
Scientific Computing (PHYS 2109/Ast 3100 H)
II. Numerical Tools for Physical Scientists

SciNet HPC Consortium
University of Toronto

Winter 2014

Lecture 13: Numerical Linear Algebra

Part I - Theory

I Solving Ax = b

I System Properties

I Direct Solvers

I Iterative Solvers

I Dense vs. Sparse matrices

Part II - Application

I Using packages for Linear Algebra

I BLAS & LAPACK

I etc..

Lecture 13: Numerical Linear Algebra

Part I - Theory

I Solving Ax = b

I System Properties

I Direct Solvers

I Iterative Solvers

I Dense vs. Sparse matrices

Part II - Application

I Using packages for Linear Algebra

I BLAS & LAPACK

I etc..

Numerical Linear Algebra

Many algorithms require the solution of a sequence of structured
linear systems, such as implicit time-marching schemes, Newton’s
method, gradient based optimization, statistics, data fitting.. etc.

I A significant amount of memory usage and computation time
is spent constructing and solving these systems.

I Many methods and approaches exist:
I direct vs. iterative
I sparse vs. dense

I Choice of method depends on nature of system being solved
and can drastically affect solution time and accuracy.

I DON’T program your own, use a library

Solving Linear Systems:
Ax = b solve for x

Sets of linear
equations: don’t invert
• Ax = b implies x = A-1b

• Mathematically true, but numerically, inversion:

• is slower than other solution methods

• is numerically much less stable

• ruins sparcity (huge memory disadvantage for,
eg, PDEs on meshes)

• loses any special structure of matrix A

Easy systems to solve

• We’ll talk about methods to solve linear
systems of equations

• Will assume nonsingular matricies (so there
exists a unique solution)

• But some systems much easier to solve
than others. Be aware of “nice” properties
of your matricies!

Diagonal Matrices

• (generally called D, or Λ)

• Ridiculously easy

• Matrix multiplication -
just di xi

Upper Triangular
Matrices

• Generally called U

• “Back Substition”: solve
(easy) last one first

• Use that to solve
previous one, etc.

• Lower triangular (L):
“Forward substitution”,
same deal.

Orthogonal matrices
• Generally called Q

• Columns (rows) are orthogonal
unit vectors

• Transpose is inverse!

• That inverse I’ll let you compute.

• Orthogonal matrices are
numerically very nice - all row,
col vectors are same “length”.

Symmetric Matrices

• No special nomenclature

• Half the work; only have
to deal with half the
matrix

• (I’m assuming real
matrices, here; complex:
Hermetian)

Symmetric Positive
Definite

• Very special but
common (covariance
matricies, some PDEs)

• Always non-singular

• All eigenvalues positive

• Numerically very nice to
work with

Structure matters

• Find structure in your problems

• If writing equations in slightly different way gives you
nice structure, do it

• Preserve structure when possible

System Properties

Conditioning

• A problem is said to be inherently ill-conditioned if any
small perturbation in the initial conditions generates
huge changes in the results

• Say, calculating : if

then the problem is inherently hard to do numerically
(or with any sort of approximate method)

Conditioning
• In matrix problems, this

can happen in nearly
singular matricies -
nearly linearly dependant
columns.

• Carve out strongly
overlapping subspaces

• Very small changes in b
(say) can result in hugely
different change in x

large region
where nearly

equal

Condition number
• Condition number can

be estimated using
“sizes” (matrix norms)
of A, inverse of A.

• Lapack routines exist:
___CON

• Relative error in x can’t
be less than condition
number * machine
epsilon.

Residuals

• Computational scientists have over 20 words for
“numerical error”

• Absolute, relative error - error in x.

• Residual: answer in result provided by erroneous x -
error in b.

• Which is more important is entirely problem
dependant

Residuals
• Good linear algebra algorithms (and

implementations) should give residuals no more than
(some function of size of matrix) x (machine epsilon)

• And errors in x no more than condition number
times that.

• An exact solution to a nearby problem

• Bad algorithms/implementations will depend on
sqrt(machine epsilon) or worse, and/or will be
matrix dependant (eg, LU without pivoting).

Pivoting
• The diagonal elements

we use to “zero out”
lower elements are
called pivots.

• May need to change
pivots, if for instance
zeros appear in wrong
place

• Matrix might be singular,
or fixed by reordering

• PLU factorization

Eigenproblems

• Tells a great deal about
the structure of a matrix

• How it will act on a
vector: project onto its
eigenvectors, mutiply by
eigenvalues.

• Goal is a complete
decomposition:

Eigenvalue
Decomposition

• For square matrix

• “Similarity Transform”

• No restrictions on the structure of X

• Can only happen if there are a full set
of eigenvectors.

• Diagonalizability: N non-null
eigenvectors;

• Invertability: N non-zero eigenvalues

Solve Ax=b

Gaussian Elimination
• For general square matrices

(can’t exploit above
properties)

• We all learned this in high
school:

• Subtract off multiples of
previous rows to zero
out below-diagonals

• Back-subsitute when
done

Gaussian Elimiation =
LU Decomposition

• With each stage of the
elimination, we were
subtracting off some
multiple of a previous
row

• That means the factored
U can have the same
multiple of the row
added to it to get back
to A

• Decomposing to give us
A = L U

Solving is fast with LU
• Once have A = LU

(O(n3) steps) can solve
for x quickly (O(n2)
steps)

• Can solve for same A
with different b very
cheaply

• Backsubstitute, then
forward substitute

Ax∼b

A x ~ b : QR
factorizations

• Not all Ax=b s can be
solved; consider an
overdetermined system
(data fitting).

• LU won’t even work on
non-square systems.

• What to do?

0BB@
x3

0 x2
0 x0 1

x3
1 x2

1 x1 1
. . .
x3

n x2
n xn 1

1CCA
0BB@

a
b
c
d

1CCA =

0BB@
y0

y1

. . .
yn

1CCA

Minimize residual:
Residual not in Range(A)

• Want to project out
residual somehow

• Normal equations

• Much of linear algebra is
decompositions into
useful forms

QR decomposition
• All matricies can be

decomposed into QR,
even mxn, m>n

• Bottom half of R is
necessarily empty
(below diagonal)

• All columns in Q are
orthogonal bases of m-d
space, and R is the
combination of them
that makes up A

= x

Normal equations with
QR are easy

• Now this is fairly
straightforward

• End up with (Rx) --
forward solve -- equal to
matrix-vector product.

• Done!

Iterative Methods

Iterative Methods

• So far, have dealt solely with direct methods.

• Solution takes one (long) step, then answer is
complete, as exact as matrix/method allows.

• Other approach; take successive approximations, get
closer.

• Typically converge to machine accuracy in much less
time than direct, esp for large matricies

Krylov Subspaces

• Krylov subspace:
repeated action on b by
A.

• For sufficiently large n,
final term should
converge to eigenvector
with largest eigenvalue

• But slow, and only one
eigenvalue?

Krylov Subspaces

• Can orthogonalize
(Gram Schmidt,
Householder) to project
out other components

• Should give
approximations to
eigenvectors (random b)

• But not numerically
stable

Arnoldi Iteration
• Stabilized orthogonalization

• Becomes Lanczos iteration for
symmetric A

• Orthogonal projection of A
onto the Krylov subspace, H

• H is of modest size, can have
eigenvalues calculated

• Note: Only requires matrix-
vector, vector-vector products

• GMRES: Arnoldi iteration for
solving Ax=b

Iterative Ax=b solvers:
Conjuate Gradient

• SPD matrices, works
particularly well on
sparse systems

• “Steepest Descent”, but
only on conjugate (w/rt
A) directions: no
“doubling back”

http://en.wikipedia.org/wiki/Conjugate_gradient_method

Iterative Solvers - Summary

I GMRES (generalized minimal residual method)

I BI-CGSTAB (bi conjugate gradient stabalized)
I Almost always need preconditioning for good preformance

I Jacobi
I ILU
I SOR
I AMG
I Schur, Schwarz (parallel)

More Information
“Iterative methods for sparse linear systems” - Yousef Saad
http://www-users.cs.umn.edu/ saad/

Iterative Solvers - Summary

I GMRES (generalized minimal residual method)

I BI-CGSTAB (bi conjugate gradient stabalized)
I Almost always need preconditioning for good preformance

I Jacobi
I ILU
I SOR
I AMG
I Schur, Schwarz (parallel)

More Information
“Iterative methods for sparse linear systems” - Yousef Saad
http://www-users.cs.umn.edu/ saad/

Sparse Matrices

Sparse Matricies

• So far, we’ve been assuming our matrices are dense; there
are numbers stored for every entry in matrix.

• This is indeed often the case, but it’s also often that huge
numbers of the entries are zero: some roughly constant
number of entries per row, much less than n.

• Difference between n2 and n can be huge if n~106;
difference between doing and not doing the problem.

• Happens particularly often in discretizing PDEs.

Discretizing
Derivatives

• Done by finite differencing the
discretized values

• Implicitly or explicitly involves
interpolating data and taking
derivative of the interpolant

i-2 i-1 i i+1 i+2

+1 -2 +1

1

∆x2

−2 1
1 −2 1

1 −2 1
1 −2 1

1 −2 1
. . .

1 −2 1
1 −2

qi

Boundary
Conditions

• What happens when stencil
goes off of the end of the box?

• Depends on how you want to
handle boundary conditions.

• Typically easiest to have extra
points on end, set values to
enforce desired BCs.

Boundary
Conditions

• Dirichlet (fixed value)
boundary conditions: just have
1 on diagonal, 0 elsewhere,
keeps value there constant.

• Neumann (derivitave) bcs:
requires more manipulation of
the equations.

Inverses destroy
sparsity

• For sparse matrices like
above, LU
decompositions may
maintain much sparsity
(particularly if banded,
etc)

• Inverses in general are
full

• For large n, difference
beween cn and n2 huge.

Sparse (banded) LU
• If entries only exist

within a narrow band
around diagonal, then
row, column operations
fast.

• May get significant “fill
in” depending on exact
structure of matrix

• (This is artificially good
example)

Sparsity patterns

• Sparse matrices can have
arbitray sparsity patterns

• Typically need at less
than 10% nonzeros to
make dealing with sparse
matricies worth it.

• Half zeros - typically just
store full matrix.

http://en.wikipedia.org/wiki/File:Finite_element_sparse_matrix.png

Common Sparse Matrix
Formats:

• CSR (Compressed Sparse Row): Just join all the nonzeros
in rows together, with pointers to where each starts, and
(similar sized) array of column for each value

• CSC (Compressed Sparse Column): Same, but flip row/
column

• Banded: just store diagonals +/- some bandwidth

• Many many more.

Conclusions - part I

I Linear algebra pops up everywhere, even if you don’t notice

I Stats, data fitting, graph problems, PDE/ODE solves, sig.
processing

I Exploit structure in your matrices

I Choose method based on system properties

I Don’t ever directly invert a matrix

I Pick the solution method that exploits structure in your
matrices

Next Lecture

I Don’t re-invent the wheel.

I There are many very highly tuned packages for any sort of
problem that can be cast into matrices and vectors.

I BLAS, LAPACK, etc...

Conclusions - part I

I Linear algebra pops up everywhere, even if you don’t notice

I Stats, data fitting, graph problems, PDE/ODE solves, sig.
processing

I Exploit structure in your matrices

I Choose method based on system properties

I Don’t ever directly invert a matrix

I Pick the solution method that exploits structure in your
matrices

Next Lecture

I Don’t re-invent the wheel.

I There are many very highly tuned packages for any sort of
problem that can be cast into matrices and vectors.

I BLAS, LAPACK, etc...

