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Numerical Linear Algebra

Many algorithms require the solution of a sequence of structured
linear systems, such as implicit time-marching schemes, Newton’s
method, gradient based optimization, statistics, data fitting.. etc.

I A significant amount of memory usage and computation time
is spent constructing and solving these systems.

I Many methods and approaches exist:
I direct vs. iterative
I sparse vs. dense

I Choice of method depends on nature of system being solved
and can drastically affect solution time and accuracy.

I DON’T program your own, use a library



Solving Linear Systems:
Ax = b solve for x



Sets of linear 
equations: don’t invert
• Ax = b implies x = A-1b

• Mathematically true, but numerically, inversion:

• is slower than other solution methods

• is numerically much less stable

• ruins sparcity (huge memory disadvantage for, 
eg, PDEs on meshes)

• loses any special structure of matrix A



Easy systems to solve

• We’ll talk about methods to solve linear 
systems of equations

• Will assume nonsingular matricies (so there 
exists a unique solution)

• But some systems much easier to solve 
than others.   Be aware of “nice” properties 
of your matricies!



Diagonal Matrices

• (generally called D, or Λ) 

• Ridiculously easy

• Matrix multiplication - 
just di xi



Upper Triangular 
Matrices

• Generally called U

• “Back Substition”: solve 
(easy) last one first

• Use that to solve 
previous one, etc.

• Lower triangular (L): 
“Forward substitution”, 
same deal.



Orthogonal matrices
• Generally called Q

• Columns (rows) are orthogonal 
unit vectors

• Transpose is inverse!

• That inverse I’ll let you compute.

• Orthogonal matrices are 
numerically very nice - all row, 
col vectors are same “length”.



Symmetric Matrices

• No special nomenclature

• Half the work; only have 
to deal with half the 
matrix

• (I’m assuming real 
matrices, here; complex: 
Hermetian)



Symmetric Positive 
Definite

• Very special but 
common (covariance 
matricies, some PDEs) 

• Always non-singular

• All eigenvalues positive

• Numerically very nice to 
work with



Structure matters

• Find structure in your problems

• If writing equations in slightly different way gives you 
nice structure, do it

• Preserve structure when possible



System Properties



Conditioning

• A problem is said to be inherently ill-conditioned if any 
small perturbation in the initial conditions generates 
huge changes in the results

• Say, calculating        : if

then the problem is inherently hard to do numerically 
(or with any sort of approximate method)



Conditioning
• In matrix problems, this 

can happen in nearly 
singular matricies - 
nearly linearly dependant 
columns.

• Carve out strongly 
overlapping subspaces

• Very small changes in b 
(say) can result in hugely 
different change in x

large region
where nearly 

equal



Condition number
• Condition number can 

be estimated using 
“sizes” (matrix norms) 
of A, inverse of A.

• Lapack routines exist: 
___CON

• Relative error in x can’t 
be less than condition 
number * machine 
epsilon.



Residuals

• Computational scientists have over 20 words for 
“numerical error”

• Absolute, relative error - error in x.

• Residual: answer in result provided by erroneous x - 
error in b.

• Which is more important is entirely problem 
dependant



Residuals
• Good linear algebra algorithms (and 

implementations) should give residuals no more than 
(some function of size of matrix) x (machine epsilon)

• And errors in x no more than condition number 
times that.

• An exact solution to a nearby problem

• Bad algorithms/implementations will depend on 
sqrt(machine epsilon) or worse, and/or will be 
matrix dependant (eg, LU without pivoting).



Pivoting 
• The diagonal elements 

we use to “zero out” 
lower elements are 
called pivots.

• May need to change 
pivots, if for instance 
zeros appear in wrong 
place

• Matrix might be singular, 
or fixed by reordering

• PLU factorization



Eigenproblems

• Tells a great deal about 
the structure of a matrix

• How it will act on a 
vector: project onto its 
eigenvectors, mutiply by 
eigenvalues.

• Goal is a complete 
decomposition:



Eigenvalue 
Decomposition

• For square matrix

• “Similarity Transform”

• No restrictions on the structure of X

• Can only happen if there are a full set 
of eigenvectors. 

• Diagonalizability: N non-null 
eigenvectors; 

• Invertability: N non-zero eigenvalues



Solve Ax=b



Gaussian Elimination
• For general square matrices 

(can’t exploit above 
properties)

• We all learned this in high 
school:

• Subtract off multiples of 
previous rows to zero 
out below-diagonals

• Back-subsitute when 
done



Gaussian Elimiation = 
LU Decomposition

• With each stage of the 
elimination, we were 
subtracting off some 
multiple of a previous 
row

• That means the factored 
U can have the same 
multiple of the row 
added to it to get back 
to A

• Decomposing to give us 
A = L U



Solving is fast with LU
• Once have A = LU 

(O(n3) steps) can solve 
for x quickly (O(n2) 
steps)

• Can solve for same A 
with different b very 
cheaply

• Backsubstitute, then 
forward substitute



Ax∼b



A x ~ b : QR 
factorizations

• Not all Ax=b s can be 
solved; consider an 
overdetermined system 
(data fitting).

• LU won’t even work on 
non-square systems. 

• What to do?
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Minimize residual:
Residual not in Range(A)

• Want to project out 
residual somehow

• Normal equations

• Much of linear algebra is 
decompositions into 
useful forms 



QR decomposition
• All matricies can be 

decomposed into QR, 
even mxn, m>n

• Bottom half of R is 
necessarily empty 
(below diagonal)

• All columns in Q are 
orthogonal bases of m-d 
space, and R is the 
combination of them 
that makes up A 

= x



Normal equations with 
QR are easy

• Now this is fairly 
straightforward

• End up with (Rx) -- 
forward solve -- equal to 
matrix-vector product.

• Done!



Iterative Methods



Iterative Methods

• So far, have dealt solely with direct methods.

• Solution takes one (long) step, then answer is 
complete, as exact as matrix/method allows.

• Other approach; take successive approximations, get 
closer.

• Typically converge to machine accuracy in much less 
time than direct, esp for large matricies



Krylov Subspaces

• Krylov subspace: 
repeated action on b by 
A.

• For sufficiently large n, 
final term should 
converge to eigenvector 
with largest eigenvalue

• But slow, and only one 
eigenvalue?



Krylov Subspaces

• Can orthogonalize 
(Gram Schmidt, 
Householder) to project 
out other components

• Should give 
approximations to 
eigenvectors (random b)

• But not numerically 
stable



Arnoldi Iteration
• Stabilized orthogonalization

• Becomes Lanczos iteration for 
symmetric A

• Orthogonal projection of A 
onto the Krylov subspace, H

• H is of modest size, can have 
eigenvalues calculated

• Note: Only requires matrix-
vector, vector-vector products

• GMRES: Arnoldi iteration for 
solving Ax=b



Iterative Ax=b solvers:
Conjuate Gradient

• SPD matrices, works 
particularly well on 
sparse systems

• “Steepest Descent”, but 
only on conjugate (w/rt 
A) directions: no 
“doubling back”

http://en.wikipedia.org/wiki/Conjugate_gradient_method



Iterative Solvers - Summary

I GMRES (generalized minimal residual method)

I BI-CGSTAB (bi conjugate gradient stabalized)
I Almost always need preconditioning for good preformance

I Jacobi
I ILU
I SOR
I AMG
I Schur, Schwarz (parallel)

More Information
“Iterative methods for sparse linear systems” - Yousef Saad
http://www-users.cs.umn.edu/ saad/
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Sparse Matrices



Sparse Matricies

• So far, we’ve been assuming our matrices are dense; there 
are numbers stored for every entry in matrix.

• This is indeed often the case, but it’s also often that huge 
numbers of the entries are zero: some roughly constant 
number of entries per row, much less than n.

• Difference between n2 and n can be huge if n~106; 
difference between doing and not doing the problem.

• Happens particularly often in discretizing PDEs.



Discretizing 
Derivatives

• Done by finite differencing the 
discretized values

• Implicitly or explicitly involves 
interpolating data and taking 
derivative of the interpolant
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Boundary 
Conditions

• What happens when stencil 
goes off of the end of the box?

• Depends on how you want to 
handle boundary conditions.

• Typically easiest to have extra 
points on end, set values to 
enforce desired BCs.



Boundary 
Conditions

• Dirichlet (fixed value) 
boundary conditions: just have 
1 on diagonal, 0 elsewhere, 
keeps value there constant.

• Neumann (derivitave) bcs: 
requires more manipulation of 
the equations.



Inverses destroy 
sparsity

• For sparse matrices like 
above, LU 
decompositions may 
maintain much sparsity 
(particularly if banded, 
etc)

• Inverses in general are 
full

• For large n, difference 
beween cn and n2 huge.



Sparse (banded) LU
• If entries only exist 

within a narrow band 
around diagonal, then 
row, column operations 
fast.

• May get significant “fill 
in” depending on exact 
structure of matrix

• (This is artificially good 
example)



Sparsity patterns

• Sparse matrices can have 
arbitray sparsity patterns

• Typically need at less 
than 10% nonzeros to 
make dealing with sparse 
matricies worth it.

• Half zeros - typically just 
store full matrix.

http://en.wikipedia.org/wiki/File:Finite_element_sparse_matrix.png



Common Sparse Matrix 
Formats:

• CSR (Compressed Sparse Row): Just join all the nonzeros 
in rows together, with pointers to where each starts, and 
(similar sized) array of column for each value

• CSC (Compressed Sparse Column): Same, but flip row/
column

• Banded: just store diagonals +/- some bandwidth

• Many many more.



Conclusions - part I

I Linear algebra pops up everywhere, even if you don’t notice

I Stats, data fitting, graph problems, PDE/ODE solves, sig.
processing

I Exploit structure in your matrices

I Choose method based on system properties

I Don’t ever directly invert a matrix

I Pick the solution method that exploits structure in your
matrices

Next Lecture

I Don’t re-invent the wheel.

I There are many very highly tuned packages for any sort of
problem that can be cast into matrices and vectors.

I BLAS, LAPACK, etc...
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