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Welcome to the intensive parallel
programming course!

SCilet

SciNet HPC Consortium () 9-13 May 2011 2 /140



Part |

The Course
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Main goal of the course

... to enable young researchers already experienced in scientific computing
to leave with the knowledge necessary to begin writing the parallel codes
needed for their research. )

The course will be a mix of lectures and immediate feedback on practical
assignments, designed to ensure that students leave with significant
experience in both OpenMP and MPI, two of the standards for parallel
computing today.

So there'll ne a lot of typing and programming to help build skills with
OpenMP and MPI.

We will use C and Fortran. We'll assume that you already know one of
them, but not both.
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Schedule

Mon May 9
Tue May 10
Wed May 11
Thu May 12

Fri May 13

AM
PM
AM
PM
AM
PM
AM
PM
AM

Intro to Parallel Computing, SciNet resources
OpenMP | +hands on

OpenMP Il +hands on

MPI | +hands on

MPI Il +hands on

Explicit PDEs: Hydrodynamics +hands on
Particle Methods: N-body +hands on

GPU Programming +hands on

Performance tools & Best practices
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Strongly recommended books

(not provided by us)
© B. Chapman, G. Jost and R. van der Pas, Using OpenMP: Portable
Shared Memory Parallel Programming (MIT Press, Cambridge 2008)
@ W. Gropp, E. Lusk, A. Skjellum, Using MPI: Portable Parallel
Programming with the Message-Passing Interface, second edition
(MIT Press, Cambridge 1999).
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Part Il

Introduction to Parallel Programming
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Why Parallel Programming?

Q@ Faster
There's a limit to how fast 1
computer can compute.

So use more computers!

ch?\let
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Why Parallel Programming?

O Faster
There's a limit to how fast 1
computer can compute.

9 Bigger
There's a limit to how much
memory, disk, etc, can be put
on 1 computer.

So use more computers!
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Why Parallel Programming?

O Faster
There's a limit to how fast 1
computer can compute.

9 Bigger
There's a limit to how much
memory, disk, etc, can be put
on 1 computer.

@ More
Want to do the same thing that
was done on 1 computer, but
thousands of times.

So use more computers!
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Why is it necessary?

@ Modern experiments and observations yield vastly more data to be
processsed than in the past.

@ As more computing resources become available (SciNet), the bar for
cutting edge simulations is raised.

@ Science that before could not even be done becomes reachable.

Scilet
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Why is it necessary?

@ Modern experiments and observations yield vastly more data to be
processsed than in the past.

@ As more computing resources become available (SciNet), the bar for
cutting edge simulations is raised.

@ Science that before could not even be done becomes reachable.

However:
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Why is it necessary?

@ Modern experiments and observations yield vastly more data to be
processsed than in the past.

@ As more computing resources become available (SciNet), the bar for
cutting edge simulations is raised.

@ Science that before could not even be done becomes reachable.

However:
@ Advances in clock speeds, bigger and faster memory and disks have

been lagging as compared to e. g 10 years ago.
Can no longer ‘just wait a year” and get a better computer.

@ So more computing resources here means: more cores running
concurrently.
@ Even most laptops now have 2 or more cpus.
@ So parallel computing is necessary.
Scifet
)compute ca\cu\
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Wait, what about Moore’s Law?
CPU Transistor Counts 1971-2008 & Moore’s Law
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Wait, what about Moore’s Law?
CPU Transistor Counts 1971-2008 & Moore’s Law

2,000,000,000 DeekCore ek 2@ UnE Corefankm Tuvtn
1.000,000.000 Powers, §2UT0
1
Moore's law

. describes a long-term trend in the history of computing
hardware. The number of transistors that can be placed
inexpensively on an integrated circuit doubles approximately
every two years.

(source: Moore's law, wikipedia)
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Wait, what about Moore’s Law?
CPU Transistor Counts 1971-2008 & Moore’s Law

2,000,000,000 DeekCore ek 2@ UnE Corefankm Tuvtn
1.000,000.000 Powers, §2UT0
1
Moore's law

... describes a long-term trend in the history of computing
hardware. The number of transistors that can be placed
inexpensively on an integrated circuit doubles approximately
every two years.

(source: Moore's law, wikipedia)

100,000 —] bl

But. ..
@ Moores Law didn’t promise us clock speed.

@ More transistors but getting hard to push clock speed up.
Power density is limiting factor.

@ So more cores at fixed clock speed.
.
e N BINC L

. . L. . «calcul
(source: Transistor Count and Moore's Law - 2008.svg, by Wgsimon, wikipedia) (’ Comeita Ei cu
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Concurrency

@ Must have something to do for
all these cores.

o Find parts of the program that
can done independently, and
therefore concurrently.

@ There must be many such

parts. >
@ There order of execution should
not matter either.

@ Data dependencies limit
concurrency.

(source: http://flickr.com/photos/splorp)
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Parameter study: best case scenario

@ Aim is to get results
from a model as a
parameter varies. p=1| p=2||p=3||p=24

@ Can run the serial
program on each
processor at the same
time.

o Get “more” done.

Sciflet
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Throughput
@ How many tasks can you do per time unit?
th hput = H N
roughput = H = —
ghp T

@ Maximizing H means that you can do as much as possible.

@ Independent tasks: using P processors increases H by a factor P.

* 000¢

T=NT; T=NTy/P Sciv
H = l/Tl H = P/Tl () com;::ute-g\!:u\
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SciNet HPC Consortium () Practical Parallel Programming Intensive 9-13 May 2011 14 / 140



Scaling — Throughput

@ How a problem’s throughput scales as processor number increases
(“strong scaling”).

@ In this case, linear scaling:
HxP

@ This is Perfect scaling.

Tasks per unit time

O P N W 01 O N 0

1 2 3 4 5 6 7 8
o SciNet

’ compute ca\cu\
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Scaling — Time

@ How a problem’s timing scales as processor number increases.

@ Measured by the time to do one unit. In this case, inverse linear
scaling:
Tox1/P

@ Again this is the ideal case, or “embarrasingly parallel”.
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Scaling — Time

@ How a problem’s timing scales as processor number increases.

@ Measured by the time to do one unit. In this case, inverse linear
scaling:
Tox1/P

@ Again this is the ideal case, or “embarrasingly parallel”
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Scaling — Speedup
@ How much faster the problem is solved as processor number increases.
@ Measured by the serial time divided by the parallel time

_ Tserial x
~ T(P)

@ For embarrasingly parallel applications: Linear speed up.

Speed-up
O P N W d 01 O N ©

1 2 3 4 5 6 7 8 Sﬁﬁ\let

P ’ compute ca\cu\
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Non-ideal cases

some tabulated
experimental data.

@ Say we want to integrate /t\

@ Integration can be split
up, so different regions

are summed by each
processor.

@ Non-ideal:

Partition data

)

> First need to get data

to processor

» And at the end bring (

/1\

/1\

together all the sums:

“reduction”

SciNet HPC Consortium ()

region 1| |region 2| [region 3| [region 4
Reduction

)
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Non-ideal cases

Parallel region =

SciNet HPC Consortium ()

C

Partition data

)

/f\

/i\

/i\

region 1| |region 2| [region 3| [region 4
Reduction

)
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Non-ideal cases

Parallel region =

Perfectly Parallel
(for large N)

SciNet HPC Consortium ()

C

Partition data

)

/’\

/i\

/i\

region 1| |region 2| [region 3| [region 4
Reduction

)
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Non-ideal cases

( Partition data )
NN

Parallel region = region 1| Jregion 2| region 3

Perfectly Parallel
(for large N)

Serial portion = C Reduction )

region 4

Sciflet
‘) com;:zxitNeA- Ei‘CUI
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Non-ideal cases

Parallel overhead = ( Partition data )
Parallel region = region 1| |region 2| |region 3| |region 4
Perfectly Parallel
(for large N)

Serial portion = ( Reduction )

Sciflet
‘) com;:zxits; gi\cul
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Non-ideal cases

Parallel overhead =- <: Partition data :)
Parallel region = region 1| |region 2| |region 3| |region 4

Perfectly Parallel
(for large N)

Serial portion ; C\\;/ \T/ \;/ \;/

Reduction )

Suppose non-parallel part const: Ty

Sciflet
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Amdahl’s law

Speed-up (without parallel overhead):

NT; 4+ T,
N+ TS

or, calling f = T5/(Ts + NT1) the serial fraction,
1
S=— ——————
f+(1-f)/P
16
14

12
10

o N b~ O

Scilet
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Amdahl’s law
Speed-up (without parallel overhead):

_NT 4+ T,
o+ TS
or, calling f = T5/(Ts + NT1) the serial fraction,
S = v P 1
f+(1-f)/P f
16
14
12
10
8
6
4
2 - -
0 SciNet

2 4 6 8 10 12 14 16 (for f — 5%) () compzute.ca\cu\
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Amdahl’s law
Speed-up (without parallel overhead):

NT; + T,
S+ T
or, calling f = T5/(Ts + NT1) the serial fraction,
1 P—oo 1
S= —— —— — -
f+(1-f)/P f
16
14
12
10 Serial part dominates asymptotically.
8 1Speed-up limited, no matter size of P.
6
4
2 L
0 SciNet

2 4 6 8 10 12 14 16 (.For f — 5%) ‘) com;:zute-ca\cu\
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Amdahl’s law
Speed-up (without parallel overhead):

NTl + Ts
S+ T
or, calling f = T5/(Ts + NT1) the serial fraction,
1 P—oo 1
S= —— —— — -
f+(1-f)/P f
16
14
12
10 Serial part dominates asymptotically.
8 1Speed-up limited, no matter size of P.
6
4 And this is the overly optimistic case!
2 L
0 SciNet

2 4 6 8 10 12 14 16 (for f — 5%) ‘) com;:zute-ca\cu\

AAAAA

SciNet HPC Consortium () Practical Parallel Programming Intensive 9-13 May 2011 19 / 140



Scaling efficiency

Speed-up compared to ideal factor P:

- S
Efficiency = P

This will invariably fall off for larger P except for embarrasing parallel
problems.

Efficiency ~ i 20
fP
You cannot get 100% efficiency in any non-trivial problem.
All you can aim for here is to make the efficiency as least low as possible.
Sometimes, that can mean running on less processors, but more problems
at the same time.

cSc:I?\let
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Timing example

@ Say 100s in integration cost
@ 5s in reduction
o Neglect communication cost

@ What happens as we vary number of processors P?

Time = (100s)/P + 5

120 - 1000 -
Time=(100s)/P+5s Time=(100s)/P+5s
100 Ideal Ideal
. 80 . 100
) )
[} ]
g ® £
) T 10
20
0 1
5 10 15 20 25 30 35 40 45 50 1 S,éﬁ\l
Number of processors P Number of processors P et

) compute ca\cu\
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Throughput example

N
Time(P)

@ Say we are doing k at the same time, on P processors total.

H(P) =

kN
He(P) = —————
Time(P/k)
Say N = 100:
35 100
k=1 —— o k=1 ——
30 k=2 —— 90 k=2 ——
> k=3 —— k=3 ——
’:‘5 25 |dk:4| B . 80 k=4 —
= eal —— 9
2 20 5 70
ey ‘S
2 15 © 60
o i}
£ 10 50
[
40
30
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
Number of processors P Number of processors P

y
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Big Lesson #1

Always keep throughput in mind: if you have several runs, running more of
them at the same time on less processors per run is often advantageous.

Scilet
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Less ideal case of Amdahl’s law

We assumed reduction is constant.
But it will in fact increase with P,
from sum of results of all processors

TS ~ PT1
Serial fraction now a function of P:
P
f(P) = —
(P) =,

Amdahl:

1
SPY =Py + = re)/P
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Less ideal case of Amdahl’s law

We assumed reduction is constant.
But it will in fact increase with P,
from sum of results of all processors

Ts = PTy

Serial fraction now a function of P:

f(P) = :

Amdahl:

1
SPY =Py + = re)/P

Example: N =100, Ty = 1s...
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Less ideal case of Amdahl’s law

We assumed reduction is constant.
But it will in fact increase with P,
from sum of results of all processors
Ts = PT, 55
5
Serial fraction now a function of P: 4'2
o w
p 2 35 ®
Q
f(P) = — g 3 =
N 9 25
2
Amdahl: 15
5 10 15 20 25 30 35 40 45 50
1
S(P) =
f(P) +[1 —f(P)]/P
Example: N =100, Ty = 1s...
v
QP s
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Trying to beat

Scale up!

The larger N, the smaller
the serial fraction:

F(P) = —

Amdahl’s law #1
50
45 N=100 ——
N=1,000 ——
40 I N=10,000 ——
35 | N=100,000 ——
% 30 Ideal ——
8 25
15 ]
10
5
0
5 10 15 20 25 30 35 40 45 50
Number of processors P
v
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Trying to beat Amdahl’s law #1

N=100 ——
Scale up! Y -
40 I N=10,000 ——
. 35 N:100,(§)00I —
S 30 ldeal ——
The larger N, the smaller T 55
. . Q
the serial fraction: & 2 ]
10
5
_ 0
f(P) - N 5 10 15 20 25 30 35 40 45 50

Number of processors P

Weak scaling: Increase problem size while increasing P

Timeyeak(P) = Time(N =n x P,P)

Good weak scaling means this time approaches a constant for large P.

Scilet
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Trying to beat Amdahl’s law #1

Scale up!

The larger N, the smaller
the serial fraction:

f(P) =

N

Speed-up

N=100 ——
N=1,000 ——
N=10,000 ——
N=100,000 ——
Ideal

5 10 15 20 25 30 35 40 45 50
Number of processors P

Weak scaling: Increase problem size while increasing P

Timeyeak(P) = Time(N =n x P,P)

Good weak scaling means this time approaches a constant for large P.

Gustafson's Law

Any large enough problem can be efficiently parallelized (Efficiency—1).
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Trying to beat Amdahl’s law #2

Parallel overhead = C Partition data )
region 1| [region 2| [region 3| |region 4
Parallel region =- ¢ . . .
Perfectly Parallel
(for large N)

A A

\
Serial portion = C Reduction )

Scilet
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Trying to beat Amdahl’s law #2

Parallel overhead = C Partition data )
region 1| [region 2| [region 3| |region 4
Parallel region =- ¢ . . .
Perfectly Parallel
(for large N)

NI

\
Serial portion = C Reduction )

Rewrite
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Trying to beat Amdahl’s law #2

Parallel overhead = C Partition data )

N

region 1| |region 2| |region 3| [region 4

NN

Serial portion = ¢ D C )
Rewrite ¢ )

Parallel region =-

Perfectly Parallel
(for large N)

Ve
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Trying to beat Amdahl’s law #2

Parallel overhead = C

Parallel region =-

Perfectly Parallel
(for large N)

Serial portion
Rewrite

x 2log P

SciNet HPC Consortium ()

Partition data )

A

region 1| |region 2

A

Ve

/i\

region 3| |region 4

\/
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Trying to beat Amdahl’s law #2

‘Serial’ fraction now different function
of P:
2logP

f(P) =

(P) =
Amdahl:

1
S(P) =
B =ty + o -reyp
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Trying to beat Amdahl’s law #2

‘Serial’ fraction now different function
of P:

2logP
N

f(P) =

Amdahl:

1
f(P) +[1 —f(P)]/P
Example: N =100, Ty = 1s...

S(P) =

Scilet
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Trying to beat Amdahl’s law #2

‘Serial’ fraction now different function
of P:
14
2log P 12
Amdahl: 3 £
o 6 H
wn
4
1 2
S(P) = 0
f(P) +[1 — f(P)]/P 5 10 15 20 25 30 35 40 45 50
Example: N =100, Ty = 1s...
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Trying to beat Amdahl’s law #2

Weak scaling

Timeyeak(P) = Time(N = nx P, P)

Should approach constant for large P.
Let's see. ..

-
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Trying to beat Amdahl’s law #2

Weak scaling

Timeyeak(P) = Time(N = nx P, P)

Should approach constant for large P.
Let's see. ..
Not quite!

Time (s)

135
130
125
120
115
110
105
100

now ——
ideal

5 10 15 20 25 30 35 40 45 50

Number of processors P
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Trying to beat Amdahl’s law #2

Weak scaling

Timeyeak(P) = Time(N = nx P, P)

135
now ——
Should approach constant for large P. 130 ideal
Let's see. .. 125
. > 120
Not quite! > 115
But much better than before. E 1
105
100
5 10 15 20 25 30 35 40 45 50
Number of processors P
V.
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Trying to beat Amdahl’s law #2

Weak scaling

Timeyeak(P) = Time(N = nxP, P)

Should approach constant for large P.
Let's see. ..

Not quite!

But much better than before.

Time (s)

135
130
125
120
115
110
105
100

now ——
ideal
before

5 10 15 20 25 30 35 40 45 50

Number of processors P
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Trying to beat Amdahl’s law #2

Weak scaling

Timeyeak(P) = Time(N = nxP, P)

Should approach constant for large P.
Let's see. ..

Not quite!

But much better than before.

Time (s)

Gustafson?

It turns out that Gustafson's law as-
sumes that the serial cost does not
change with P.

Here that grows logarithmically with
P, and this is reflected in the weak
scaling.

135
130
125
120
115
110
105
100

now ——
ideal
before

5 10 15 20 25 30 35 40 45 50

Number of processors P
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Trying to beat Amdahl’s law #2

Weak scaling

Timeyeak(P) = Time(N = nxP, P)

Should approach constant for large P.
Let's see. ..

Not quite!

But much better than before.

Gustafson?

It turns out that Gustafson's law as-
sumes that the serial cost does not
change with P.

Here that grows logarithmically with and other algorithms can do better.

P, and this is reflected in the weak
scaling.

Time (s)

135
130
125
120
115
110
105
100

now ——
ideal
before

5 10 15 20 25 30 35 40 45 50

Number of processors P

Really not that bad.

-
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Big Lesson #2

Optimal Serial Algorithm for your problem may
not be the P —1 limit of your optimal
parallel algorithm.

Scilet
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Synchronization

Most problems are not purely
concurrent.

Some level of synchronization
or exchange of information is
needed between tasks.

While synchronizing, nothing
else happens: increases
Amdahl’s f.

And synchronizations are
themselves costly.

SciNet HPC Consortium ()

/ 0 J 0 /

e N ( N N [ 2
s‘t—“ ——
. Synchronization |
s —\ N N ~

Synchronization

—

v

El v v
(.

v Syni:h ronizktion

)
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Load balancing

@ The division of calculations
among the processors may not
be equal.

@ Some processors would already
be done, while others are still
going.

o Effectively using less than P
processors: This reduces the

Synchronization

efficiency. v v v v
@ Aim for load balanced
D

Igorithms.
algorithms ( v Syn%hronizﬁtion v )

Scilet
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Locality

@ So far we neglected communication costs.
@ But communication costs are more expensive than computation!
@ To minimize communication to computation ratio:

* Keep the data where it is needed.

* Make sure as little data as possible is to be communicated.

* Make shared data as local to the right processors as possible.
@ Local data means less need for syncs, or smaller-scale syncs.
@ Local syncs can alleviate load balancing issues.

.

Scilet
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Locality

@ So far we neglected communication costs.

@ But communication costs are more expensive than computation!
@ To minimize communication to computation ratio:

* Keep the data where it is needed.
* Make sure as little data as possible is to be communicated.
* Make shared data as local to the right processors as possible.

@ Local data means less need for syncs, or smaller-scale syncs.

@ Local syncs can alleviate load balancing issues.

Example (PDE Domain decomposition)
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Big Lesson #3

Parallel algorithm design is about finding as
much concurrency as possible, and arranging
it in a way that maximizes locality.
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Parallel Computers

SUPERCOMPUTER SITES

PROJECT LISTS ‘ STATISTICS RESOURCES NEWS

T0p500 .0rg: Home ! Lists ¢ November 2010
TOP500 List - November 2010 (1-100)

List of the worlds
500 largest

Power data in KW for entire system

supercom puters_ Rank Site Computer/Year Vendor
Tianhe-1A - NUDT TH MPP, X5670
Updated every 6 National Supercomputing 5 g3G17 6C, NVIDIA GPU, FT-1000
p y 1 Genler n Tanjin 502010
NUDT
months,
DOE/SC/Oak Ridge Jaguar - Cray XT5-HE Opteron
2 National Laboratory 6-core 2.6 GHz / 2009
United States Cray Inc
Inf Nafional Suporcomputing NeP11ae - Danning TC3500 Blade,
Intel X5650, NVidia Tesla C2050
nTto on 3 g:ln"t;em Shenzhen (NSCS) e":u 2010 \dia Testa
Dawning

architecture, etc.

TSUBAME 2.0 - HP ProLiant

GSIC Center, Tokyo SL390s G7 Xeon 6C X5670, Nvidia

4 oD EEEREE GPU, LinugWindows / 2010
NEC/HP
Hopper - Cray XE6 12-core 2.1
DOE/SC/LBNL/INERSC
5 United States Gz 12010
Cray Inc.
Commissariat a 'Energie Tera-100 - Bull bullx super-node
6 Atomique (CEA) $6010/S6030 / 2010
France Bull SA
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186368

224162

120640

73278

153408

138368

Rmax and Rpeak values are in TFlops. For more details about other fields, check the TOP500 description.

next

Rmax Rpeak Power

2566.00 4701.00 4040.00

1759.00 2331.00 6950.60

1271.00 2984.30 2580.00

1192.00 2287.63 1398.61

1054.00 1288.63 2910.00

1050.00 1254.55 4590.00
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Supercomputer architectures

o Clusters, or, distributed memory machines
In essence a bunch of desktops linked together by a network
(“interconnect”). Easy and cheap.

@ Multi-core machines, or, shared memory machines
These can see the same memory. Limited number of cores, typically,
and much more $%9.

@ Vector machines.
These were the early supercomputers, and could do the same
operation on a large number of numbers at the same time.
Very $$$$$$, especially at scale.
These days, most chips have some low-level, small size vectorization,
but you rarely need to worry about it (compiler should do this).

Most supercomputers are a hybrid combo of these different architectures.
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Distributed Memory: Clusters

Simplest type of parallel computer
to build

o Take existing powerful
standalone computers

@ And network them

et
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Distributed Memory: Clusters

Each node is independent!
Parallel code consists of
programs running on
separate computers,
communicating with each

other. CPU4
Could be entirely different
programs.
CPU3
CPU2

CPU1
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Distributed Memory: Clusters

Each node is independent!
Parallel code consists of
programs running on
separate computers,
communicating with each

other. CPU4

Could be entirely different

programs.

Each node has own CPU3

memory!

Whenever it needs data

from another region, CPU?2

requests it from that CPU.

Usual model: * . CPU1

sual model: “message passing

Scillet
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Clusters+Message Passing

Hardware:

Easy to build

(Harder to build well)

Can build larger and larger
clusters relatively easily

CPU4
Software:
Every communication has
to be hand-coded:
hard to program CPU3
CPU2

CPU1
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Cluster Communication Cost

Latency Bandwidth
Gigk 10 ps 1 Gb/s
(10,000 ns) | ( 60 ns/double)
Infiniband 2 ps 2-10 Gb/s
(2,000 ns) | (10 ns /double)

Processor speed: O(GFLOP) ~ few ns or less.
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Shared Memory

One large bank of memory, Core 3
different computing cores
acting on it. All ‘see’ same
data.

Any coordination done

through memory Core 1 Core 2

Could use message
passing, but no need.

Each code is assigned a
thread of execution of a
single program that acts
on the data. Core 4

Scilet
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Threads versus Processes

Ijdursi@gpe-1102n0i
fle Edit View Terminal Tabs Help
top - 17:27:34 up 2 cays, 1:40, 1 user, load average: 1.81, .56, 0.20

Tasks: 142 total, 3 running, 139 sleeping, © stopped, © zombie

Cpu(s): 95.9%s, 3.0%sy, 0.0%ni, 0.0%d, ©0.0%a, 0.1%hi, 1.0%1, 0.8%st
Mem: 16411872k total, 2778368k used, 13633504k free, 256k buffers
Swap: ok total, ok used, 6k free, 2265652k cached

SCPU_SHEN TIME+  COMM)
:29.01 diffusion-omp

1jdursi

17193 root 15 0 35300 25860 pbs_mom
Th reads: 17192 root 15 0 35380 3216 pbs_man
1 root 15 0 10344 740 init

. . . 2 root RT -5 [} migratien/@
Threads of execution within one srat % 1 o sareiranro
4 root RT 5 L] watchdoeg/@
process, with access to the same Gt 341 o keotti a1
7 root RT 5 L] watchdog/1
8 root RT -5 a migratien/2
memory etc. 9 root 34 19 0 Ksoftirgd/2
10 root RT -5 o watchdog/2

fle Edit Vew Terminal Tabs Help

top - 17:33:58 up 2 days, 1:47, 1 user, load average: .80, 0.31, 0.17
Tasks: 150 total, 9 running, 141 sleeping, O stopped, © zombie

Processes Cpu(s):160.8%us, 0.0%sy, 0.0%ni, 0.6%id, 0.0%a, 0.0%hi, 0.0%si, 0.0%st
. Mem: 16411872k total, 2881172k used, 13610700k free, 256k buffers

. . Swap: Ok total 0k used Ok free 2268568k cached
Independent tasks with their own :
memor a nd resou rces 18395 1jdursi 25 8 187m 5512 3492 R .8 ;3 .46 diffusion-mpi
y 18397 1jdursi 25 ® 187m 5568 3488 R . .0 -3 .46 diffusion-mpi
18392 1jdursi 25 6 187m 5580 3556 R 99.9 0.0 diffusion-mpi
18394 1jdursi 25 © 187m 5564 3488 R 99.9 0.0 diffusion-mpi
18396 1jdursi 25 @ 187m 5512 3492 R 99.9 0.0 diffusion-mpi
18308 ljdursi 25 © 187m 5500 3480 R 99.9 0.8 diffusion-mpi
18399 1jdursi 25 © 187m 5512 3492 R 99.9 ©.€ diffusion-mpi
1 root 15 6 10344 740 612 S 0.0 0.0 init
2 root RT -5 L] e 8s 0.0 0.6 migration/@
3 root 34 19 L] -3 8S 0.6 0.0 ksoftirqd/e
4 root RT -5 -] -] 85 0.0 0.0 watchdog/@
5 root RT .5 L] ;] 8S 0.6 0.0 migration/1
6 root 34 19 (] -] 85 0.0 0.0 ksoftirqd/1
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Shared Memory: NUMA

Non-Uniform Memory Access

@ Each core typically has some
memory of its own.

@ Cores have cache too.

@ Keeping this memory coherent
is extremely challenging.

Scilet
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Coherency

@ The different levels of memory
imply multiple copies of some
regions

@ Multiple cores mean can update
unpredictably

@ Very expensive hardware

@ Hard to scale up to lots of
processors, very $$$

@ Very simple to program!!
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Latency Bandwidth
Gigk 10 ps 1 Gb/s
(10,000 ns) | ( 60 ns/double)
Infiniband 2 ps 2-10 Gb/s
(2,000 ns) | ( 10 ns /double)
NUMA 0.1 ps 10-20 Gb/s
(shared memory) | (100 ns) ( 4 ns /double)

SciNet HPC Consortium ()
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Processor speed: O(GFLOP) ~ few ns or less.
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Hybrid Architectures

@ Multicore machines linked
together with an interconnect

@ Many cores have modest vector

@ Machines with GPU: GPU is
multi-core, but the amount of
shared memory is limited.

We will focus on the aspects that affect the programmer:
@ Shared memory: OpenMP
o Distributed memory: MPI
@ Graphics computing: CUDA, OpenCL
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Big Lesson #4

The best approach to parallelizing your
problem will depend on both details of your
problem and of the hardware available.
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