Scientific Computing (PHYS 2109/Ast 3100 H) II. Numerical Tools for Physical Scientists

SciNet HPC Consortium
University of Toronto

Winter 2014

Convereacu

Lecture 13: Numerical Linear Algebra

Part I - Theory

- Solving $\mathrm{Ax}=\mathrm{b}$
- System Properties
- Direct Solvers
- Iterative Solvers
- Dense vs. Sparse matrices
compute \bullet calcul
三 ${ }^{\text {CANADA }}{ }^{\text {A }}$

Lecture 13: Numerical Linear Algebra

Part I - Theory

- Solving $\mathrm{Ax}=\mathrm{b}$
- System Properties
- Direct Solvers
- Iterative Solvers
- Dense vs. Sparse matrices

Part II - Application

- Using packages for Linear Algebra
- BLAS \& LAPACK
- etc..

Numerical Linear Algebra

Many algorithms require the solution of a sequence of structured linear systems, such as implicit time-marching schemes, Newton's method, gradient based optimization, statistics, data fitting.. etc.

- A significant amount of memory usage and computation time is spent constructing and solving these systems.
- Many methods and approaches exist:
- direct vs. iterative
- sparse vs. dense
- Choice of method depends on nature of system being solved and can drastically affect solution time and accuracy.
- DON'T program your own, use a library三${ }^{C A N A D A} Q^{A}$

Solving Linear Systems: $A x=b$ solve for x

Sets of linear

equations: don't invert

- $A x=b$ implies $x=A^{-1} b$
- Mathematically true, but numerically, inversion:
- is slower than other solution methods
- is numerically much less stable
- ruins sparcity (huge memory disadvantage for, eg, PDEs on meshes)
- loses any special structure of matrix A

Easy systems to solve

- We'll talk about methods to solve linear systems of equations
- Will assume nonsingular matricies (so there exists a unique solution)
- But some systems much easier to solve than others. Be aware of "nice" properties of your matricies!

Diagonal Matrices

- (generally called D, or Λ) $\quad\left(\begin{array}{llll}d_{1} & & & \\ & d_{2} & & \\ & & & \\ & & & \\ & & & \\ & & d_{n}\end{array}\right)\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)=\left(\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right)$
- Matrix multiplication just $\mathrm{d}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$

$$
x_{i}=\frac{b_{i}}{d_{i}}
$$

Upper Triangular Matrices

- Generally called U
- "Back Substition": solve (easy) last one first

$$
r=30 .
$$

- Use that to solve previous one, etc.
- Lower triangular (L): "Forward substitution", same deal.

$$
\begin{array}{r}
x_{n}=\frac{b_{n}}{u_{n, n}} \\
x_{n-1}=\frac{b_{n}-u_{n-1, n} x_{n}}{u_{n-1, n-1}}
\end{array}
$$

Orthogonal matrices

- Generally called Q
- Columns (rows) are orthogonal unit vectors
- Transpose is inverse!

$$
\begin{array}{r}
Q^{T} Q=I \\
Q \mathbf{x}=\mathbf{b} \\
Q^{T} Q \mathbf{x}=Q^{T} \mathbf{b} \\
\mathbf{x}=Q^{T} \mathbf{b}
\end{array}
$$

- That inverse l'll let you compute.
- Orthogonal matrices are numerically very nice - all row, col vectors are same "length".

Symmetric Matrices

- No special nomenclature

$$
\begin{array}{r}
A^{T}=A \\
a_{i, j}=a_{j, i}
\end{array}
$$

- Half the work; only have to deal with half the matrix
- (l'm assuming real matrices, here; complex: Hermetian)

Symmetric Positive Definite

- Very special but common (covariance matricies, some PDEs)
- Always non-singular

$$
\begin{aligned}
A^{T} & =A \\
\mathbf{x}^{T} A \mathbf{x} & >0
\end{aligned}
$$

- All eigenvalues positive

$$
A=L L^{T}
$$

- Numerically very nice to work with

Structure matters

- Find structure in your problems
- If writing equations in slightly different way gives you nice structure, do it
- Preserve structure when possible

System Properties

$4 \square>4$ 号 >4 引 \gg

Conditioning

- A problem is said to be inherently ill-conditioned if any small perturbation in the initial conditions generates huge changes in the results
- Say, calculating $f(x)$: if

$$
\frac{\|f(x+\delta x)\|}{\|f(x)\|} \gg \frac{\|\delta x\|}{\|x\|}
$$

then the problem is inherently hard to do numerically (or with any sort of approximate method)

Conditioning

- In matrix problems, this can happen in nearly singular matricies nearly linearly dependant columns.
- Carve out strongly overlapping subspaces
- Very small changes in b (say) can result in hugely different change in x

$$
\left(\begin{array}{cc}
1 & 1 \\
1 & 1.05
\end{array}\right)\binom{x}{y}=\binom{2}{2}
$$

Condition number

- Condition number can be estimated using "sizes" (matrix norms) of A, inverse of A.
- Lapack routines exist:

$$
\kappa(A)=\|A\| \cdot\left\|A^{-1}\right\|
$$

__CON

$$
\frac{\|\delta x\|}{\|x\|}<\kappa(A) \frac{\|\delta b\|}{\|b\|}
$$

- Relative error in x can't be less than condition number * machine epsilon.

Residuals

- Computational scientists have over 20 words for "numerical error"
- Absolute, relative error - error in x .
- Residual: answer in result provided by erroneous x error in b.
- Which is more important is entirely problem dependant

Residuals

- Good linear algebra algorithms (and implementations) should give residuals no more than (some function of size of matrix) \times (machine epsilon)
- And errors in x no more than condition number times that.
- An exact solution to a nearby problem
- Bad algorithms/implementations will depend on sqrt(machine epsilon) or worse, and/or will be matrix dependant (eg, LU without pivoting).

Pivoting

- The diagonal elements we use to "zero out" lower elements are called pivots.
- May need to change pivots, if for instance

$$
A=\left(\begin{array}{lll}
0 & a & b \\
0 & 0 & c \\
d & e & f
\end{array}\right)
$$

zeros appear in wrong place

- Matrix might be singular, or fixed by reordering
- PLU factorization

Eigenproblems

- Tells a great deal about

$$
A \mathbf{x}=\lambda \mathbf{x}
$$ the structure of a matrix

- How it will act on a vector: project onto its eigenvectors, mutiply by eigenvalues.

- Goal is a complete decomposition:

Eigenvalue Decomposition

- For square matrix
- "Similarity Transform"
- No restrictions on the structure of X
- Can only happen if there are a full set of eigenvectors.

$$
\begin{aligned}
A X & =X \Lambda \\
A & =X \Lambda X^{-1}
\end{aligned}
$$

- Diagonalizability: N non-null eigenvectors;
- Invertability: N non-zero eigenvalues

Solve $A x=b$

Gaussian Elimination

- For general square matrices (can't exploit above properties)

$$
\left(\begin{array}{ccc}
10 & -7 & 0 \\
5 & -1 & 5 \\
-2 & 2 & 6
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
7 \\
6 \\
4
\end{array}\right)
$$

- We all learned this in high school:

$$
\left(\begin{array}{rrr}
10 & -7 & 0 \\
& 2.5 & 5 \\
& 3.4 & 6
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
7 \\
-0.5 \\
2.6
\end{array}\right)
$$

$\begin{array}{ll}- & \text { Subtract off multiples of } \\ \\ \text { previous rows to zero } \\ \text { out below-diagonals }\end{array} \quad\left(\begin{array}{ccc}10 & -7 & 0 \\ & 2.5 & 5 \\ & & -0.8\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{c}7 \\ -0.5 \\ 3.28\end{array}\right)$

- Back-subsitute when done

Gaussian Elimiation $=$

LU Decomposition

- With each stage of the elimination, we were subtracting off some multiple of a previous row

$$
\begin{aligned}
& \left(\begin{array}{ccc}
10 & -7 & 0 \\
5 & -1 & 5 \\
-2 & 2 & 6
\end{array}\right)=\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& & 1
\end{array}\right)\left(\begin{array}{ccc}
10 & -7 & 0 \\
5 & -1 & 5 \\
-2 & 2 & 6
\end{array}\right) \\
& \left(\begin{array}{ccc}
10 & -7 & 0 \\
5 & -1 & 5 \\
-2 & 2 & 6
\end{array}\right)=\left(\begin{array}{ccc}
1 & & \\
+\frac{1}{2} & 1 & \\
-\frac{1}{5} & & 1
\end{array}\right)\left(\begin{array}{ccc}
10 & -7 & 0 \\
& 2.5 & 5 \\
& 0.6 & 6
\end{array}\right)
\end{aligned}
$$

- That means the factored U can have the same multiple of the row added to it to get back to A
- Decomposing to give us A = L U

Solving is fast with LU

- Once have A = LU (O(n^{3}) steps) can solve for x quickly $\left(\mathrm{O}\left(\mathrm{n}^{2}\right)\right.$ steps)

$$
\begin{aligned}
A \mathbf{x} & =\mathbf{b} \\
L U \mathbf{x} & =\mathbf{b} \\
L(\mathbf{y}) & =\mathbf{b} \\
y & =\operatorname{Backsubst}(L, \mathbf{b}) \\
U \mathbf{x} & =\mathbf{y} \\
x & =\operatorname{Forwardsubst}(U, \mathbf{y})
\end{aligned}
$$

- Backsubstitute, then forward substitute

$A x \sim b$

$A x \sim b: Q R$ factorizations

- Not all Ax=b s can be solved; consider an overdetermined system (data fitting).
- LU won't even work on $\left(\begin{array}{llll}x_{0}^{3} & x_{0}^{2} & x_{0} & 1 \\ x_{1}^{3} & x_{1}^{2} & x_{1} & 1 \\ \cdots & & \\ x_{n}^{3} & x_{n}^{2} & x_{n} & 1\end{array}\right)\left(\begin{array}{l}a \\ b \\ c \\ d\end{array}\right)=\left(\begin{array}{c}y_{0} \\ y_{1} \\ \cdots \\ y_{n}\end{array}\right)$ non-square systems.
- What to do?

Minimize residual: Residual not in Range(A)

- Want to project out residual somehow
- Normal equations
- Much of linear algebra is decompositions into useful forms

$$
\begin{aligned}
\mathbf{r}^{2} & =\|\mathbf{b}-A \mathbf{x}\|_{2}^{2} \\
& =(\mathbf{b}-A \mathbf{x})^{T}(\mathbf{b}-A \mathbf{x}) \\
& =\mathbf{b} \cdot \mathbf{b}-2 \mathbf{b}^{T} A \mathbf{x}+\mathbf{x}^{T} A^{T} A \mathbf{x} \\
0 & =-2 \mathbf{b}^{T} A+2 \mathbf{x}^{T} A^{T} A \\
\left(A^{T} A\right) \mathbf{x} & =A^{T} \mathbf{b}
\end{aligned}
$$

QR decomposition

- All matricies can be decomposed into QR , even $m \times n, m>n$
- Bottom half of R is necessarily empty (below diagonal)
- All columns in Q are orthogonal bases of m-d
 space, and R is the combination of them that makes up A

Normal equations with QR are easy

- Now this is fairly straightforward
- End up with (Rx) -forward solve -- equal to matrix-vector product.

$$
\begin{aligned}
\left(A^{T} A\right) \mathbf{x} & =A^{T} \mathbf{b} \\
R^{T} Q^{T} Q R \mathbf{x} & =R^{T} Q^{T} \mathbf{b} \\
R^{T} R \mathbf{x} & =R^{T} Q^{T} \mathbf{b} \\
R \mathbf{x} & =Q^{T} \mathbf{b}
\end{aligned}
$$

- Done!

Iterative Methods

Iterative Methods

- So far, have dealt solely with direct methods.
- Solution takes one (long) step, then answer is complete, as exact as matrix/method allows.
- Other approach; take successive approximations, get closer.
- Typically converge to machine accuracy in much less time than direct, esp for large matricies

Krylov Subspaces

- Krylov subspace: repeated action on b by A.

$$
A \mathbf{x}=\mathbf{b}
$$

- For sufficiently large n, final term should

$$
\mathcal{K}=\left[\mathbf{b}, A \mathbf{b}, A^{2} \mathbf{b}, \cdots, A^{n-1} \mathbf{b}\right]
$$ converge to eigenvector with largest eigenvalue

- But slow, and only one eigenvalue?

Krylov Subspaces

- Can orthogonalize (Gram Schmidt, Householder) to project out other components
- Should give

$$
A \mathbf{x}=\mathbf{b}
$$

$$
\mathcal{K}=\left[\mathbf{b}, A \mathbf{b}, A^{2} \mathbf{b}, \cdots, A^{n-1} \mathbf{b}\right]
$$

approximations to eigenvectors (random b)

- But not numerically stable

Arnoldi Iteration

- Stabilized orthogonalization
- Becomes Lanczos iteration for symmetric A
- Orthogonal projection of A onto the Krylov subspace, H
- H is of modest size, can have eigenvalues calculated
- Note: Only requires matrixvector, vector-vector products
- GMRES:Arnoldi iteration for solving $A x=b$

$$
\begin{aligned}
& q_{1} \leftarrow e_{1} \\
& \text { for } j \in[1, k-1]: \\
& \quad h_{j, k-1} \leftarrow q_{j}^{T} q_{k} \\
& \quad q_{k} \leftarrow q_{k}-h_{j, k-1} q \\
& h_{k, k-1} \leftarrow\left\|q_{k}\right\| \\
& q_{k} \leftarrow \frac{q_{k}}{h_{k, k-1}}
\end{aligned}
$$

Iterative $\mathrm{Ax}=\mathrm{b}$ solvers: Conjuate Gradient

- SPD matrices, works particularly well on sparse systems
- "Steepest Descent", but only on conjugate (w/rt A) directions: no "doubling back"

Iterative Solvers - Summary

- GMRES (generalized minimal residual method)
- BI-CGSTAB (bi conjugate gradient stabalized)
- Almost always need preconditioning for good preformance
- Jacobi
- ILU
- SOR
- AMG
- Schur, Schwarz (parallel)
compute \bullet calcul

Iterative Solvers - Summary

- GMRES (generalized minimal residual method)
- BI-CGSTAB (bi conjugate gradient stabalized)
- Almost always need preconditioning for good preformance
- Jacobi
- ILU
- SOR
- AMG
- Schur, Schwarz (parallel)

More Information
"Iterative methods for sparse linear systems" - Yousef Saad http://www-users.cs.umn.edu/ saad/

Sparse Matrices

Sparse Matricies

- So far, we've been assuming our matrices are dense; there are numbers stored for every entry in matrix.
- This is indeed often the case, but it's also often that huge numbers of the entries are zero: some roughly constant number of entries per row, much less than n.
- Difference between n^{2} and n can be huge if $\mathrm{n} \sim 10^{6}$; difference between doing and not doing the problem.
- Happens particularly often in discretizing PDEs.

Discretizing $\left.\frac{d^{2} q}{d x^{2}}\right|_{i} \approx \frac{q_{i+1}-2 q_{i}+q_{i-1}}{\Delta x^{2}}$ Derivatives

- Done by finite differencing the discretized values
- Implicitly or explicitly involves
 interpolating data and taking derivative of the interpolant

$$
\frac{1}{\Delta x^{2}}\left(\begin{array}{ccccccc}
-2 & 1 & & & & & \\
1 & -2 & 1 & & & & \\
& 1 & -2 & 1 & & & \\
& & 1 & -2 & 1 & & \\
& & & 1 & -2 & 1 & \\
& & & & & \ddots & \\
& & & & 1 & -2 & 1 \\
& & & & & 1 & -2
\end{array}\right) \mathbf{q}_{i}
$$

Boundary Conditions

$\left.\frac{d^{2} q}{d x^{2}}\right|_{i} \approx \frac{q_{i+1}-2 q_{i}+q_{i-1}}{\Delta x^{2}}$

- What happens when stencil goes off of the end of the box?

- Depends on how you want to handle boundary conditions.
- Typically easiest to have extra points on end, set values to enforce desired BCs.

Boundary Conditions

$\left.\frac{d^{2} q}{d x^{2}}\right|_{i} \approx \frac{q_{i+1}-2 q_{i}+q_{i-1}}{\Delta x^{2}}$

- Dirichlet (fixed value) boundary conditions: just have
 I on diagonal, 0 elsewhere, keeps value there constant.
- Neumann (derivitave) bcs: requires more manipulation of the equations.

Inverses destroy sparsity

- For sparse matrices like above, LU decompositions may maintain much sparsity (particularly if banded, etc)

$$
\begin{aligned}
& \left(\begin{array}{ccccc}
1 & -1 & & \\
-1 & 2 & -1 & & \\
& -1 & 2 & -1 & \\
& & -1 & 2 & -1 \\
& & & -1 & 2
\end{array}\right)=\left(\begin{array}{cccc}
1 & & & \\
-1 & 1 & & \\
& -1 & 1 & \\
& & & -1 \\
1 & 1 & \\
& & & \\
-1 & 1
\end{array}\right)\left(\begin{array}{ccccc}
1 & -1 & & \\
& 1 & -1 & & \\
& & 1 & -1 & \\
& & & 1 & -1 \\
-1 & 2 & -1 & & \\
& -1 & 2 & -1 & \\
& & -1 & 2 & -1 \\
& & & -1 & 2
\end{array}\right) \\
& \left(\begin{array}{ccccc}
1 & -1 & 4 & 3 & 2 \\
1 . \\
4 & 4 & 3 & 2 & 1 . \\
3 & 3 & 3 & 2 & 1 . \\
2 & 2 & 2 & 2 & 1 . \\
1 & 1 & 1 & 1 & 1 .
\end{array}\right)
\end{aligned}
$$

- Inverses in general are full
- For large n , difference beween cn and n^{2} huge.

Sparse (banded) LU

- If entries only exist within a narrow band around diagonal, then row, column operations fast.
- May get significant "fill in" depending on exact structure of matrix

$$
\left(\begin{array}{ccccc}
1 & -1 & & & \\
-1 & 2 & -1 & & \\
& -1 & 2 & -1 & \\
& & -1 & 2 & -1 \\
& & & -1 & 2
\end{array}\right)=
$$

$$
\left(\begin{array}{ccccc}
1 & & & & \\
-1 & 1 & & & \\
& -1 & 1 & & \\
& & -1 & 1 & \\
& & & -1 & 1
\end{array}\right)\left(\begin{array}{ccccc}
1 & -1 & & & \\
& 1 & -1 & & \\
& & 1 & -1 & \\
& & & 1 & -1 \\
& & & & 1
\end{array}\right)
$$

- (This is artificially good example)

Sparsity patterns

- Sparse matrices can have arbitray sparsity patterns
- Typically need at less than 10\% nonzeros to make dealing with sparse matricies worth it.
- Half zeros - typically just store full matrix.

http://en.wikipedia.org/wiki/File:Finite_element_sparse_matrix.png

Common Sparse Matrix Formats:

- CSR (Compressed Sparse Row): Just join all the nonzeros in rows together, with pointers to where each starts, and (similar sized) array of column for each value
- CSC (Compressed Sparse Column): Same, but flip row/ column
- Banded: just store diagonals +/- some bandwidth
- Many many more.

Conclusions - part I

- Linear algebra pops up everywhere, even if you don't notice
- Stats, data fitting, graph problems, PDE/ODE solves, sig. processing
- Exploit structure in your matrices
- Choose method based on system properties
- Don't ever directly invert a matrix
- Pick the solution method that exploits structure in your matrices

Conclusions - part I

- Linear algebra pops up everywhere, even if you don't notice
- Stats, data fitting, graph problems, PDE/ODE solves, sig. processing
- Exploit structure in your matrices
- Choose method based on system properties
- Don't ever directly invert a matrix
- Pick the solution method that exploits structure in your matrices

Next Lecture

- Don't re-invent the wheel.
- There are many very highly tuned packages for any sort of problem that can be cast into matrices and vectors.
- BLAS, LAPACK, etc...

