2.w;

SSE
A single 128-bit ’packed-add’ replaces four scalar addition instructions.

movaps xmm0, [v1]; xmm0 = v1.w | v1.z | v1.y | v1.x

addps xmm0, [v2]; xmm0 = v1.w+v2.w | v1.z+v2.z | v1.y+v2.y | v1.x+v2.x

movaps [vec_res], xmm0



Floating Point Math

-fpmodel

fast=1 default

fast=2 most aggressive

precise value-safe optimizations on intermediate operations

except strict floating point semantics

strict disables all “fast-math” options

If Required

For floating point consistency and reproducibility use:
-fpmodel precise -fpmodel except



Memory Model

Seen this error?

relocation truncated to fit: R X86 64 PC32

-mcmodel=

small code and data restricted to the first 2GB of address
space

medium code restricted to the first 2GB of address space

large no restrictions



Memory Model

Seen this error?

relocation truncated to fit: R X86 64 PC32

-mcmodel=

small code and data restricted to the first 2GB of address
space

medium code restricted to the first 2GB of address space

large no restrictions



Intel Math Kernel Library

MKL Components

BLAS

LAPACK

ScaLAPACK

FFT

PBLAS

BLACS

plus others



Intel Math Kernel Library

Dynamic Link Line for MKL >10.3

-L mkl rt

Link Line - Composer XE 2013

-mkl=sequential no-threaded versions (serial)

-mkl=parallel threaded (openmp)

-mkl=cluster for ScaLAPACK, FFT, BLACS

Link Line Advisor
http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/



Documentation

Intel Documentation
http://software.intel.com/en-us/articles/intel-parallel-studio-xe-for-linux-
documentation/

Compiler Optimization flags

http://software.intel.com/sites/products/collateral/hpc/compilers/compiler qrg12.pdf

White Paper on Floating Point

https://support.scinet.utoronto.ca/wiki/images/f/f2/FP Consistency.pdf
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Numerical Computing

Numerical Methods

Linear algebra

Nonlinear equations

Optimization

Interpolation/Approximation

Integration and differentiation

Solving ODEs

Solving PDEs

FFT

Random numbers and stochastic simulations

Special functions



Numerical Algorithms

Top Ten Algorithms for Science (Jack Dongarra, 2000)

1. Metropolis Algorithm for Monte Carlo
2. Simplex Method for Linear Programming
3. Krylov Subspace Iteration Methods
4. The Decompositional Approach to Matrix Computations
5. The Fortran Optimizing Compiler
6. QR Algorithm for Computing Eigenvalues
7. Quicksort Algorithm for Sorting
8. Fast Fourier Transform
9. Integer Relation Detection
10. Fast Multipole Method



Numerical Algorithms

Argonne National Laboratory GBB



Libraries

Numerical Libraries

BLAS (gotoblas, ATLAS)

LAPACK (ESSL, MKL, ACML)

ScaLAPACK

GSL ( GNU Scientific Library)

FFTW

PETSc

TAO

IMSL

NAG

Don’t re-invent the wheel!
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Profiling

• Like debuggers for 
debugging, profilers 
are evidence-based 
methods to find 
performance 
problems.

• Can’t improve what 
you don’t measure.



Profiling
• Where in your program 

is time being spent? 

• Find the expensive parts 
• Don’t waste time 
optimizing parts that 
don’t matter 

• Find bottlenecks. 

•



Profiling

•

• Tracing vs. Sampling

• Instrumenting vs. 
instrumentation-free



Timing whole program

•

• Very simple; can run 
on any command.

• In serial, real = user + 
sys

• In parallel, ideally user 
= nprocs x real

• Can run on tests to 
identify performance 
regressions.



Watching program run
$ top

More system then user time - 
not very efficient



Instrumenting regions 
of code

• Instrumenting the 
code

• Simple, but incrediby 
useful.

• Runs every time 
your code is run 

• Can trivially see if 
changes make things 
better or worse 



Instrumenting regions 
of code

• Simple example - 
matrix-vector multiply

• Initializes data, does 
multiply, saves result 

• Look to see where it 
spends its time, speed it 
up. 

• Options for how to 
access data, output data. 



Matrix-vector multiply

• Simple example - 
matrix-vector multiply

• Initializes data, does 
multiply, saves result 

• Look to see where it 
spends its time, speed it 
up. 

• Options for how to 
access data, output data. 



Matrix-vector multiply

• Can get an overview of 
the time spent easily, 
because we 
instrumented our code 
(~12 lines!) 

• I/O huge bottleneck. 

$ mvm --matsize=2500
Timing summary:
  Init:  0.00952 sec
  Calc:  0.06638 sec
  I/O :  5.07121 sec



Matrix-vector multiply

• I/O being done in ASCII 

• having to loop over 
data, convert to string, 
write to output. 

• 6,252,500 write 
operations! 

• Let’s try a --binary 
option: 



Matrix-vector multiply

• Let’s try a --binary 
option: 

• Shorter...



Matrix-vector multiply

• And much (36x!) faster

• File 4x smaller

• Still slow, but file I/O is 
always going to be 
slower than a 
multiplication.

• On to calculation...

$ mvm --matsize=2500
--binary
Timing summary:
  Init:  0.00976 sec
  Calc:  0.06695 sec
  I/O :  0.14218 sec
$ ./mvm --binary
$ du -h Mat-vec.dat
89M     Mat-vec.dat
$ ./mvm --binary
$ du -h Mat-vec.dat
20M     Mat-vec.dat



Sampling for Profiling

• How to get finer-grained information about 
where time is being spent? 

• Can’t instrument every single line. 

• Compilers have tools for sampling execution 
paths. 



Sampling for Profiling

• As program executes, 
every so often 
(~100ms) a timer goes 
off, and the current 
location of execution 
is recored 

• Shows where time is 
being spent. 

Line 7
Line 18
Line 223
Line 9



Sampling for Profiling
• Advantages:

• Very low overhead

• No extra 
instrumentation

• Disadvantages:

• Don’t know why 
code was there

• Statistics - have to 
run long enough 
job

Line 7
Line 18
Line 223
Line 9



gprof for sampling



gprof examines gmon.out
$ gprof mvm-profile gmon.out
Flat profile:
Each sample counts as 0.01 seconds.
  %   cumulative   self              self     total
 time   seconds   seconds    calls  Ts/call  Ts/call  name
100.24      0.41     0.41       3     0.00            main
  0.00      0.41     0.00       3     0.00      0.00  tick
  0.00      0.41     0.00       3     0.00      0.00  tock
  0.00      0.41     0.00       2     0.00      0.00  alloc1d
  0.00      0.41     0.00       2     0.00      0.00  free1d
  0.00      0.41     0.00       1     0.00      0.00  alloc2d
  0.00      0.41     0.00       1     0.00      0.00  free2d
  0.00      0.41     0.00       1     0.00      0.00  get_options
[...]

Gives data by function -- usually handy, not so useful in this 
toy problem



gprof --line
gpc-f103n084-$ gprof --line mvm-profile gmon.out | more 
Flat profile:
Each sample counts as 0.01 seconds.
  %   cumulative   self              self     total
 time   seconds   seconds    calls  Ts/call  Ts/call  name
 68.46      0.28     0.28             main (mat-vec-mult.c:82 @ 401
 14.67      0.34     0.06             main (mat-vec-mult.c:113 @ 40
  7.33      0.37     0.03             main (mat-vec-mult.c:63 @ 401
  4.89      0.39     0.02             main (mat-vec-mult.c:112 @ 40
  4.89      0.41     0.02             main (mat-vec-mult.c:113 @ 40
  0.00      0.41     0.00   3     0.00  0.00  tick (mat-vec-mult.c:159 @ 40
  0.00      0.41     0.00   3     0.00  0.00  tock (mat-vec-mult.c:164 @ 40
  0.00      0.41     0.00   2     0.00  0.00  alloc1d (mat-vec-mult.c:152 @
  0.00      0.41     0.00   2     0.00  0.00  free1d (mat-vec-mult.c:171 @
  0.00      0.41     0.00   1     0.00  0.00  alloc2d (mat-vec-mult.c:130 @
  0.00      0.41     0.00   1     0.00  0.00  free2d (mat-vec-mult.c:144 @
  0.00      0.41     0.00   1     0.00  0.00  get_options (mat-vec-mult.c:1



Then can compare to 
source

• Code is spending most 
time deep in loops 

• #1 - multiplication 

• #2 - I/O (old way) 



gprof pros/cons

• Exists (almost) everywhere 

• Easy to script, put in batch jobs 

• Low overhead 

• As with graphical debuggers, many nice graphical 
profilers exist as well



Memory Profiling

Most profilers use time as a the metric, but what about memory?

Valgrind

Massif: Memory Heap Profiler

valgrind --tool=massif ./mycode

ms print massif.out

Cachegrind: Cache Profiler

valgrind --tool=cachegrind ./mycode

Kcachegrind (gui frontend for cachegrind)

http://valgrind.org/



Memory Profiling: Valgrind Massif

Example of output from ms print, showing heap memory usage.

--------------------------------------------------------------------------------

n time(i) total(B) useful-heap(B) extra-heap(B) stacks(B)

--------------------------------------------------------------------------------

11 17,558,376,865 108,721,536 108,079,702 641,834 0

12 18,730,053,265 108,746,848 108,104,510 642,338 0

13 19,748,755,982 108,742,200 108,099,974 642,226 0

14 21,351,204,796 108,745,520 108,103,214 642,306 0

15 22,575,905,502 108,742,200 108,099,974 642,226 0

16 24,344,627,331 108,742,200 108,099,974 642,226 0

17 25,780,057,465 108,742,200 108,099,974 642,226 0

18 27,215,452,841 108,742,200 108,099,974 642,226 0

99.41% (108,099,974B) (heap allocation functions) malloc/new/new[], --alloc-fns, etc.

->55.61% (60,466,176B) 0x873A8A: BlockMat::setup() (in navierstokes3Dthermallyperfect.5)

| ->55.61% (60,466,176B) 0x47A0F5: Hexa_NKS_Solver<State>::allocate() (NKS.h:192)

| ->55.61% (60,466,176B) 0x477796: int HexaSolver<State>(char*, int) (HexaSolver.h:150)

| ->55.61% (60,466,176B) 0x476A9F: main (NavierStokes3DThermallyPerfect.cc:226)

|

->10.07% (10,948,608B) 0x47A3B2: Hexa_NKS_Solver<State>::allocate() (NKS.h:186)

| ->10.07% (10,948,608B) 0x477796: int HexaSolver<State>(char*, int) (HexaSolver.h:150)

| ->10.07% (10,948,608B) 0x476A9F: main (NavierStokes3DThermallyPerfect.cc:226)

|

->09.15% (9,953,280B) 0x47A390: Hexa_NKS_Solver<Statee>::allocate() (NKS.h:186)

| ->09.15% (9,953,280B) 0x477796: int HexaSolver<State>(char*, int) (HexaSolver.h:150)

| ->09.15% (9,953,280B) 0x476A9F: main (NavierStokes3DThermallyPerfect.cc:226)



Cache Thrashing

• Memory bandwidth is 
key to getting good 
performance on 
modern systems 

• Main Mem - big, slow 

• Cache - small, fast 

• Saves recent 
accesses, a line of 
data at a time.



Cache Thrashing

• When accessing 
memory in order, only 
one access to slow 
main mem for many 
data points 

• Much faster 



Cache Thrashing

• When accessing 
memory out of order, 
much worse

• Each access is new 
cache line (cache 
miss)- slow access to 
main memory

• Can see ~10x 
slowdown



Cache Thrashing

• In C, cache-friendly 
order is to make last 
index most quickly 
varying

Good

Bad



Cache Thrashing

• Can see cache 
problems with 
valgrind + visualizer:

• valgrind --
tool=cachegrind

• KDE tool kcachegrind 
available for window,s 
linux, mac os x.

Good

Bad



kcachegrind viewing output of
$ module load valgrind
$ valgrind --tool=cachegrind ./mvm --matsize=2500
$ kcachegrind cachegrind.out.20275



Cache Thrashing

• Once cache thrashing 
is fixed, and assuming 
I/O can’t be 
improved, Init is now 
the bottleneck!

• So it goes...

$ ./mvm-omp --matsize=2500 
   --transpose --binary 
Timing summary:
  Init: 0.00947 sec
  Calc: 0.00811 sec
  I/O : 0.14881 sec



Other Profiling Tools

Scalasca

Open SpeedShop

TAU Performance System

HPC Tool Kit

Allinea MAP

Intel Tools (Vtune, ITAC)

Xcode (OS X)



Profiling Summary

Put your own timers in the code in/around important
sections, find out where time is being spent.

if something changes, know in what section

gprof is easy to use and excellent at finding where the time is
spent.

Know the ’expensive’ parts of your code and spend your
programming time accordingly.

valgrind is good for all things memory; performance, cache,
and usage.
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