
Practical Parallel Programming Intensive

SciNet HPC Consortium

9–13 May 2011

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 1 / 140



Welcome to the intensive parallel
programming course!
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Part I

The Course
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Main goal of the course

. . . to enable young researchers already experienced in scientific computing
to leave with the knowledge necessary to begin writing the parallel codes
needed for their research.

The course will be a mix of lectures and immediate feedback on practical
assignments, designed to ensure that students leave with significant
experience in both OpenMP and MPI, two of the standards for parallel
computing today.

So there’ll ne a lot of typing and programming to help build skills with
OpenMP and MPI.

We will use C and Fortran. We’ll assume that you already know one of
them, but not both.
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Schedule

Mon May 9 AM Intro to Parallel Computing, SciNet resources
PM OpenMP I +hands on

Tue May 10 AM OpenMP II +hands on
PM MPI I +hands on

Wed May 11 AM MPI II +hands on
PM Explicit PDEs: Hydrodynamics +hands on

Thu May 12 AM Particle Methods: N-body +hands on
PM GPU Programming +hands on

Fri May 13 AM Performance tools & Best practices
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Strongly recommended books

(not provided by us)

1 B. Chapman, G. Jost and R. van der Pas, Using OpenMP: Portable
Shared Memory Parallel Programming (MIT Press, Cambridge 2008)

2 W. Gropp, E. Lusk, A. Skjellum, Using MPI: Portable Parallel
Programming with the Message-Passing Interface, second edition
(MIT Press, Cambridge 1999).
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Part II

Introduction to Parallel Programming
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Why Parallel Programming?

1 Faster
There’s a limit to how fast 1
computer can compute.

2 Bigger
There’s a limit to how much
memory, disk, etc, can be put
on 1 computer.

3 More
Want to do the same thing that
was done on 1 computer, but
thousands of times.

So use more computers!
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Why is it necessary?

Modern experiments and observations yield vastly more data to be
processsed than in the past.

As more computing resources become available (SciNet), the bar for
cutting edge simulations is raised.

Science that before could not even be done becomes reachable.

However:

Advances in clock speeds, bigger and faster memory and disks have
been lagging as compared to e.g. 10 years ago.
Can no longer “just wait a year” and get a better computer.

So more computing resources here means: more cores running
concurrently.

Even most laptops now have 2 or more cpus.

So parallel computing is necessary.
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Wait, what about Moore’s Law?

(source: Transistor Count and Moore’s Law - 2008.svg, by Wgsimon, wikipedia)
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Wait, what about Moore’s Law?

(source: Transistor Count and Moore’s Law - 2008.svg, by Wgsimon, wikipedia)

Moore’s law

. . . describes a long-term trend in the history of computing
hardware. The number of transistors that can be placed
inexpensively on an integrated circuit doubles approximately
every two years.

(source: Moore’s law, wikipedia)

But. . .

Moores Law didn’t promise us clock speed.

More transistors but getting hard to push clock speed up.
Power density is limiting factor.

So more cores at fixed clock speed.
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Concurrency

Must have something to do for
all these cores.

Find parts of the program that
can done independently, and
therefore concurrently.

There must be many such
parts.

There order of execution should
not matter either.

Data dependencies limit
concurrency.

(source: http://flickr.com/photos/splorp)
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Parameter study: best case scenario

Aim is to get results
from a model as a
parameter varies.

Can run the serial
program on each
processor at the same
time.

Get “more” done.
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Throughput

How many tasks can you do per time unit?

throughput = H =
N

T

Maximizing H means that you can do as much as possible.

Independent tasks: using P processors increases H by a factor P.
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T = NT1 T = NT1/P
H = 1/T1 H = P/T1
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Scaling — Throughput

How a problem’s throughput scales as processor number increases
(“strong scaling”).

In this case, linear scaling:
H ∝ P

This is Perfect scaling.
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Scaling – Time

How a problem’s timing scales as processor number increases.

Measured by the time to do one unit. In this case, inverse linear
scaling:

T ∝ 1/P

Again this is the ideal case, or “embarrasingly parallel”.
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Scaling – Speedup

How much faster the problem is solved as processor number increases.

Measured by the serial time divided by the parallel time

S =
Tserial

T(P)
∝ P

For embarrasingly parallel applications: Linear speed up.
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Non-ideal cases

Say we want to integrate
some tabulated
experimental data.

Integration can be split
up, so different regions
are summed by each
processor.

Non-ideal:
I First need to get data

to processor
I And at the end bring

together all the sums:
“reduction”
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Non-ideal cases

Parallel region⇒
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Non-ideal cases

Parallel region⇒


Perfectly Parallel
(for large N)
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Non-ideal cases

Parallel region⇒


Perfectly Parallel
(for large N)

Serial portion ⇒
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Non-ideal cases

Parallel region⇒
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Non-ideal cases

Parallel region⇒


Perfectly Parallel
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Suppose non-parallel part const: Ts
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Amdahl’s law
Speed-up (without parallel overhead):

S =
NT1 + Ts

NT1
P + Ts

or, calling f = Ts/(Ts + NT1) the serial fraction,

S =
1

f + (1− f)/P

P→∞−→
1

f
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 2  4  6  8  10  12  14  16 (for f = 5%)

Serial part dominates asymptotically.

Speed-up limited, no matter size of P.

And this is the overly optimistic case!
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Scaling efficiency

Speed-up compared to ideal factor P:

Efficiency =
S

P

This will invariably fall off for larger P except for embarrasing parallel
problems.

Efficiency ∼
1

fP

P→∞−→ 0

You cannot get 100% efficiency in any non-trivial problem.
All you can aim for here is to make the efficiency as least low as possible.
Sometimes, that can mean running on less processors, but more problems
at the same time.
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Timing example

Say 100s in integration cost

5s in reduction

Neglect communication cost

What happens as we vary number of processors P?

Time = (100s)/P + 5
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Throughput example

H(P) =
N

Time(P)

Say we are doing k at the same time, on P processors total.

Hk(P) =
kN

Time(P/k)

Say N = 100:
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Big Lesson #1

Always keep throughput in mind: if you have several runs, running more of
them at the same time on less processors per run is often advantageous.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 23 / 140



Less ideal case of Amdahl’s law

We assumed reduction is constant.
But it will in fact increase with P,
from sum of results of all processors

Ts ≈ PT1

Serial fraction now a function of P:

f(P) =
P

N

Amdahl:

S(P) =
1

f(P) + [1− f(P)]/P

Example: N = 100, T1 = 1s. . .
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Trying to beat Amdahl’s law #1

Scale up!

The larger N, the smaller
the serial fraction:

f(P) =
P

N
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Weak scaling: Increase problem size while increasing P

Timeweak(P) = Time(N = n× P,P)

Good weak scaling means this time approaches a constant for large P.

Gustafson’s Law

Any large enough problem can be efficiently parallelized (Efficiency→1).
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Trying to beat Amdahl’s law #2

Parallel region⇒


Perfectly Parallel
(for large N)

Serial portion ⇒

Parallel overhead ⇒

Rewrite

∝ 2 log P
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Trying to beat Amdahl’s law #2

‘Serial’ fraction now different function
of P:

f(P) =
2 log P

N

Amdahl:

S(P) =
1

f(P) + [1− f(P)]/P

Example: N = 100, T1 = 1s. . .
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Trying to beat Amdahl’s law #2

Weak scaling

Timeweak(P) = Time(N = n×P,P)

Should approach constant for large P.
Let’s see. . .

Not quite!
But much better than before.

Gustafson?
It turns out that Gustafson’s law as-
sumes that the serial cost does not
change with P.
Here that grows logarithmically with
P, and this is reflected in the weak
scaling.
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Really not that bad.
and other algorithms can do better.
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Big Lesson #2

Optimal Serial Algorithm for your problem may
not be the P→1 limit of your optimal

parallel algorithm.
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Synchronization

Most problems are not purely
concurrent.

Some level of synchronization
or exchange of information is
needed between tasks.

While synchronizing, nothing
else happens: increases
Amdahl’s f.

And synchronizations are
themselves costly.
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Load balancing

The division of calculations
among the processors may not
be equal.

Some processors would already
be done, while others are still
going.

Effectively using less than P
processors: This reduces the
efficiency.

Aim for load balanced
algorithms.
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Locality

So far we neglected communication costs.

But communication costs are more expensive than computation!

To minimize communication to computation ratio:

* Keep the data where it is needed.
* Make sure as little data as possible is to be communicated.
* Make shared data as local to the right processors as possible.

Local data means less need for syncs, or smaller-scale syncs.

Local syncs can alleviate load balancing issues.

Example (PDE Domain decomposition)

wrong right
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Big Lesson #3

Parallel algorithm design is about finding as
much concurrency as possible, and arranging

it in a way that maximizes locality.
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Parallel Computers

Top500.org:

List of the worlds
500 largest
supercomputers.
Updated every 6
months,

Info on
architecture, etc.
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Supercomputer architectures

Clusters, or, distributed memory machines
In essence a bunch of desktops linked together by a network
(“interconnect”). Easy and cheap.

Multi-core machines, or, shared memory machines
These can see the same memory. Limited number of cores, typically,
and much more $$$.

Vector machines.
These were the early supercomputers, and could do the same
operation on a large number of numbers at the same time.
Very $$$$$$, especially at scale.
These days, most chips have some low-level, small size vectorization,
but you rarely need to worry about it (compiler should do this).

Most supercomputers are a hybrid combo of these different architectures.
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Distributed Memory: Clusters

Simplest type of parallel computer
to build

Take existing powerful
standalone computers

And network them

(source: http://flickr.com/photos/eurleif)
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Distributed Memory: Clusters
Each node is independent!
Parallel code consists of
programs running on
separate computers,
communicating with each
other.
Could be entirely different
programs.

Each node has own
memory!
Whenever it needs data
from another region,
requests it from that CPU.

Usual model: “message passing”

~ ~
~

~

n n
n

n

CPU1

CPU2

CPU3

CPU4

�
�
�
�
�
�
�
�
�
�
�
���

��
��*

6

�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
��

�
����

?

�
�

�
�	

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 37 / 140



Distributed Memory: Clusters
Each node is independent!
Parallel code consists of
programs running on
separate computers,
communicating with each
other.
Could be entirely different
programs.

Each node has own
memory!
Whenever it needs data
from another region,
requests it from that CPU.

Usual model: “message passing”

~ ~
~

~

n n
n

n

CPU1

CPU2

CPU3

CPU4

�
�
�
�
�
�
�
�
�
�
�
���

��
��*

6

�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
��

�
����

?

�
�

�
�	

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 37 / 140



Clusters+Message Passing
Hardware:
Easy to build
(Harder to build well)
Can build larger and larger
clusters relatively easily

Software:
Every communication has
to be hand-coded:
hard to program
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Cluster Communication Cost

Latency Bandwidth

GigE 10 µs 1 Gb/s
(10,000 ns) ( 60 ns/double)

Infiniband 2 µs 2-10 Gb/s
(2,000 ns) ( 10 ns /double)

Processor speed: O(GFLOP) ∼ few ns or less.
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Shared Memory

One large bank of memory,
different computing cores
acting on it. All ‘see’ same
data.

Any coordination done
through memory

Could use message
passing, but no need.

Each code is assigned a
thread of execution of a
single program that acts
on the data.
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Threads versus Processes

Threads:
Threads of execution within one
process, with access to the same
memory etc.

Processes:
Independent tasks with their own
memory and resources
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Shared Memory: NUMA

Non-Uniform Memory Access

Each core typically has some
memory of its own.

Cores have cache too.

Keeping this memory coherent
is extremely challenging.
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Coherency

The different levels of memory
imply multiple copies of some
regions

Multiple cores mean can update
unpredictably

Very expensive hardware

Hard to scale up to lots of
processors, very $$$

Very simple to program!!
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Shared Memory Communication Cost

Latency Bandwidth

GigE 10 µs 1 Gb/s
(10,000 ns) ( 60 ns/double)

Infiniband 2 µs 2-10 Gb/s
(2,000 ns) ( 10 ns /double)

NUMA 0.1 µs 10-20 Gb/s
(shared memory) (100 ns) ( 4 ns /double)

Processor speed: O(GFLOP) ∼ few ns or less.
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Hybrid Architectures

Multicore machines linked
together with an interconnect

Many cores have modest vector
capabilities.

Machines with GPU: GPU is
multi-core, but the amount of
shared memory is limited.

We will focus on the aspects that affect the programmer:

Shared memory: OpenMP

Distributed memory: MPI

Graphics computing: CUDA, OpenCL
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Big Lesson #4

The best approach to parallelizing your
problem will depend on both details of your

problem and of the hardware available.
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