
Practical Parallel Programming Intensive

SciNet HPC Consortium

9–13 May 2011

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 1 / 135

Welcome to the intensive parallel
programming course!

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 2 / 135

Part I

The Course

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 3 / 135

Main goal of the course

. . . to enable young researchers already experienced in scientific computing
to leave with the knowledge necessary to begin writing the parallel codes
needed for their research.

The course will be a mix of lectures and immediate feedback on practical
assignments, designed to ensure that students leave with significant
experience in both OpenMP and MPI, two of the standards for parallel
computing today.

So there’ll ne a lot of typing and programming to help build skills with
OpenMP and MPI.

We will use C and Fortran. We’ll assume that you already know one of
them, but not both.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 4 / 135

Schedule

Mon May 9 AM Intro to Parallel Computing, SciNet resources
PM OpenMP I +hands on

Tue May 10 AM OpenMP II +hands on
PM MPI I +hands on

Wed May 11 AM MPI II +hands on
PM Explicit PDEs: Hydrodynamics +hands on

Thu May 12 AM Particle Methods: N-body +hands on
PM GPU Programming +hands on

Fri May 13 AM Performance tools & Best practices

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 5 / 135

Strongly recommended books

(not provided by us)

1 B. Chapman, G. Jost and R. van der Pas, Using OpenMP: Portable
Shared Memory Parallel Programming (MIT Press, Cambridge 2008)

2 W. Gropp, E. Lusk, A. Skjellum, Using MPI: Portable Parallel
Programming with the Message-Passing Interface, second edition
(MIT Press, Cambridge 1999).

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 6 / 135

Part II

Introduction to Parallel Programming

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 7 / 135

Why Parallel Programming?

1 Faster
There’s a limit to how fast 1
computer can compute.

2 Bigger
There’s a limit to how much
memory, disk, etc, can be put
on 1 computer.

3 More
Want to do the same thing that
was done on 1 computer, but
thousands of times.

So use more computers!

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 8 / 135

Why Parallel Programming?

1 Faster
There’s a limit to how fast 1
computer can compute.

2 Bigger
There’s a limit to how much
memory, disk, etc, can be put
on 1 computer.

3 More
Want to do the same thing that
was done on 1 computer, but
thousands of times.

So use more computers!

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 8 / 135

Why Parallel Programming?

1 Faster
There’s a limit to how fast 1
computer can compute.

2 Bigger
There’s a limit to how much
memory, disk, etc, can be put
on 1 computer.

3 More
Want to do the same thing that
was done on 1 computer, but
thousands of times.

So use more computers!

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 8 / 135

Why is it necessary?

Modern experiments and observations yield vastly more data to be
processsed than in the past.

As more computing resources become available (SciNet), the bar for
cutting edge simulations is raised.

Science that before could not even be done becomes reachable.

However:

Advances in clock speeds, bigger and faster memory and disks have
been lagging as compared to e.g. 10 years ago.
Can no longer “just wait a year” and get a better computer.

So more computing resources here means: more cores running
concurrently.

Even most laptops now have 2 or more cpus.

So parallel computing is necessary.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 9 / 135

Why is it necessary?

Modern experiments and observations yield vastly more data to be
processsed than in the past.

As more computing resources become available (SciNet), the bar for
cutting edge simulations is raised.

Science that before could not even be done becomes reachable.

However:

Advances in clock speeds, bigger and faster memory and disks have
been lagging as compared to e.g. 10 years ago.
Can no longer “just wait a year” and get a better computer.

So more computing resources here means: more cores running
concurrently.

Even most laptops now have 2 or more cpus.

So parallel computing is necessary.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 9 / 135

Why is it necessary?

Modern experiments and observations yield vastly more data to be
processsed than in the past.

As more computing resources become available (SciNet), the bar for
cutting edge simulations is raised.

Science that before could not even be done becomes reachable.

However:

Advances in clock speeds, bigger and faster memory and disks have
been lagging as compared to e.g. 10 years ago.
Can no longer “just wait a year” and get a better computer.

So more computing resources here means: more cores running
concurrently.

Even most laptops now have 2 or more cpus.

So parallel computing is necessary.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 9 / 135

Wait, what about Moore’s Law?

(source: Transistor Count and Moore’s Law - 2008.svg, by Wgsimon, wikipedia)

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 10 / 135

Wait, what about Moore’s Law?

(source: Transistor Count and Moore’s Law - 2008.svg, by Wgsimon, wikipedia)

Moore’s law

. . . describes a long-term trend in the history of computing
hardware. The number of transistors that can be placed
inexpensively on an integrated circuit doubles approximately
every two years.

(source: Moore’s law, wikipedia)

But. . .

Moores Law didn’t promise us clock speed.

More transistors but getting hard to push clock speed up.
Power density is limiting factor.

So more cores at fixed clock speed.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 11 / 135

Wait, what about Moore’s Law?

(source: Transistor Count and Moore’s Law - 2008.svg, by Wgsimon, wikipedia)

Moore’s law

. . . describes a long-term trend in the history of computing
hardware. The number of transistors that can be placed
inexpensively on an integrated circuit doubles approximately
every two years.

(source: Moore’s law, wikipedia)

But. . .

Moores Law didn’t promise us clock speed.

More transistors but getting hard to push clock speed up.
Power density is limiting factor.

So more cores at fixed clock speed.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 11 / 135

Concurrency

Must have something to do for
all these cores.

Find parts of the program that
can done independently, and
therefore concurrently.

There must be many such
parts.

There order of execution should
not matter either.

Data dependencies limit
concurrency.

(source: http://flickr.com/photos/splorp)

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 12 / 135

Parameter study: best case scenario

Aim is to get results
from a model as a
parameter varies.

Can run the serial
program on each
processor at the same
time.

Get “more” done.

'

&

$

%

µ = 1

'

&

$

%

µ = 2

'

&

$

%

µ = 3

'

&

$

%

µ = 4

? ? ? ?

&%
'$
Answer

&%
'$
Answer

&%
'$
Answer

&%
'$
Answer

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 13 / 135

Throughput

How many tasks can you do per time unit?

throughput = H =
N

T

Maximizing H means that you can do as much as possible.

Independent tasks: using P processors increases H by a factor P.

iiii
?�
�
�
�

vs.

i
?�
�
�
�

i
?�
�
�
�

i
?�
�
�
�

i
?�
�
�
�

T = NT1 T = NT1/P
H = 1/T1 H = P/T1

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 14 / 135

Scaling — Throughput

How a problem’s throughput scales as processor number increases
(“strong scaling”).

In this case, linear scaling:
H ∝ P

This is Perfect scaling.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

T
as

ks
 p

er
 u

ni
t t

im
e

P

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 15 / 135

Scaling – Time

How a problem’s timing scales as processor number increases.

Measured by the time to do one unit. In this case, inverse linear
scaling:

T ∝ 1/P

Again this is the ideal case, or “embarrasingly parallel”.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

T
im

e
pe

r
un

it
ta

sk

P

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 16 / 135

Scaling – Time

How a problem’s timing scales as processor number increases.

Measured by the time to do one unit. In this case, inverse linear
scaling:

T ∝ 1/P

Again this is the ideal case, or “embarrasingly parallel”.

 0.1

 1

 1 10

T
im

e
pe

r
un

it
ta

sk

P

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 16 / 135

Scaling – Speedup

How much faster the problem is solved as processor number increases.

Measured by the serial time divided by the parallel time

S =
Tserial

T(P)
∝ P

For embarrasingly parallel applications: Linear speed up.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
pe

ed
-u

p

P

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 17 / 135

Non-ideal cases

Say we want to integrate
some tabulated
experimental data.

Integration can be split
up, so different regions
are summed by each
processor.

Non-ideal:
I First need to get data

to processor
I And at the end bring

together all the sums:
“reduction”

�� ��Partition data

? ? ? ?'

&

$

%

region 1

'

&

$

%

region 2

'

&

$

%

region 3

'

&

$

%

region 4

? ? ? ?�� ��Reduction

?

&%
'$
Answer

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 18 / 135

Non-ideal cases

Parallel region⇒



�� ��Partition data

? ? ? ?'

&

$

%

region 1

'

&

$

%

region 2

'

&

$

%

region 3

'

&

$

%

region 4

? ? ? ?�� ��Reduction

?

&%
'$
Answer

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 18 / 135

Non-ideal cases

Parallel region⇒


Perfectly Parallel
(for large N)

�� ��Partition data

? ? ? ?'

&

$

%

region 1

'

&

$

%

region 2

'

&

$

%

region 3

'

&

$

%

region 4

? ? ? ?�� ��Reduction

?

&%
'$
Answer

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 18 / 135

Non-ideal cases

Parallel region⇒


Perfectly Parallel
(for large N)

Serial portion ⇒

�� ��Partition data

? ? ? ?'

&

$

%

region 1

'

&

$

%

region 2

'

&

$

%

region 3

'

&

$

%

region 4

? ? ? ?�� ��Reduction

?

&%
'$
Answer

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 18 / 135

Non-ideal cases

Parallel region⇒


Perfectly Parallel
(for large N)

Serial portion ⇒

Parallel overhead ⇒
�� ��Partition data

? ? ? ?'

&

$

%

region 1

'

&

$

%

region 2

'

&

$

%

region 3

'

&

$

%

region 4

? ? ? ?�� ��Reduction

?

&%
'$
Answer

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 18 / 135

Non-ideal cases

Parallel region⇒


Perfectly Parallel
(for large N)

Serial portion ⇒

Parallel overhead ⇒
�� ��Partition data

? ? ? ?'

&

$

%

region 1

'

&

$

%

region 2

'

&

$

%

region 3

'

&

$

%

region 4

? ? ? ?�� ��Reduction

?

&%
'$
Answer

Suppose non-parallel part const: Ts

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 18 / 135

Amdahl’s law
Speed-up (without parallel overhead):

S =
NT1 + Ts

NT1
P + Ts

or, calling f = Ts/(Ts + NT1) the serial fraction,

S =
1

f + (1− f)/P

P→∞−→
1

f

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16 (for f = 5%)

Serial part dominates asymptotically.

Speed-up limited, no matter size of P.

And this is the overly optimistic case!

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 19 / 135

Amdahl’s law
Speed-up (without parallel overhead):

S =
NT1 + Ts

NT1
P + Ts

or, calling f = Ts/(Ts + NT1) the serial fraction,

S =
1

f + (1− f)/P

P→∞−→
1

f

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16 (for f = 5%)

Serial part dominates asymptotically.

Speed-up limited, no matter size of P.

And this is the overly optimistic case!

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 19 / 135

Amdahl’s law
Speed-up (without parallel overhead):

S =
NT1 + Ts

NT1
P + Ts

or, calling f = Ts/(Ts + NT1) the serial fraction,

S =
1

f + (1− f)/P

P→∞−→
1

f

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16 (for f = 5%)

Serial part dominates asymptotically.

Speed-up limited, no matter size of P.

And this is the overly optimistic case!

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 19 / 135

Amdahl’s law
Speed-up (without parallel overhead):

S =
NT1 + Ts

NT1
P + Ts

or, calling f = Ts/(Ts + NT1) the serial fraction,

S =
1

f + (1− f)/P

P→∞−→
1

f

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16 (for f = 5%)

Serial part dominates asymptotically.

Speed-up limited, no matter size of P.

And this is the overly optimistic case!

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 19 / 135

Scaling efficiency

Speed-up compared to ideal factor P:

Efficiency =
S

P

This will invariably fall off for larger P except for embarrasing parallel
problems.

Efficiency ∼
1

fP

P→∞−→ 0

You cannot get 100% efficiency in any non-trivial problem.
All you can aim for here is to make the efficiency as least low as possible.
Sometimes, that can mean running on less processors, but more problems
at the same time.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 20 / 135

Timing example

Say 100s in integration cost

5s in reduction

Neglect communication cost

What happens as we vary number of processors P?

Time = (100s)/P + 5

 0

 20

 40

 60

 80

 100

 120

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

Number of processors P

Time=(100s)/P+5s
Ideal

 1

 10

 100

 1000

 1 10

T
im

e
(s

)

Number of processors P

Time=(100s)/P+5s
Ideal

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 21 / 135

Throughput example

H(P) =
N

Time(P)

Say we are doing k at the same time, on P processors total.

Hk(P) =
kN

Time(P/k)

Say N = 100:

 0

 5

 10

 15

 20

 25

 30

 35

 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

#/
s)

Number of processors P

k=1
k=2
k=3
k=4

Ideal

 30

 40

 50

 60

 70

 80

 90

 100

 5 10 15 20 25 30 35 40 45 50

E
ffi

ci
en

cy

Number of processors P

k=1
k=2
k=3
k=4

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 22 / 135

Big Lesson #1

Always keep throughput in mind: if you have several runs, running more of
them at the same time on less processors per run is often advantageous.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 23 / 135

Less ideal case of Amdahl’s law

We assumed reduction is constant.
But it will in fact increase with P,
from sum of results of all processors

Ts ≈ PT1

Serial fraction now a function of P:

f(P) =
P

N

Amdahl:

S(P) =
1

f(P) + [1− f(P)]/P

Example: N = 100, T1 = 1s. . .

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 5 10 15 20 25 30 35 40 45 50

S
pe

ed
-u

p

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

Number of processors P

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 24 / 135

Less ideal case of Amdahl’s law

We assumed reduction is constant.
But it will in fact increase with P,
from sum of results of all processors

Ts ≈ PT1

Serial fraction now a function of P:

f(P) =
P

N

Amdahl:

S(P) =
1

f(P) + [1− f(P)]/P

Example: N = 100, T1 = 1s. . .

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 5 10 15 20 25 30 35 40 45 50

S
pe

ed
-u

p

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

Number of processors P

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 24 / 135

Less ideal case of Amdahl’s law

We assumed reduction is constant.
But it will in fact increase with P,
from sum of results of all processors

Ts ≈ PT1

Serial fraction now a function of P:

f(P) =
P

N

Amdahl:

S(P) =
1

f(P) + [1− f(P)]/P

Example: N = 100, T1 = 1s. . .

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 5 10 15 20 25 30 35 40 45 50
S

pe
ed

-u
p

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

Number of processors P

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 24 / 135

Trying to beat Amdahl’s law #1

Scale up!

The larger N, the smaller
the serial fraction:

f(P) =
P

N
 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 5 10 15 20 25 30 35 40 45 50

S
pe

ed
-u

p

Number of processors P

N=100
N=1,000

N=10,000
N=100,000

Ideal

Weak scaling: Increase problem size while increasing P

Timeweak(P) = Time(N = n× P,P)

Good weak scaling means this time approaches a constant for large P.

Gustafson’s Law

Any large enough problem can be efficiently parallelized (Efficiency→1).

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 25 / 135

Trying to beat Amdahl’s law #1

Scale up!

The larger N, the smaller
the serial fraction:

f(P) =
P

N
 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 5 10 15 20 25 30 35 40 45 50

S
pe

ed
-u

p

Number of processors P

N=100
N=1,000

N=10,000
N=100,000

Ideal

Weak scaling: Increase problem size while increasing P

Timeweak(P) = Time(N = n× P,P)

Good weak scaling means this time approaches a constant for large P.

Gustafson’s Law

Any large enough problem can be efficiently parallelized (Efficiency→1).

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 25 / 135

Trying to beat Amdahl’s law #1

Scale up!

The larger N, the smaller
the serial fraction:

f(P) =
P

N
 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 5 10 15 20 25 30 35 40 45 50

S
pe

ed
-u

p

Number of processors P

N=100
N=1,000

N=10,000
N=100,000

Ideal

Weak scaling: Increase problem size while increasing P

Timeweak(P) = Time(N = n× P,P)

Good weak scaling means this time approaches a constant for large P.

Gustafson’s Law

Any large enough problem can be efficiently parallelized (Efficiency→1).

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 25 / 135

Trying to beat Amdahl’s law #2

Parallel region⇒


Perfectly Parallel
(for large N)

Serial portion ⇒

Parallel overhead ⇒

Rewrite

∝ 2 log P

�� ��Partition data

? ? ? ?'

&

$

%

region 1

'

&

$

%

region 2

'

&

$

%

region 3

'

&

$

%

region 4

? ? ? ?�� ��Reduction

?

&%
'$
Answer

�� �� �� ���� ��? ?

?

&%
'$
Answer

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 26 / 135

Trying to beat Amdahl’s law #2

Parallel region⇒


Perfectly Parallel
(for large N)

Serial portion ⇒

Parallel overhead ⇒

Rewrite

∝ 2 log P

�� ��Partition data

? ? ? ?'

&

$

%

region 1

'

&

$

%

region 2

'

&

$

%

region 3

'

&

$

%

region 4

? ? ? ?�� ��Reduction

?

&%
'$
Answer

�� �� �� ���� ��? ?

?

&%
'$
Answer

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 26 / 135

Trying to beat Amdahl’s law #2

Parallel region⇒


Perfectly Parallel
(for large N)

Serial portion ⇒

Parallel overhead ⇒

Rewrite

∝ 2 log P

�� ��Partition data

? ? ? ?'

&

$

%

region 1

'

&

$

%

region 2

'

&

$

%

region 3

'

&

$

%

region 4

? ? ? ?�� �� �� ���� ��? ?

?

&%
'$
Answer

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 26 / 135

Trying to beat Amdahl’s law #2

Parallel region⇒


Perfectly Parallel
(for large N)

Serial portion ⇒

Parallel overhead ⇒

Rewrite

∝ 2 log P

�� ��Partition data

? ? ? ?'

&

$

%

region 1

'

&

$

%

region 2

'

&

$

%

region 3

'

&

$

%

region 4

? ? ? ?�� �� �� ���� ��? ?

?

&%
'$
Answer

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 26 / 135

Trying to beat Amdahl’s law #2

‘Serial’ fraction now different function
of P:

f(P) =
2 log P

N

Amdahl:

S(P) =
1

f(P) + [1− f(P)]/P

Example: N = 100, T1 = 1s. . .

 0

 2

 4

 6

 8

 10

 12

 14

 5 10 15 20 25 30 35 40 45 50

S
pe

ed
-u

p

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

Number of processors P

Time

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 27 / 135

Trying to beat Amdahl’s law #2

‘Serial’ fraction now different function
of P:

f(P) =
2 log P

N

Amdahl:

S(P) =
1

f(P) + [1− f(P)]/P

Example: N = 100, T1 = 1s. . .

 0

 2

 4

 6

 8

 10

 12

 14

 5 10 15 20 25 30 35 40 45 50

S
pe

ed
-u

p

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

Number of processors P

Time

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 27 / 135

Trying to beat Amdahl’s law #2

‘Serial’ fraction now different function
of P:

f(P) =
2 log P

N

Amdahl:

S(P) =
1

f(P) + [1− f(P)]/P

Example: N = 100, T1 = 1s. . .

 0

 2

 4

 6

 8

 10

 12

 14

 5 10 15 20 25 30 35 40 45 50
S

pe
ed

-u
p

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

Number of processors P

Time

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 27 / 135

Trying to beat Amdahl’s law #2

Weak scaling

Timeweak(P) = Time(N = n×P,P)

Should approach constant for large P.
Let’s see. . .

Not quite!
But much better than before.

Gustafson?
It turns out that Gustafson’s law as-
sumes that the serial cost does not
change with P.
Here that grows logarithmically with
P, and this is reflected in the weak
scaling.

 95

 100

 105

 110

 115

 120

 125

 130

 135

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

Number of processors P

 now
ideal

before

Really not that bad.
and other algorithms can do better.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 28 / 135

Trying to beat Amdahl’s law #2

Weak scaling

Timeweak(P) = Time(N = n×P,P)

Should approach constant for large P.
Let’s see. . .
Not quite!

But much better than before.

Gustafson?
It turns out that Gustafson’s law as-
sumes that the serial cost does not
change with P.
Here that grows logarithmically with
P, and this is reflected in the weak
scaling.

 95

 100

 105

 110

 115

 120

 125

 130

 135

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)
Number of processors P

 now
ideal

 95

 100

 105

 110

 115

 120

 125

 130

 135

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

Number of processors P

 now
ideal

before

Really not that bad.
and other algorithms can do better.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 28 / 135

Trying to beat Amdahl’s law #2

Weak scaling

Timeweak(P) = Time(N = n×P,P)

Should approach constant for large P.
Let’s see. . .
Not quite!
But much better than before.

Gustafson?
It turns out that Gustafson’s law as-
sumes that the serial cost does not
change with P.
Here that grows logarithmically with
P, and this is reflected in the weak
scaling.

 95

 100

 105

 110

 115

 120

 125

 130

 135

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)
Number of processors P

 now
ideal

 95

 100

 105

 110

 115

 120

 125

 130

 135

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

Number of processors P

 now
ideal

before

Really not that bad.
and other algorithms can do better.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 28 / 135

Trying to beat Amdahl’s law #2

Weak scaling

Timeweak(P) = Time(N = n×P,P)

Should approach constant for large P.
Let’s see. . .
Not quite!
But much better than before.

Gustafson?
It turns out that Gustafson’s law as-
sumes that the serial cost does not
change with P.
Here that grows logarithmically with
P, and this is reflected in the weak
scaling.

 95

 100

 105

 110

 115

 120

 125

 130

 135

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)
Number of processors P

 now
ideal

 95

 100

 105

 110

 115

 120

 125

 130

 135

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)
Number of processors P

 now
ideal

before

Really not that bad.
and other algorithms can do better.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 28 / 135

Trying to beat Amdahl’s law #2

Weak scaling

Timeweak(P) = Time(N = n×P,P)

Should approach constant for large P.
Let’s see. . .
Not quite!
But much better than before.

Gustafson?
It turns out that Gustafson’s law as-
sumes that the serial cost does not
change with P.
Here that grows logarithmically with
P, and this is reflected in the weak
scaling.

 95

 100

 105

 110

 115

 120

 125

 130

 135

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)
Number of processors P

 now
ideal

 95

 100

 105

 110

 115

 120

 125

 130

 135

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)
Number of processors P

 now
ideal

before

Really not that bad.
and other algorithms can do better.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 28 / 135

Trying to beat Amdahl’s law #2

Weak scaling

Timeweak(P) = Time(N = n×P,P)

Should approach constant for large P.
Let’s see. . .
Not quite!
But much better than before.

Gustafson?
It turns out that Gustafson’s law as-
sumes that the serial cost does not
change with P.
Here that grows logarithmically with
P, and this is reflected in the weak
scaling.

 95

 100

 105

 110

 115

 120

 125

 130

 135

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)
Number of processors P

 now
ideal

 95

 100

 105

 110

 115

 120

 125

 130

 135

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)
Number of processors P

 now
ideal

before

Really not that bad.
and other algorithms can do better.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 28 / 135

Big Lesson #2

Optimal Serial Algorithm for your problem may
not be the P→1 limit of your optimal

parallel algorithm.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 29 / 135

Synchronization

Most problems are not purely
concurrent.

Some level of synchronization
or exchange of information is
needed between tasks.

While synchronizing, nothing
else happens: increases
Amdahl’s f.

And synchronizations are
themselves costly.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 30 / 135

Load balancing

The division of calculations
among the processors may not
be equal.

Some processors would already
be done, while others are still
going.

Effectively using less than P
processors: This reduces the
efficiency.

Aim for load balanced
algorithms.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 31 / 135

Locality

So far we neglected communication costs.

But communication costs are more expensive than computation!

To minimize communication to computation ratio:

* Keep the data where it is needed.
* Make sure as little data as possible is to be communicated.
* Make shared data as local to the right processors as possible.

Local data means less need for syncs, or smaller-scale syncs.

Local syncs can alleviate load balancing issues.

Example (PDE Domain decomposition)

wrong right

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 32 / 135

Locality

So far we neglected communication costs.

But communication costs are more expensive than computation!

To minimize communication to computation ratio:

* Keep the data where it is needed.
* Make sure as little data as possible is to be communicated.
* Make shared data as local to the right processors as possible.

Local data means less need for syncs, or smaller-scale syncs.

Local syncs can alleviate load balancing issues.

Example (PDE Domain decomposition)

wrong right

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 32 / 135

Big Lesson #3

Parallel algorithm design is about finding as
much concurrency as possible, and arranging

it in a way that maximizes locality.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 33 / 135

Parallel Computers

Top500.org:

List of the worlds
500 largest
supercomputers.
Updated every 6
months,

Info on
architecture, etc.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 34 / 135

Supercomputer architectures

Clusters, or, distributed memory machines
In essence a bunch of desktops linked together by a network
(“interconnect”). Easy and cheap.

Multi-core machines, or, shared memory machines
These can see the same memory. Limited number of cores, typically,
and much more $$$.

Vector machines.
These were the early supercomputers, and could do the same
operation on a large number of numbers at the same time.
Very $$$$$$, especially at scale.
These days, most chips have some low-level, small size vectorization,
but you rarely need to worry about it (compiler should do this).

Most supercomputers are a hybrid combo of these different architectures.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 35 / 135

Distributed Memory: Clusters

Simplest type of parallel computer
to build

Take existing powerful
standalone computers

And network them

(source: http://flickr.com/photos/eurleif)

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 36 / 135

Distributed Memory: Clusters
Each node is independent!
Parallel code consists of
programs running on
separate computers,
communicating with each
other.
Could be entirely different
programs.

Each node has own
memory!
Whenever it needs data
from another region,
requests it from that CPU.

Usual model: “message passing”

~ ~
~

~

n n
n

n

CPU1

CPU2

CPU3

CPU4

�
�
�
�
�
�
�
�
�
�
�
���

��
��*

6

�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
��

�
����

?

�
�

�
�	

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 37 / 135

Distributed Memory: Clusters
Each node is independent!
Parallel code consists of
programs running on
separate computers,
communicating with each
other.
Could be entirely different
programs.

Each node has own
memory!
Whenever it needs data
from another region,
requests it from that CPU.

Usual model: “message passing”

~ ~
~

~

n n
n

n

CPU1

CPU2

CPU3

CPU4

�
�
�
�
�
�
�
�
�
�
�
���

��
��*

6

�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
��

�
����

?

�
�

�
�	

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 37 / 135

Clusters+Message Passing
Hardware:
Easy to build
(Harder to build well)
Can build larger and larger
clusters relatively easily

Software:
Every communication has
to be hand-coded:
hard to program

~ ~
~

~

n n
n

n

CPU1

CPU2

CPU3

CPU4

�
�
�
�
�
�
�
�
�
�
�
���

��
�
�*

6

�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
��

���
��

?

�
�

�
�	

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 38 / 135

Cluster Communication Cost

Latency Bandwidth

GigE 10 µs 1 Gb/s
(10,000 ns) (60 ns/double)

Infiniband 2 µs 2-10 Gb/s
(2,000 ns) (10 ns /double)

Processor speed: O(GFLOP) ∼ few ns or less.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 39 / 135

Shared Memory

One large bank of memory,
different computing cores
acting on it. All ‘see’ same
data.

Any coordination done
through memory

Could use message
passing, but no need.

Each code is assigned a
thread of execution of a
single program that acts
on the data.

~ ~

~

~

n n

n

n

-� � -

?

6

6

?

Core 1 Core 2

Core 3

Core 4

Memory

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 40 / 135

Threads versus Processes

Threads:
Threads of execution within one
process, with access to the same
memory etc.

Processes:
Independent tasks with their own
memory and resources

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 41 / 135

Shared Memory: NUMA

Non-Uniform Memory Access

Each core typically has some
memory of its own.

Cores have cache too.

Keeping this memory coherent
is extremely challenging.

~ ~

~

~

Memoryn n

n

n

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 42 / 135

Coherency

The different levels of memory
imply multiple copies of some
regions

Multiple cores mean can update
unpredictably

Very expensive hardware

Hard to scale up to lots of
processors, very $$$

Very simple to program!!

~ ~

~

~

Memoryn n

n

n

x[10] = 5

x[10] =?

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 43 / 135

Shared Memory Communication Cost

Latency Bandwidth

GigE 10 µs 1 Gb/s
(10,000 ns) (60 ns/double)

Infiniband 2 µs 2-10 Gb/s
(2,000 ns) (10 ns /double)

NUMA 0.1 µs 10-20 Gb/s
(shared memory) (100 ns) (4 ns /double)

Processor speed: O(GFLOP) ∼ few ns or less.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 44 / 135

Hybrid Architectures

Multicore machines linked
together with an interconnect

Many cores have modest vector
capabilities.

Machines with GPU: GPU is
multi-core, but the amount of
shared memory is limited.

We will focus on the aspects that affect the programmer:

Shared memory: OpenMP

Distributed memory: MPI

Graphics computing: CUDA, OpenCL

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 45 / 135

Big Lesson #4

The best approach to parallelizing your
problem will depend on both details of your

problem and of the hardware available.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 46 / 135

Resources at SciNet
1. General Purpose Cluster (GPC)

3780 nodes with two 2.53GHz quad-core Intel Xeon 5500
(Nehalem) x86-64 processors (30240 cores total)

16GB RAM per node

Gigabit ethernet network on all nodes
for management, disk I/O, boot, etc.

InfiniBand network on 1/4 of the nodes
only used for job communication

306 TFlops

#16 on the June 2009 TOP500 supercomputer sites

#1 in Canada

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 47 / 135

Resources at SciNet
1. General Purpose Cluster (GPC)

3780 nodes with two 2.53GHz quad-core Intel Xeon 5500
(Nehalem) x86-64 processors (30240 cores total)

16GB RAM per node

Gigabit ethernet network on all nodes
for management, disk I/O, boot, etc.

InfiniBand network on 1/4 of the nodes
only used for job communication

306 TFlops

#16 on the June 2009 TOP500 supercomputer sites

#1 in Canada

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 47 / 135

Resources at SciNet
2. Tightly Coupled System (TCS)

104 nodes of 16 dual-core 4.7GHz Power 6 processors.

128GB RAM per node

Interconnected by full non-blocking InfiniBand

62 TFlops

#80 on the June 2009 TOP500 supercomputer sites

#3 in Canada

Access disabled by default. For access, email us explaining
the nature of your work. Your application should scale well
to over 32 procs.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 48 / 135

Resources at SciNet
2. Tightly Coupled System (TCS)

104 nodes of 16 dual-core 4.7GHz Power 6 processors.

128GB RAM per node

Interconnected by full non-blocking InfiniBand

62 TFlops

#80 on the June 2009 TOP500 supercomputer sites

#3 in Canada

Access disabled by default. For access, email us explaining
the nature of your work. Your application should scale well
to over 32 procs.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 48 / 135

Resources at SciNet
2. Tightly Coupled System (TCS)

104 nodes of 16 dual-core 4.7GHz Power 6 processors.

128GB RAM per node

Interconnected by full non-blocking InfiniBand

62 TFlops

#80 on the June 2009 TOP500 supercomputer sites

#3 in Canada

Access disabled by default. For access, email us explaining
the nature of your work. Your application should scale well
to over 32 procs.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 48 / 135

Resources at SciNet

3. Accelerator Research Cluster (ARC)

8 GPU devel nodes and 4 NVIDIA Tesla M2070. Per node:

• 2 × quad-core Intel Xeon X5550 2.67GHz

• 48 GB RAM

• Interconnected by DDR InfiniBand

• 2 × GPUs with CUDA capability 2.0 (Fermi) each with
448 CUDA cores @ 1.15GHz and 6 GB of RAM.

Max. computing power CPUs: 683.52 GFlops
Max. computing power GPUs: 4.12 TFlops (single prec)
Max. computing power GPUs: 2.06 TFlops (double prec)
Access disabled by default.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 49 / 135

Resources at SciNet

3. Accelerator Research Cluster (ARC)

8 GPU devel nodes and 4 NVIDIA Tesla M2070. Per node:

• 2 × quad-core Intel Xeon X5550 2.67GHz

• 48 GB RAM

• Interconnected by DDR InfiniBand

• 2 × GPUs with CUDA capability 2.0 (Fermi) each with
448 CUDA cores @ 1.15GHz and 6 GB of RAM.

Max. computing power CPUs: 683.52 GFlops
Max. computing power GPUs: 4.12 TFlops (single prec)
Max. computing power GPUs: 2.06 TFlops (double prec)
Access disabled by default.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 49 / 135

Part III

Review of C

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 50 / 135

C review: Basics

C was designed for (unix) system programming.

C has a very small base.

Most functionality is in (standard) libraries.

We will use C99.

Example (Basic C program)
#include <stdio.h>

// include stdio.h to print

int main() // always called first

{ // braces delimit code block

printf("Hello world.\n");

// function call to print

// line ends with a semicolon

return 0;

// optional return value to shell

}

$ gcc -o hello hello.c -std=c99


-O2

-Os

-O3

-Ofast

$./hello

Hello world.

$ echo $?

0

$

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 51 / 135

C review: Basics

C was designed for (unix) system programming.

C has a very small base.

Most functionality is in (standard) libraries.

We will use C99.

Example (Basic C program)
#include <stdio.h>

// include stdio.h to print

int main() // always called first

{ // braces delimit code block

printf("Hello world.\n");

// function call to print

// line ends with a semicolon

return 0;

// optional return value to shell

}

$ gcc -o hello hello.c -std=c99


-O2

-Os

-O3

-Ofast

$./hello

Hello world.

$ echo $?

0

$

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 51 / 135

C review: Basics

C was designed for (unix) system programming.

C has a very small base.

Most functionality is in (standard) libraries.

We will use C99.

Example (Basic C program)
#include <stdio.h>

// include stdio.h to print

int main() // always called first

{ // braces delimit code block

printf("Hello world.\n");

// function call to print

// line ends with a semicolon

return 0;

// optional return value to shell

}

$ gcc -o hello hello.c -std=c99


-O2

-Os

-O3

-Ofast

$

./hello

Hello world.

$ echo $?

0

$

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 51 / 135

C review: Basics

C was designed for (unix) system programming.

C has a very small base.

Most functionality is in (standard) libraries.

We will use C99.

Example (Basic C program)
#include <stdio.h>

// include stdio.h to print

int main() // always called first

{ // braces delimit code block

printf("Hello world.\n");

// function call to print

// line ends with a semicolon

return 0;

// optional return value to shell

}

$ gcc -o hello hello.c -std=c99


-O2

-Os

-O3

-Ofast

$./hello

Hello world.

$

echo $?

0

$

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 51 / 135

C review: Basics

C was designed for (unix) system programming.

C has a very small base.

Most functionality is in (standard) libraries.

We will use C99.

Example (Basic C program)
#include <stdio.h>

// include stdio.h to print

int main() // always called first

{ // braces delimit code block

printf("Hello world.\n");

// function call to print

// line ends with a semicolon

return 0;

// optional return value to shell

}

$ gcc -o hello hello.c -std=c99


-O2

-Os

-O3

-Ofast

$./hello

Hello world.

$ echo $?

0

$

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 51 / 135

C review: Functions

Function declaration (prototype)

returntype name(argument-spec);

Function definition
returntype name(argument-spec) {

statements

}

Function call
var=name(arguments);

f(name(arguments));

Procedures

Procedures are functions with return-type void ; called without assignment.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 52 / 135

C review: Variables

Define a variable with
type name [= value];

type may be a
* built-in type:

- floating point type:
float, double, long double

- integer type:
short,[unsigned] int, [unsigned] long int ,[unsigned] long long int

- character or string of characters:
char, char*

* array, pointer
* structure, enumerated type, union

Variable declarations and code may be mixed in C99.

Variables can be initialized to a value when declared.
Any non-initialized variable is not set to zero, but has a random value!

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 53 / 135

C review: Loops

for (initialization; condition; increment) {

statements

}

while (condition) {

statements

}

You can use break to exit the loop.

Example
#include <stdio.h>

int main() {

for (int i=1; i<=10; i++)

printf("%d ",i);

// note the omitted braces

printf("\n);

}

$ gcc -o count count.c -O2 -std=c99

$./count

1 2 3 4 5 5 6 7 8 9 10

$

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 54 / 135

C review: Loops

for (initialization; condition; increment) {

statements

}

while (condition) {

statements

}

You can use break to exit the loop.

Example
#include <stdio.h>

int main() {

for (int i=1; i<=10; i++)

printf("%d ",i);

// note the omitted braces

printf("\n);

}

$ gcc -o count count.c -O2 -std=c99

$./count

1 2 3 4 5 5 6 7 8 9 10

$

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 54 / 135

C review: Loops

for (initialization; condition; increment) {

statements

}

while (condition) {

statements

}

You can use break to exit the loop.

Example
#include <stdio.h>

int main() {

for (int i=1; i<=10; i++)

printf("%d ",i);

// note the omitted braces

printf("\n);

}

$ gcc -o count count.c -O2 -std=c99

$./count

1 2 3 4 5 5 6 7 8 9 10

$

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 54 / 135

C review: Pointers
type *name;

Example (Pointer assignment)
#include <stdio.h>

int main() {

int a=7,b=5;

int *ptr=&a;

a = 13;

b = *ptr;

printf("b=%d\n,b);

}

$ gcc -o ptrex ptrex.c -O2 -std=c99

$./ptrex

b=13

$

Example (Pass by reference)

void inc(int *i) { (*i)++; }
int main() {

int j=10;

inc(&j);

return j;

}

$ gcc -o passref passref.c -O2 -std=c99

$./passref

$ echo $?

11

$

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 55 / 135

C review: Pointers
type *name;

Example (Pointer assignment)
#include <stdio.h>

int main() {

int a=7,b=5;

int *ptr=&a;

a = 13;

b = *ptr;

printf("b=%d\n,b);

}

$ gcc -o ptrex ptrex.c -O2 -std=c99

$./ptrex

b=13

$

Example (Pass by reference)

void inc(int *i) { (*i)++; }
int main() {

int j=10;

inc(&j);

return j;

}

$ gcc -o passref passref.c -O2 -std=c99

$./passref

$ echo $?

11

$

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 55 / 135

C review: Pointers
type *name;

Example (Pointer assignment)
#include <stdio.h>

int main() {

int a=7,b=5;

int *ptr=&a;

a = 13;

b = *ptr;

printf("b=%d\n,b);

}

$ gcc -o ptrex ptrex.c -O2 -std=c99

$./ptrex

b=13

$

Example (Pass by reference)

void inc(int *i) { (*i)++; }
int main() {

int j=10;

inc(&j);

return j;

}

$ gcc -o passref passref.c -O2 -std=c99

$./passref

$ echo $?

11

$

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 55 / 135

C review: Automatic arrays
type name[number];

name is equivalent to a pointer to the first element.
Usage name[i]. Equivalent to *(name+i).
C arrays are zero-based.

Example
#include <stdio.h>

int main() {

int a[10]={1,2,3,4,5,6,7,8,9,11};
int sum=0;

for (int i=0; i<10; i++)

sum += a[i];

printf("sum=%d\n,sum);

}

$ gcc -o autoarr autoarr.c -O2 -std=c99

$./autoarr

56

$

Gotcha:

• There’s an compiler dependent limit on number.

• C standard only says at least 65535 bytes.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 56 / 135

C review: Automatic arrays
type name[number];

name is equivalent to a pointer to the first element.
Usage name[i]. Equivalent to *(name+i).
C arrays are zero-based.

Example
#include <stdio.h>

int main() {

int a[10]={1,2,3,4,5,6,7,8,9,11};
int sum=0;

for (int i=0; i<10; i++)

sum += a[i];

printf("sum=%d\n,sum);

}

$ gcc -o autoarr autoarr.c -O2 -std=c99

$./autoarr

56

$

Gotcha:

• There’s an compiler dependent limit on number.

• C standard only says at least 65535 bytes.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 56 / 135

C review: Automatic arrays
type name[number];

name is equivalent to a pointer to the first element.
Usage name[i]. Equivalent to *(name+i).
C arrays are zero-based.

Example
#include <stdio.h>

int main() {

int a[10]={1,2,3,4,5,6,7,8,9,11};
int sum=0;

for (int i=0; i<10; i++)

sum += a[i];

printf("sum=%d\n,sum);

}

$ gcc -o autoarr autoarr.c -O2 -std=c99

$./autoarr

56

$

Gotcha:

• There’s an compiler dependent limit on number.

• C standard only says at least 65535 bytes.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 56 / 135

C review: Dynamically allocated arrays

Requires header file:

#include <stdlib.h>

Defined as a pointer to memory:

type *name;

Allocated by a function call:

name=malloc(number*sizeof(type));

Usages:

a=name[number];

Deallocated by a function call:

free(name);

System function call can access all available memory.

Can check if allocation failed (name == 0).

Can control when memory is given back.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 57 / 135

C review: Dynamically allocated arrays

Example

#include <stdlib.h>

#include <stdio.h>

void printarr(int n, int *a) {

for (int i=0;i<n;i++)

printf("%d ", a[i]);

printf("\n");

}

int main(){

int n=100;

int *b=malloc(n*sizeof(*b));

for (int i=0;i<n;i++)

b[i]=i*i;

printarr(n,b);

free(b);

}

$ gcc -o dynarr dynarr.c -O2 -std=c99

$./dynarr

0 1 4 9 16 25 36 49 64 81 100 121 144

169 196 225 256 289 324 361 400 441

484 529 576 625 676 729 784 841 900

961 1024 1089 1156 1225 1296 1369 1444

1521 1600 1681 1764 1849 1936 2025

2116 2209 2304 2401 2500 2601 2704

2809 2916 3025 3136 3249 3364 3481

3600 3721 3844 3969 4096 4225 4356

4489 4624 4761 4900 5041 5184 5329

5476 5625 5776 5929 6084 6241 6400

6561 6724 6889 7056 7225 7396 7569

7744 7921 8100 8281 8464 8649 8836

9025 9216 9409 9604 9801

$

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 58 / 135

C review: Dynamically allocated arrays

Example

#include <stdlib.h>

#include <stdio.h>

void printarr(int n, int *a) {

for (int i=0;i<n;i++)

printf("%d ", a[i]);

printf("\n");

}

int main(){

int n=100;

int *b=malloc(n*sizeof(*b));

for (int i=0;i<n;i++)

b[i]=i*i;

printarr(n,b);

free(b);

}

$ gcc -o dynarr dynarr.c -O2 -std=c99

$./dynarr

0 1 4 9 16 25 36 49 64 81 100 121 144

169 196 225 256 289 324 361 400 441

484 529 576 625 676 729 784 841 900

961 1024 1089 1156 1225 1296 1369 1444

1521 1600 1681 1764 1849 1936 2025

2116 2209 2304 2401 2500 2601 2704

2809 2916 3025 3136 3249 3364 3481

3600 3721 3844 3969 4096 4225 4356

4489 4624 4761 4900 5041 5184 5329

5476 5625 5776 5929 6084 6241 6400

6561 6724 6889 7056 7225 7396 7569

7744 7921 8100 8281 8464 8649 8836

9025 9216 9409 9604 9801

$

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 58 / 135

C review: Dynamically allocated arrays

Example

#include <stdlib.h>

#include <stdio.h>

void printarr(int n, int *a) {

for (int i=0;i<n;i++)

printf("%d ", a[i]);

printf("\n");

}

int main(){

int n=100;

int *b=malloc(n*sizeof(*b));

for (int i=0;i<n;i++)

b[i]=i*i;

printarr(n,b);

free(b);

}

$ gcc -o dynarr dynarr.c -O2 -std=c99

$./dynarr

0 1 4 9 16 25 36 49 64 81 100 121 144

169 196 225 256 289 324 361 400 441

484 529 576 625 676 729 784 841 900

961 1024 1089 1156 1225 1296 1369 1444

1521 1600 1681 1764 1849 1936 2025

2116 2209 2304 2401 2500 2601 2704

2809 2916 3025 3136 3249 3364 3481

3600 3721 3844 3969 4096 4225 4356

4489 4624 4761 4900 5041 5184 5329

5476 5625 5776 5929 6084 6241 6400

6561 6724 6889 7056 7225 7396 7569

7744 7921 8100 8281 8464 8649 8836

9025 9216 9409 9604 9801

$

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 58 / 135

C review: Structs = collections of other
variables
struct name {

type1 name1;

type2 name2;

...

};

Example
#include <string.h>

#include <stdio.h>

struct Info {

char name[100];

unsigned int age;

};

int main() {

struct Info my;

my.age=38;

strcpy(my.name,"Ramses");

printf("%d %s\",my.age,my.name);

}

$ gcc -o info info.c -O2 -std=c99

$./info

Ramses 38

$

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 59 / 135

C review: Structs = collections of other
variables
struct name {

type1 name1;

type2 name2;

...

};

Example
#include <string.h>

#include <stdio.h>

struct Info {

char name[100];

unsigned int age;

};

int main() {

struct Info my;

my.age=38;

strcpy(my.name,"Ramses");

printf("%d %s\",my.age,my.name);

}

$ gcc -o info info.c -O2 -std=c99

$./info

Ramses 38

$

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 59 / 135

C review: Structs = collections of other
variables
struct name {

type1 name1;

type2 name2;

...

};

Example
#include <string.h>

#include <stdio.h>

struct Info {

char name[100];

unsigned int age;

};

int main() {

struct Info my;

my.age=38;

strcpy(my.name,"Ramses");

printf("%d %s\",my.age,my.name);

}

$ gcc -o info info.c -O2 -std=c99

$./info

Ramses 38

$

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 59 / 135

C review: Conditionals
if (condition) {

statements

} else if (other condition) {

statements

} else {

statements

}

Example

int main(){

int n=20;

int *b= malloc(n*sizeof(*b));

if (b==0)

return 1; //error

else {

for (int i=0;i<n;i++)

b[i]=i*i;

printarr(n,b);

free(b);

}

}

$ gcc -o ifm ifm.c -O2 -std=c99

$./ifm

0 1 4 9 16 25 36 49 64 81 100 121

144 169 196 225 256 289 324 361

$

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 60 / 135

C review: Conditionals
if (condition) {

statements

} else if (other condition) {

statements

} else {

statements

}

Example
int main(){

int n=20;

int *b= malloc(n*sizeof(*b));

if (b==0)

return 1; //error

else {

for (int i=0;i<n;i++)

b[i]=i*i;

printarr(n,b);

free(b);

}

}

$ gcc -o ifm ifm.c -O2 -std=c99

$./ifm

0 1 4 9 16 25 36 49 64 81 100 121

144 169 196 225 256 289 324 361

$

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 60 / 135

C review: Conditionals
if (condition) {

statements

} else if (other condition) {

statements

} else {

statements

}

Example
int main(){

int n=20;

int *b= malloc(n*sizeof(*b));

if (b==0)

return 1; //error

else {

for (int i=0;i<n;i++)

b[i]=i*i;

printarr(n,b);

free(b);

}

}

$ gcc -o ifm ifm.c -O2 -std=c99

$./ifm

0 1 4 9 16 25 36 49 64 81 100 121

144 169 196 225 256 289 324 361

$

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 60 / 135

C review: Multidimensional arrays
#include <stdlib.h>

#include <assert.h>

float **matrix(long n,long m) {

float **a=malloc(n*sizeof(*a));

assert(a); // check if a not null

a[0]=malloc(n*m*sizeof(**a));

assert(a[0]); // check if a[0] not null

for (long i=1; i<n; i++)

a[i]=&a[0][i*m];

return a;

}

void free matrix(float **a) {

free(a[0]);

free(a);

}

void fill(long n,long m,float **a,float v){

for (long i=0; i<n; i++)

for (long j=0; j<m; j++)

a[i][j]=v;

}

a

n



-a[0]

a[1]

a[2]

a[3]

a[4]

a[5]

m︷ ︸︸ ︷
-

-

-

-

-

-

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 61 / 135

C review: Multidimensional arrays
#include <stdlib.h>

#include <assert.h>

float **matrix(long n,long m) {

float **a=malloc(n*sizeof(*a));

assert(a); // check if a not null

a[0]=malloc(n*m*sizeof(**a));

assert(a[0]); // check if a[0] not null

for (long i=1; i<n; i++)

a[i]=&a[0][i*m];

return a;

}

void free matrix(float **a) {

free(a[0]);

free(a);

}

void fill(long n,long m,float **a,float v){

for (long i=0; i<n; i++)

for (long j=0; j<m; j++)

a[i][j]=v;

}

a

n



-a[0]

a[1]

a[2]

a[3]

a[4]

a[5]

m︷ ︸︸ ︷
-

-

-

-

-

-

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 61 / 135

C review: Multidimensional arrays
#include <stdlib.h>

#include <assert.h>

float **matrix(long n,long m) {

float **a=malloc(n*sizeof(*a));

assert(a); // check if a not null

a[0]=malloc(n*m*sizeof(**a));

assert(a[0]); // check if a[0] not null

for (long i=1; i<n; i++)

a[i]=&a[0][i*m];

return a;

}

void free matrix(float **a) {

free(a[0]);

free(a);

}

void fill(long n,long m,float **a,float v){

for (long i=0; i<n; i++)

for (long j=0; j<m; j++)

a[i][j]=v;

}

a

n



-a[0]

a[1]

a[2]

a[3]

a[4]

a[5]

m︷ ︸︸ ︷
-

-

-

-

-

-

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 61 / 135

C review: Multidimensional arrays
#include <stdlib.h>

#include <assert.h>

float **matrix(long n,long m) {

float **a=malloc(n*sizeof(*a));

assert(a); // check if a not null

a[0]=malloc(n*m*sizeof(**a));

assert(a[0]); // check if a[0] not null

for (long i=1; i<n; i++)

a[i]=&a[0][i*m];

return a;

}

void free matrix(float **a) {

free(a[0]);

free(a);

}

void fill(long n,long m,float **a,float v){

for (long i=0; i<n; i++)

for (long j=0; j<m; j++)

a[i][j]=v;

}

a

n



-a[0]

a[1]

a[2]

a[3]

a[4]

a[5]

m︷ ︸︸ ︷
-

-

-

-

-

-

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 61 / 135

C review: Multidimensional arrays
#include <stdlib.h>

#include <assert.h>

float **matrix(long n,long m) {

float **a=malloc(n*sizeof(*a));

assert(a); // check if a not null

a[0]=malloc(n*m*sizeof(**a));

assert(a[0]); // check if a[0] not null

for (long i=1; i<n; i++)

a[i]=&a[0][i*m];

return a;

}

void free matrix(float **a) {

free(a[0]);

free(a);

}

void fill(long n,long m,float **a,float v){

for (long i=0; i<n; i++)

for (long j=0; j<m; j++)

a[i][j]=v;

}

a

n



-a[0]

a[1]

a[2]

a[3]

a[4]

a[5]

m︷ ︸︸ ︷
-

-

-

-

-

-

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 61 / 135

C review: Multidimensional arrays
#include <stdlib.h>

#include <assert.h>

float **matrix(long n,long m) {

float **a=malloc(n*sizeof(*a));

assert(a); // check if a not null

a[0]=malloc(n*m*sizeof(**a));

assert(a[0]); // check if a[0] not null

for (long i=1; i<n; i++)

a[i]=&a[0][i*m];

return a;

}

void free matrix(float **a) {

free(a[0]);

free(a);

}

void fill(long n,long m,float **a,float v){

for (long i=0; i<n; i++)

for (long j=0; j<m; j++)

a[i][j]=v;

}

a

n



-a[0]

a[1]

a[2]

a[3]

a[4]

a[5]

m︷ ︸︸ ︷
-

-

-

-

-

-

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 61 / 135

C review: Multidimensional arrays
#include <stdlib.h>

#include <assert.h>

float **matrix(long n,long m) {

float **a=malloc(n*sizeof(*a));

assert(a); // check if a not null

a[0]=malloc(n*m*sizeof(**a));

assert(a[0]); // check if a[0] not null

for (long i=1; i<n; i++)

a[i]=&a[0][i*m];

return a;

}

void free matrix(float **a) {

free(a[0]);

free(a);

}

void fill(long n,long m,float **a,float v){

for (long i=0; i<n; i++)

for (long j=0; j<m; j++)

a[i][j]=v;

}

a

n



-a[0]

a[1]

a[2]

a[3]

a[4]

a[5]

m︷ ︸︸ ︷
-

-

-

-

-

-

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 61 / 135

C review: Multidimensional arrays
#include <stdlib.h>

#include <assert.h>

float **matrix(long n,long m) {

float **a=malloc(n*sizeof(*a));

assert(a); // check if a not null

a[0]=malloc(n*m*sizeof(**a));

assert(a[0]); // check if a[0] not null

for (long i=1; i<n; i++)

a[i]=&a[0][i*m];

return a;

}

void free matrix(float **a) {

free(a[0]);

free(a);

}

void fill(long n,long m,float **a,float v){

for (long i=0; i<n; i++)

for (long j=0; j<m; j++)

a[i][j]=v;

}

a

n



-a[0]

a[1]

a[2]

a[3]

a[4]

a[5]

m︷ ︸︸ ︷
-

-

-

-

-

-

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 61 / 135

C review: Multidimensional arrays
#include <stdlib.h>

#include <assert.h>

float **matrix(long n,long m) {

float **a=malloc(n*sizeof(*a));

assert(a); // check if a not null

a[0]=malloc(n*m*sizeof(**a));

assert(a[0]); // check if a[0] not null

for (long i=1; i<n; i++)

a[i]=&a[0][i*m];

return a;

}

void free matrix(float **a) {

free(a[0]);

free(a);

}

void fill(long n,long m,float **a,float v){

for (long i=0; i<n; i++)

for (long j=0; j<m; j++)

a[i][j]=v;

}

a

n



-a[0]

a[1]

a[2]

a[3]

a[4]

a[5]

m︷ ︸︸ ︷
-

-

-

-

-

-

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 61 / 135

C review: Libraries

Usage

Put an include line in the source code, e.g.

#include <stdio.h>

#include <omp.h>

#include "mpi.h"

Include the libraries at link time using -l[libname].
Implicit for most standard libraries, with mpicc and gcc -fopenmp.

Common standard libraries

stdio.h: input/output, e.g., printf and fwrite

stdlib.h: memory, e.g. malloc

string.h: strings, memory copies, e.g. strcpy

math.h: special functions, e.g. sqrt.
When using math, you need to link with -lm.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 62 / 135

C review: Libraries

Usage

Put an include line in the source code, e.g.

#include <stdio.h>

#include <omp.h>

#include "mpi.h"

Include the libraries at link time using -l[libname].
Implicit for most standard libraries, with mpicc and gcc -fopenmp.

Common standard libraries

stdio.h: input/output, e.g., printf and fwrite

stdlib.h: memory, e.g. malloc

string.h: strings, memory copies, e.g. strcpy

math.h: special functions, e.g. sqrt.
When using math, you need to link with -lm.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 62 / 135

Compilation:

Building with make

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 63 / 135

Compilation workflow

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 64 / 135

Compiling with make
Single source file

This file is called makefile

CC = gcc

CFLAGS = -std=c99 -O2

LDFLAGS = -lm

main: main.c

$(CC) $(CFLAGS) $(LDFLAGS) $^ -o $@

Multiple source file application

CC = gcc

CFLAGS = -std=c99 -O2

LDFLAGS = -lm

main: main.o mylib.o

$(CC) $(LDFLAGS) $^ -o $@

main.o: main.c mylib.h

mylib.o: mylib.h mylib.c

clean:

rm -f main.o mylib.o

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 65 / 135

Compiling with make
Single source file

This file is called makefile

CC = gcc

CFLAGS = -std=c99 -O2

LDFLAGS = -lm

main: main.c

$(CC) $(CFLAGS) $(LDFLAGS) $^ -o $@

Multiple source file application

CC = gcc

CFLAGS = -std=c99 -O2

LDFLAGS = -lm

main: main.o mylib.o

$(CC) $(LDFLAGS) $^ -o $@

main.o: main.c mylib.h

mylib.o: mylib.h mylib.c

clean:

rm -f main.o mylib.o

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 65 / 135

Compiling with make

When typing make at command line:

Checks if main.c or mylib.c or mylib.h were changed.

If so, invokes corresponding rules for object files.

Only compiles changed code files: faster recompilation.

Parallel make:
$ make -j 3

Gotcha

Make does not detect changes in compiler, or in system.

But .o files are system/compiler dependent, so need to be recompiled.

Always specify a “clean” rule in the makefile, so that moving from
one system or compiler to another, you can do a fresh rebuild:

$ make clean

$ make

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 66 / 135

Compiling with make

When typing make at command line:

Checks if main.c or mylib.c or mylib.h were changed.

If so, invokes corresponding rules for object files.

Only compiles changed code files: faster recompilation.

Parallel make:
$ make -j 3

Gotcha

Make does not detect changes in compiler, or in system.

But .o files are system/compiler dependent, so need to be recompiled.

Always specify a “clean” rule in the makefile, so that moving from
one system or compiler to another, you can do a fresh rebuild:

$ make clean

$ make

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 66 / 135

Before we start with OpenMP. . .

$ ssh -X login.scinet.utoronto.ca

$ ssh -X gpc01

$ qsub -X -I -l nodes=1:ppn=8,walltime=5:00:00,os=centos53develibA

to get a dedicated development node (ensure this works).

$ cp -r ~ljdursi/ppp ~/

$ source ~/ppp/setup

$ cd ~/ppp

$ cd util

$ make

$ cd ~/ppp/omp-intro

$ make mandel

$ mandel

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 67 / 135

Part V

Introduction to OpenMP

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 68 / 135

OpenMP
For shared memory systems.

Add parallelism to functioning
serial code.

http://openmp.org

Compiler, run-time environment
does a lot of work for us

Divides up work

But we have to tell it how to
use variables, where to run in
parallel, . . .

Mark parallel regions.

Works by adding compiler
directives to code.
Invisible to non-openmp
compilers.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 69 / 135

OpenMP
For shared memory systems.

Add parallelism to functioning
serial code.

http://openmp.org

Compiler, run-time environment
does a lot of work for us

Divides up work

But we have to tell it how to
use variables, where to run in
parallel, . . .

Mark parallel regions.

Works by adding compiler
directives to code.
Invisible to non-openmp
compilers.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 69 / 135

OpenMP basic operations

In code:

In C, you add lines starting with #pragma omp.
This parallelizes the subsequent code block.

In Fortran, you add lines starting with !$omp.
An !$omp end ... is needed to close the parallel region.

These lines are skipped (for C, sometimes with a warning) by
compilers that do not support OpenMP.

When compiling:

To turn on OpenMP support in gcc and gfortran, add the -fopenmp

flag to the compilation (and link!) commands.

When running:

The environment variable OMP NUM THREADS determines how many
threads will be started in an OpenMP parallel block.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 70 / 135

OpenMP example

C:
#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n", omp get thread num());

}

}

F90:
program omp hello world

use omp lib

implicit none

print *, ’At start of program’

!$omp parallel

print *, ’Hello world from thread ’, omp get thread num(), ’!’

!$omp end parallel

end program omp hello world

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 71 / 135

OpenMP example

$ gcc -std=c99 -O2 -o omp-hello-world omp-hello-world.c -fopenmp

or

$ gfortran -O2 -o omp-hello-world omp-hello-world.f90 -fopenmp

$ export OMP NUM THREADS=8

$./omp-hello-world

...

$ export OMP NUM THREADS=1

$./omp-hello-world

...

$ export OMP NUM THREADS=32

$./omp-hello-world

...

Let’s see what happens. . .

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 72 / 135

OpenMP example
$ gcc -o omp-hello-world omp-hello-world.c -fopenmp

$ export OMP NUM THREADS=8

$./omp-hello-world

At start of program

Hello, world, from thread 0!

Hello, world, from thread 6!

Hello, world, from thread 5!

Hello, world, from thread 4!

Hello, world, from thread 2!

Hello, world, from thread 1!

Hello, world, from thread 7!

Hello, world, from thread 3!

$ export OMP NUM THREADS=1

$./omp-hello-world

At start of program

Hello, world, from thread 0!

$ export OMP NUM THREADS=32

$./omp-hello-world

At start of program

Hello, world, from thread 11!

Hello, world, from thread 1!

Hello, world, from thread 16!

...SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 73 / 135

So what happened precisely?

OMP NUM THREADS threads
were launched.

Each prints “Hello, world . . . ”;

In seemingly random order.

Only one “At start of program”.

$ gcc -o omp-hello-world omp-hello-world.c -fopenmp

$ export OMP NUM THREADS=8

$./omp-hello-world

At start of program

Hello, world, from thread 0!

Hello, world, from thread 6!

Hello, world, from thread 5!

Hello, world, from thread 4!

Hello, world, from thread 2!

Hello, world, from thread 1!

Hello, world, from thread 7!

Hello, world, from thread 3!

$ export OMP NUM THREADS=1

$./omp-hello-world

At start of program

Hello, world, from thread 0!

$ export OMP NUM THREADS=32

$./omp-hello-world

At start of program

Hello, world, from thread 11!

Hello, world, from thread 1!

Hello, world, from thread 16!

...SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 74 / 135

So what happened precisely?

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n", omp get thread num());

}

}

program omp hello world

use omp lib

implicit none

print *, ’At start of program’

!$omp parallel

print *, ’Hello world from thread ’, omp get thread num(), ’!’

!$omp end parallel

end program omp hello world

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 75 / 135

So what happened precisely?

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n", omp get thread num());

}

}

program omp hello world

use omp lib

implicit none

print *, ’At start of program’

!$omp parallel

print *, ’Hello world from thread ’, omp get thread num(), ’!’

!$omp end parallel

end program omp hello world

Program starts normally (single thread)
@

@
@
@

@I

�
�

�
�

�	

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 75 / 135

So what happened precisely?

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n", omp get thread num());

}

}

program omp hello world

use omp lib

implicit none

print *, ’At start of program’

!$omp parallel

print *, ’Hello world from thread ’, omp get thread num(), ’!’

!$omp end parallel

end program omp hello world

At start of parallel section, launching
OMP NUM THREADS threads,
Each executes the same code!

@
@I}

�
�

�
�
�	}

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 75 / 135

So what happened precisely?

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n", omp get thread num());

}

}

program omp hello world

use omp lib

implicit none

print *, ’At start of program’

!$omp parallel

print *, ’Hello world from thread ’, omp get thread num(), ’!’

!$omp end parallel

end program omp hello world

At end of parallel section,
threads join back up,
Execution continues serially.

@
@I}

�
�

�
�
�	}

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 75 / 135

So what happened precisely?

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n", omp get thread num());

}

}

program omp hello world

use omp lib

implicit none

print *, ’At start of program’

!$omp parallel

print *, ’Hello world from thread ’, omp get thread num(), ’!’

!$omp end parallel

end program omp hello world

Special function to find number
of current thread (first=0).

6

?

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 75 / 135

OpenMP functions (from omp.h/omp lib)

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d of %d!\n",

omp get thread num(),

omp get num threads());

}

}

omp get num threads() called by all threads.
Let’s see if we can fix that. . .

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 76 / 135

OpenMP functions (from omp.h/omp lib)

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n",

omp get thread num());

}

printf("There were %d threads.\n", omp get num threads());

}

What do you think, will this work?

No:
Says 1 thread only!
Why?
Because that is true outside the parallel region!
Need to get the value from the parallel region somehow.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 77 / 135

OpenMP functions (from omp.h/omp lib)

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n",

omp get thread num());

}

printf("There were %d threads.\n", omp get num threads());

}

What do you think, will this work?
No:
Says 1 thread only!

Why?
Because that is true outside the parallel region!
Need to get the value from the parallel region somehow.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 77 / 135

OpenMP functions (from omp.h/omp lib)

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n",

omp get thread num());

}

printf("There were %d threads.\n", omp get num threads());

}

What do you think, will this work?
No:
Says 1 thread only!
Why?
Because that is true outside the parallel region!
Need to get the value from the parallel region somehow.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 77 / 135

Variables in OpenMP
Variables in parallel regions are a bit tricky.

#include <stdio.h>

#include <omp.h>

int main() {

int mythread, nthreads;

#pragma omp parallel default(none) shared(nthreads) private(mythread)

{

mythread = omp get thread num();

if (mythread == 0)

nthreads = omp get num threads();

}

printf("There were %d threads.\n", nthreads);

}

Program runs, lauches threads.

Each thread gets copy of mythread.

Only thread 0 writes to nthreads.

Good idea to declare mythread locally!

(avoids many bugs)

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 78 / 135

Variables in OpenMP
Variables in parallel regions are a bit tricky.

#include <stdio.h>

#include <omp.h>

int main() {

int mythread, nthreads;

#pragma omp parallel default(none) shared(nthreads) private(mythread)

{

mythread = omp get thread num();

if (mythread == 0)

nthreads = omp get num threads();

}

printf("There were %d threads.\n", nthreads);

}

Variable declarations�
����

How used in parallel region

?

Program runs, lauches threads.

Each thread gets copy of mythread.

Only thread 0 writes to nthreads.

Good idea to declare mythread locally!

(avoids many bugs)

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 78 / 135

Variables in OpenMP
Variables in parallel regions are a bit tricky.

#include <stdio.h>

#include <omp.h>

int main() {

int mythread, nthreads;

#pragma omp parallel default(none) shared(nthreads) private(mythread)

{

mythread = omp get thread num();

if (mythread == 0)

nthreads = omp get num threads();

}

printf("There were %d threads.\n", nthreads);

}

Variable declarations�
����

How used in parallel region

?

default(none) can save you hours of debugging!
shared: each thread sees it and can modify (be careful!).
Preserves value.
private: each thread gets it own copy, invisible for others
Initial and final value undefined!
(Advanced: firstprivate, lastprivate – copy in/out.)

Program runs, lauches threads.
Each thread gets copy of mythread.
Only thread 0 writes to nthreads.
Good idea to declare mythread locally!
(avoids many bugs)

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 78 / 135

Variables in OpenMP
Variables in parallel regions are a bit tricky.

#include <stdio.h>

#include <omp.h>

int main() {

int mythread, nthreads;

#pragma omp parallel default(none) shared(nthreads) private(mythread)

{

mythread = omp get thread num();

if (mythread == 0)

nthreads = omp get num threads();

}

printf("There were %d threads.\n", nthreads);

}

Program runs, lauches threads.

Each thread gets copy of mythread.

Only thread 0 writes to nthreads.

Good idea to declare mythread locally!

(avoids many bugs)

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 78 / 135

Variables in OpenMP
Variables in parallel regions are a bit tricky.

#include <stdio.h>

#include <omp.h>

int main() {

int mythread, nthreads;

#pragma omp parallel default(none) shared(nthreads) private(mythread)

{

mythread = omp get thread num();

if (mythread == 0)

nthreads = omp get num threads();

}

printf("There were %d threads.\n", nthreads);

}

Program runs, lauches threads.

Each thread gets copy of mythread.

Only thread 0 writes to nthreads.

Good idea to declare mythread locally!

(avoids many bugs)

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 78 / 135

Variables in OpenMP
Variables in parallel regions are a bit tricky.

#include <stdio.h>

#include <omp.h>

int main() {

int nthreads;

#pragma omp parallel default(none) shared(nthreads)

{

int mythread = omp get thread num();

if (mythread == 0)

nthreads = omp get num threads();

}

printf("There were %d threads.\n", nthreads);

}

Program runs, lauches threads.

Each thread gets copy of mythread.

Only thread 0 writes to nthreads.

Good idea to declare mythread locally!

(avoids many bugs)

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 78 / 135

Variables in OpenMP - Fortran version

program omp vars

use omp lib

implicit none

integer :: mythread, nthreads

!$omp parallel default(none) private(mythread) shared(nthreads)

mythread = omp get thread num()

if (mythread == 0) then

nthreads = omp get num threads()

endif

!$omp end parallel

print *,’Number of threads was ’, nthreads, ’.’

end program omp vars

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 79 / 135

Single Execution in OpenMP

#include <stdio.h>

#include <omp.h>

int main() {

int nthreads;

#pragma omp parallel default(none) shared(nthreads) {

int mythread = omp get thread num();

if (mythread == 0)

nthreads = omp get num threads();

}

printf("There were %d threads.\n", nthreads);

}

Do we care that it’s thread 0 in particular that updates nthreads?

Often, we just want the first thread to go through, do not care which
one.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 80 / 135

Single Execution in OpenMP
#include <stdio.h>

#include <omp.h>

int main() {

int nthreads;

#pragma omp parallel default(none) shared(nthreads)

#pragma omp single

nthreads = omp get num threads();

printf("There were %d threads.\n", nthreads);

}

program omp vars

use omp lib

implicit none

integer :: nthreads

!$omp parallel default(none) shared(nthreads)

!$omp single

nthreads = omp get num threads()

!$omp end single

!$omp end parallel

print *,’Number of threads was ’, nthreads, ’.’

end program omp vars

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 81 / 135

Loops in OpenMP

Take one of your openmp programs and add a loop.

#include <stdio.h>

#include <omp.h>

int main() {

int i, mythread;

#pragma omp parallel default(none) \

XXXXX(i) XXXX(mythread)

{

mythread = omp get thread num();

for (i=0; i<16; i++)

printf("Thread %d gets i=%d\n",

XXXXXXXmythread, i);

}

}

program omp loop

use omp lib

implicit none

integer :: i, mythread

!$omp parallel default(none) &

!$omp XXXX(i) XXXX(mythread)

mythread = omp get thread num()

do i=1,16

print *, ’thread ’, mythread, &

XXXXXXXX ’ gets i=’, i

enddo

!$omp end parallel

end program omp loop

What would you imagine this does when run with e.g.
OMP NUM THREADS=8?

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 82 / 135

Loops in OpenMP

Take one of your openmp programs and add a loop.

#include <stdio.h>

#include <omp.h>

int main() {

int i, mythread;

#pragma omp parallel default(none) \

XXXXX(i) XXXX(mythread)

{

mythread = omp get thread num();

for (i=0; i<16; i++)

printf("Thread %d gets i=%d\n",

XXXXXXXmythread, i);

}

}

program omp loop

use omp lib

implicit none

integer :: i, mythread

!$omp parallel default(none) &

!$omp XXXX(i) XXXX(mythread)

mythread = omp get thread num()

do i=1,16

print *, ’thread ’, mythread, &

XXXXXXXX ’ gets i=’, i

enddo

!$omp end parallel

end program omp loop

What would you imagine this does when run with e.g.
OMP NUM THREADS=8?

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 82 / 135

Loops in OpenMP

Take one of your openmp programs and add a loop.

#include <stdio.h>

#include <omp.h>

int main() {

int i, mythread;

#pragma omp parallel default(none) \

XXXXX(i) XXXX(mythread)

{

mythread = omp get thread num();

for (i=0; i<16; i++)

printf("Thread %d gets i=%d\n",

XXXXXXXmythread, i);

}

}

program omp loop

use omp lib

implicit none

integer :: i, mythread

!$omp parallel default(none) &

!$omp XXXX(i) XXXX(mythread)

mythread = omp get thread num()

do i=1,16

print *, ’thread ’, mythread, &

XXXXXXXX ’ gets i=’, i

enddo

!$omp end parallel

end program omp loop

What would you imagine this does when run with e.g.
OMP NUM THREADS=8?

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 82 / 135

Worksharing constructs in OpenMP

We don’t generally want tasks to do exactly the same thing.

Want to partition a problem into pieces, each thread works on a piece.

Most scientific programming full of work-heavy loops.

OpenMP has a worksharing construct: omp for (or omp do).

#include <stdio.h>

#include <omp.h>

int main() {

int i, mythread;

#pragma omp parallel default(none) XXXX(i) XXXX(mythread)

{

mythread = omp get thread num();

#pragma omp for

for (i=0; i<16; i++)

printf("Thread %d gets i=%d\n",mythread,i);

}

}

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 83 / 135

Worksharing constructs in OpenMP

We don’t generally want tasks to do exactly the same thing.

Want to partition a problem into pieces, each thread works on a piece.

Most scientific programming full of work-heavy loops.

OpenMP has a worksharing construct: omp for (or omp do).

#include <stdio.h>

#include <omp.h>

int main() {

int i, mythread;

#pragma omp parallel default(none) XXXX(i) XXXX(mythread)

{

mythread = omp get thread num();

#pragma omp for

for (i=0; i<16; i++)

printf("Thread %d gets i=%d\n",mythread,i);

}

}

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 83 / 135

Fortran version

program omp loop

use omp lib

implicit none

integer :: i, mythread

!$omp parallel default(none) XXXX(i) XXXX(mythread)

mythread = omp get thread num()

!$omp do

do i=1,16

print *, ’thread ’, mythread, ’ gets i=’, i

enddo

!$omp end do

!$omp end parallel

end program omp loop

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 84 / 135

Worksharing constructs in OpenMP

omp for/omp do construct
breaks up the iterations by
thread.

If doesn’t divide evenly, does
the best it can.

Allows easy breaking up of
work!

Advanced: can break up work
of arbitrary blocks of code with
omp task construct.

$./omp loop

thread 3 gets i= 6

thread 3 gets i= 7

thread 4 gets i= 8

thread 4 gets i= 9

thread 5 gets i= 10

thread 5 gets i= 11

thread 6 gets i= 12

thread 6 gets i= 13

thread 1 gets i= 2

thread 1 gets i= 3

thread 0 gets i= 0

thread 0 gets i= 1

thread 2 gets i= 4

thread 2 gets i= 5

thread 7 gets i= 14

thread 7 gets i= 15

$

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 85 / 135

Less trivial example: DAXPY

multiply a vector by a scalar,
add a vector.

(a X plus Y, in double
precision)

Implement this, first serially,
then with OpenMP

daxpy.c or daxpy.f90

make daxpy or make fdaxpy

z = ax + y

Warning

This is a common linear algebra construct that you really shouldn’t
implement yourself. Various so-called BLAS implementations will do a
much better job than you. But good for illustration.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 86 / 135

#include <stdio.h>

#include "pca utils.h"

void daxpy(int n, double a, double *x, double *y, double *z) {

for (int i=0; i<n; i++) {

x[i] = (double)i*(double)i;

y[i] = ((double)i+1.)*((double)i-1.);

}

for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];

}

int main() {

int n=1e7;

double *x = vector(n);

double *y = vector(n);

double *z = vector(n);

double a = 5./3.;

pca time tt;

tick(&tt);

daxpy(n,a,x,y,z);

tock(&tt);

free(z);

free(y);

free(x);

}

HANDS-ON: Try OpenMPing. . .

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 87 / 135

#include <stdio.h>

#include "pca utils.h"

void daxpy(int n, double a, double *x, double *y, double *z) {

for (int i=0; i<n; i++) {

x[i] = (double)i*(double)i;

y[i] = ((double)i+1.)*((double)i-1.);

}

for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];

}

int main() {

int n=1e7;

double *x = vector(n);

double *y = vector(n);

double *z = vector(n);

double a = 5./3.;

pca time tt;

tick(&tt);

daxpy(n,a,x,y,z);

tock(&tt);

free(z);

free(y);

free(x);

}

Utilities for this course; double is
a numerical type which can be set
to single or double precision

HH
H
HH

H
HH

H
HH

HY

HANDS-ON: Try OpenMPing. . .

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 87 / 135

#include <stdio.h>

#include "pca utils.h"

void daxpy(int n, double a, double *x, double *y, double *z) {

for (int i=0; i<n; i++) {

x[i] = (double)i*(double)i;

y[i] = ((double)i+1.)*((double)i-1.);

}

for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];

}

int main() {

int n=1e7;

double *x = vector(n);

double *y = vector(n);

double *z = vector(n);

double a = 5./3.;

pca time tt;

tick(&tt);

daxpy(n,a,x,y,z);

tock(&tt);

free(z);

free(y);

free(x);

}

Fill arrays with calculated values.�

HANDS-ON: Try OpenMPing. . .

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 87 / 135

#include <stdio.h>

#include "pca utils.h"

void daxpy(int n, double a, double *x, double *y, double *z) {

for (int i=0; i<n; i++) {

x[i] = (double)i*(double)i;

y[i] = ((double)i+1.)*((double)i-1.);

}

for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];

}

int main() {

int n=1e7;

double *x = vector(n);

double *y = vector(n);

double *z = vector(n);

double a = 5./3.;

pca time tt;

tick(&tt);

daxpy(n,a,x,y,z);

tock(&tt);

free(z);

free(y);

free(x);

}

Do calculation.������)

HANDS-ON: Try OpenMPing. . .

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 87 / 135

#include <stdio.h>

#include "pca utils.h"

void daxpy(int n, double a, double *x, double *y, double *z) {

for (int i=0; i<n; i++) {

x[i] = (double)i*(double)i;

y[i] = ((double)i+1.)*((double)i-1.);

}

for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];

}

int main() {

int n=1e7;

double *x = vector(n);

double *y = vector(n);

double *z = vector(n);

double a = 5./3.;

pca time tt;

tick(&tt);

daxpy(n,a,x,y,z);

tock(&tt);

free(z);

free(y);

free(x);

}

Driver (setup, call, timing).�

HANDS-ON: Try OpenMPing. . .

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 87 / 135

#include <stdio.h>

#include "pca utils.h"

void daxpy(int n, double a, double *x, double *y, double *z) {

for (int i=0; i<n; i++) {

x[i] = (double)i*(double)i;

y[i] = ((double)i+1.)*((double)i-1.);

}

for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];

}

int main() {

int n=1e7;

double *x = vector(n);

double *y = vector(n);

double *z = vector(n);

double a = 5./3.;

pca time tt;

tick(&tt);

daxpy(n,a,x,y,z);

tock(&tt);

free(z);

free(y);

free(x);

}

HANDS-ON: Try OpenMPing. . .

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 87 / 135

HANDS-ON 1:
Parallelize daxpy with OpenMP.
Also do the scaling analysis!

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 88 / 135

void daxpy(int n, double a, double *x, double *y, double *z) {

#pragma omp parallel default(none) shared(n,x,y,a,z) private(i)

{

#pragma omp for

for (int i=0; i<n; i++) {

x[i] = (double)i*(double)i;

y[i] = ((double)i+1.)*((double)i-1.);

}

#pragma omp for

for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];
}

}

!$omp parallel default(none) private(i) shared(a,x,b,y,z)

!$omp do

do i=1,n

x(i) = (i)*(i)

y(i) = (i+1.)*(i-1.)

enddo

!$omp do

do i=1,n

z(i) = a*x(i) + y(i)

enddo

!$omp end parallel

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 89 / 135

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 90 / 135

void daxpy(int n, double a, double *x, double *y, double *z) {

#pragma omp parallel default(none) shared(n,x,y,a,z) private(i)

{

#pragma omp for

for (int i=0; i<n; i++) {

x[i] = (double)i*(double)i;

y[i] = ((double)i+1.)*((double)i-1.);

}

#pragma omp for

for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];
}

}

!$omp parallel default(none) private(i) shared(n,a,x,y,z)

!$omp do

do i=1,n

x(i) = (i)*(i)

y(i) = (i+1.)*(i-1.)

enddo

!$omp do

do i=1,n

z(i) = a*x(i) + y(i)

enddo

!$omp end parallel

�
��

6

Why is this safe?
Everyone is modifying x,y,z!

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 91 / 135

Dot Product

Dot product of two vectors

Implement this, first serially,
then with OpenMP

ndot.c or ndot.f90

make ndot or make ndotf

Tells time, answer, correct
answer.

n = ~x ·~y

=
∑

i

xi yi

$./ndot

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 4.9254e-02 seconds.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 92 / 135

Dot Product - serial
#include <stdio.h>

#include "pca utils.h"

double ndot(int n, double *x, double *y){

double tot=0;

for (int i=0; i<n; i++)

tot += x[i] * y[i];

return tot;

}

int main() {

int n=1e7;

double *x = vector(n), *y = vector(n);

for (int i=0; i<n; i++)

x[i] = y[i] = i;

double nn=n-1;

double ans=nn*(nn+1)*(2*nn+1)/6.0;

pca time tt;

tick(&tt);

double dot=ndot(n,x,y);

printf("Dot product is %14.4e (vs %14.4e) for n=%d. Took %12.4e secs.\n",

dot, ans, n, tocksilent(&tt));

}

$ make ndot $./ndot

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 4.9254e-02 secs.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 93 / 135

Dot Product - serial
#include <stdio.h>

#include "pca utils.h"

double ndot(int n, double *x, double *y){

double tot=0;

for (int i=0; i<n; i++)

tot += x[i] * y[i];

return tot;

}

int main() {

int n=1e7;

double *x = vector(n), *y = vector(n);

for (int i=0; i<n; i++)

x[i] = y[i] = i;

double nn=n-1;

double ans=nn*(nn+1)*(2*nn+1)/6.0;

pca time tt;

tick(&tt);

double dot=ndot(n,x,y);

printf("Dot product is %14.4e (vs %14.4e) for n=%d. Took %12.4e secs.\n",

dot, ans, n, tocksilent(&tt));

}

$ make ndot $./ndot

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 4.9254e-02 secs.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 93 / 135

Towards A Parallel Dot Product

We could clearly parallelize the loop.

We need the sum from everybody.

We could make tot shared, then all threads can add to it.

double ndot(int n, double *x, double *y){

double tot=0;

#pragma omp parallel for default(none) shared(tot,n,x,y)

for (int i=0; i<n; i++)

tot += x[i] * y[i];

return tot;

}

$ make omp ndot race

$ export OMP NUM THREADS=8

$./omp ndot race

Dot product is 1.1290e+20

(vs 3.3333e+20) for n=10000000.

Took 5.2628e-02 secs.

Not only is the answer wrong, it was slower to compute!

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 94 / 135

Race Condition - why it’s wrong

Classical parallel bug.

Multiple writers to some shared
resource.

Can be very subtle, and only
appear intermittently.

Your program can have a bug
but not display any symptoms
for small runs!

Primarily a problem with shared
memory.

tot = 0
Thread 0: Thread 1:

add 1 add 2

read tot(=0)
into register

reg = reg+1 read tot(=0)
into register

store reg(=1) reg=reg+2
into tot

store reg(=2)
into tot

tot = 2

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 95 / 135

Race Condition - why it’s slow

Multiple cores repeatedly trying
to read, access, store same
variable in memory.

Not (such) a problem for
constants (read only); but a big
problem for writing.

Sections of arrays – better.

~ ~

~

~

n n

n

n

tot- �
?

6

� -

6

?

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 96 / 135

OpenMP critical construct

Defines a critical region.

Only one thread can be
operating within this region at
a time.

Keeps modifications to shared
resources saffe.

#pragma omp critical

!$omp critical

!$omp end critical

double ndot(int n, double *x, double

*y){

double tot=0;

#pragma omp parallel for \

default(none) shared(tot,n,x,y)

for (int i=0; i<n; i++)

#pragma omp critical

tot += x[i] * y[i];

return tot;

}

$ make omp ndot critical

$ export OMP NUM THREADS=8

$./omp ndot critical

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 5.1377e+00 secs.

Correct, but 100x slower than serial version!

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 97 / 135

OpenMP atomic construct

Most hardware has support for
atomic instructions (indivisible
so cannot get interrupted)

Small subset, but
load/add/stor usually one.

Not as general as critical

Much lower overhead.

#pragma omp atomic

!$omp atomic

double ndot(int n, double *x, double

*y){

double tot=0;

#pragma omp parallel for \

default(none) shared(tot,n,x,y)

for (int i=0; i<n; i++)

#pragma omp atomic

tot += x[i] * y[i];

return tot;

}

$ make omp ndot atomic $ export

OMP NUM THREADS=8

$./omp ndot atomic

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 8.5156e-01 secs.

Correct, and better – only 16x slower than serial.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 98 / 135

How should we fix the slowdown?

Local sums.

Each processor sums its local
values (107/P additions).

And then sums to tot (only P
additions with critical or
atomic. . .

HANDS-ON: Try it!

n = ~x ·~y

=
∑

i

xi yi

=
∑

p

(∑
i

xi yi

)

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 99 / 135

HANDS-ON 2:
Parallelize ndot with partial sums.
copy one of the omp ndot.c’s (or fomp ndot.c’s) to omp ndot local.c (or
fomp ndot local.f90).

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 100 / 135

Local variables
tot = 0;

#pragma omp parallel shared(x,y,n,tot)

{

int mytot = 0;

#pragma omp for

for (int i=0; i<n; i++)

mytot += x[i]*y[i];

#pragma omp atomic

tot += mytot;

}

ndot = 0.

!$omp parallel shared(x,y,n,ndot) &

!$omp private(i,mytot)

mytot = 0.

!$omp do

do i=1,n

mytot = mytot + x(i)*y(i)

enddo

!$omp atomic

ndot = ndot + mytot

!$omp end parallel

$ export OMP NUM THREADS=8

$./omp ndot local

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 1.7902-02 seconds.

Now we’re talking! 2.77x faster.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 101 / 135

OpenMP Reduction Operations

This is such a common
operation, this is something
built into OpenMP to handle it.

“Reduction” variables - like
shared or private.

Can support several types of
operations: - + * . . .

omp ndot reduction.c,
fomp ndot reduction.f90

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 102 / 135

OpenMP Reduction Operations

tot = 0;

#pragma omp parallel \

shared(x,y,n) reduction(+:tot)

{

#pragma omp for

for (int i=0; i<n; i++)

tot += x[i]*y[i];

}

ndot = 0.

!$omp parallel shared(x,y,n) &

!$omp private(i) reduction(+:ndot)

!$omp do

do i=1,n

ndot = ndot + x(i)*y(i)

enddo

!$omp end parallel

$ export OMP NUM THREADS=8

$./omp ndot local

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 1.8134-02 seconds.

Same speed, simpler code!

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 103 / 135

OpenMP Reduction Operations

tot = 0;

#pragma omp parallel for \

shared(x,y,n) reduction(+:tot)

for (int i=0; i<n; i++)

tot += x[i]*y[i];

ndot = 0.

!$omp parallel do shared(x,y,n) &

!$omp private(i) reduction(+:ndot)

do i=1,n

ndot = ndot + x(i)*y(i)

enddo

!$omp end parallel

$ export OMP NUM THREADS=8

$./omp ndot local

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 1.8928e-02 seconds.

Same speed, simpler code!

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 104 / 135

Performance

We threw in 8 cores, got a factor of 3 speedup. Why?

Often we are limited not by CPU power but by how quickly we can
feed CPUs.

For this problem, we had 107 long vectors, with 2 numbers 8 bytes
long flowing through in 0.036 seconds.

Combined bandwidth from main memory was 4.3 GB/s. Not far off of
what we could hope for on this architecture.

One of the keys to good OpenMP performance is using data when we
have it in cache. Complicated functions: easy. Low work-per-element
(dot product, FFT): hard.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 105 / 135

Load Balancing in OpenMP

So far every iteration of the loop had the same amount of work.

Not always the case

Sometimes cannot predict beforehand how unbalanced the problem is

OpenMP has work sharing construct that allow you do statically or
dynamically balance the load.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 106 / 135

Example - Mandelbrot Set

Mandelbrot set simple example
of non-balanced problem.

Defined as complex points a
where |b∞| finite, with b0 = 0
and bn+1 = b2

n + a.
If |bn| > 2, point diverges.

Calculation:
I pick some nmax
I iterate for each point a, see if

crosses 2.
I Plot n or nmax as colour.

Outside of set, points diverge
quickly (2-3 steps).
Inside, we have to do lots of
work (1000s steps).

make mandel; ./mandel

Lots of work

Little work
�
�	

6

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 107 / 135

First OpenMP Mandelbrot Set

Default work sharing breaks N
iterations into

∑
N/nthreads

contiguous chunks and assigns
them to threads.

But now threads 7,6,5 will be
done and sitting idle while
threads 3 and 4 work alone. . .

Inefficient use of resources.

Serial 0.63s

Nthreads=8 0.29s

Speedup 2.2x

Efficiency 27%

0 1 2 3 4 5 6 7

800x800 pix; N/nthreads ∼ 100x800

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 108 / 135

First OpenMP Mandelbrot Set

Default work sharing breaks N
iterations into

∑
N/nthreads

contiguous chunks and assigns
them to threads.

But now threads 7,6,5 will be
done and sitting idle while
threads 3 and 4 work alone. . .

Inefficient use of resources.

Serial 0.63s

Nthreads=8 0.29s

Speedup 2.2x

Efficiency 27%

0 1 2 3 4 5 6 7

800x800 pix; N/nthreads ∼ 100x800

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 108 / 135

Second Try OpenMP Mandelbrot Set

Can change the chunk size
different from ∼ N/nthreads

In this case, more columns –
work distributed a bit better.

Now, for instance, chunk size
50, and thread 7 gets both a
big work chunk and a little one:

#pragma omp for schedule(static,50)

or
!$omp do schedule(static,50)

Serial 0.63s

Nthreads=8 0.15s

Speedup 4.2x

Efficiency 52%

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

800x800 pix; each threads: 50x800

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 109 / 135

Second Try OpenMP Mandelbrot Set

Can change the chunk size
different from ∼ N/nthreads

In this case, more columns –
work distributed a bit better.

Now, for instance, chunk size
50, and thread 7 gets both a
big work chunk and a little one:

#pragma omp for schedule(static,50)

or
!$omp do schedule(static,50)

Serial 0.63s

Nthreads=8 0.15s

Speedup 4.2x

Efficiency 52%

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

800x800 pix; each threads: 50x800

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 109 / 135

Third Try: Schedule dynamic

Break up into many pieces and
hand them to threads when
they are ready.

Dynamic scheduling.

Increases overhead, decreases
idling threads.

Can also choose chunk size.

#pragma omp for schedule(dynamic)

or
!$omp do schedule(dynamic)

Serial 0.63s

Nthreads=8 0.10s

Speedup 6.3x

Efficiency 79%

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 110 / 135

Third Try: Schedule dynamic

Break up into many pieces and
hand them to threads when
they are ready.

Dynamic scheduling.

Increases overhead, decreases
idling threads.

Can also choose chunk size.

#pragma omp for schedule(dynamic)

or
!$omp do schedule(dynamic)

Serial 0.63s

Nthreads=8 0.10s

Speedup 6.3x

Efficiency 79%

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 110 / 135

Tuning

schedule(static) (default) or schedule(dynamic) are good starting
points.

To get best performance in badly imbalanced problems, may have to
play with chuck size; depends on your problem and on hardware.

(static,4) (dynamic,16)

0.084s 0.099s

7/6x 6.4x

95% 79%

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 111 / 135

Two level loops

In scientific code, we usually have
nested loopes were all the work is.

Almost without exception, want the
loop on the outside-most loop.
Why?

#pragma omp for schedule(static,4)

for (int i=0;i<npix;i++)

for (int j=0;j<npix;j++){

double

x=((double)i)/((double)npix);

double

y=((double)j)/((double)npix);

double complex a=x+I*y;

mymap[i][j]=how many iter real(a,maxiter);

}

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 112 / 135

Summary so far

Start a parallel region:
#pragma omp parallel shared() private() default()

Parallelize a loop:
#pragma omp for schedule(static/dynamic, chunk)

Mark off a region only one thread can be in at a time:
#pragma omp critical

Safely update a single memory location:
#pragma omp atomic

In a parallel region, have only one process do something:
#pragma omp single

See: http://openmp.org/wp/openmp-specifications/ for more info.
Strongly encouraged - many good sample programs.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 113 / 135

A Few More Directives

#pragma omp ordered - execute the loop in the order it would have
run serially. Useful if you want ordered output in a parallel region.
Never useful for performance.

#pragma omp master - a block that only the master thread
(thread 0) executes. Usually, #pragma omp single is better.

#pragma omp sections - execute a list of things in parallel. In
OpenMP 3, task directive (later in lecture) is more powerful

#pragma omp for collapse(n): nested loops scheduled as one big loop.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 114 / 135

Summary So Far II

Style Points

If a variable is a private temporary variable inside a parallel region, try
declaring it inside the region.
Makes parallel region easier to specify, and can prevent bugs.

OpenMP supports reduction and initialization clauses. These are
never necessary to use, but are convenient and can streamline code.

You have seen how to find out how many threads exist, etc. However,
in none of our examples did we use that info.
If you think you need to know how many threads you have, you may
well be doing something wrong (with some notable exceptions such as
complex reduction). Using locally declared variables, and critical
regions most likely will do everything you need.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 115 / 135

Memory Access — a seemingly unrelated intermezzo

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 116 / 135

Memory Access

Processors work on local bits of memory in their cache.

Cache is small and fast. Main memory is big, but slow.

There is a large latency in getting things from main memory — often
hundreds of clock cycles. The fewer times we access main memory,
the faster we will go.

Computers bring in chunks of memory at a time. If you access data in
contiguous memory chunks, much of it may already be in cache.
Always try to do this - serial or parallel.

C - last index is rapidly varying. Fortran first index.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 117 / 135

Memory Access

Memory access is important for serial programs, but can become
particularly important in OpenMP

There is typically a limited bandwidth to main memory. If it has to be
shared 2, 4, or 8 ways, it becomes especially critical to access it
sensibly.

Note on shared variables in OpenMP: If you aren’t changing them,
the compiler can copy the shared variable to local cache and no
performance hit. Modifying shared variables is expensive - we have
already seen this with the dot product.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 118 / 135

Example - Matrix Multiplication

Example

Linear algebra a classic example.

Matrix multiplication: C = A ∗ B, or c[i][j] =
∑

a[i][k] ∗ b[k][j].

Different implementations can take 10-100x longer than optimal.
Slowness entirely due to memory access.

The more you do with stuff youve pulled from main memory, the
faster youll run.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 119 / 135

Slow Matrix Multiplication

void matmult slowest(double **a,

double **b, double **c, int n) {

for (int i=0;i<n;i++)

for (int j=0;j<n;j++) {

c[i][j]=0;

for (int k=0;k<n;k++)

c[i][j]=a[i][k]*b[k][j];

}

}

int main() {

pca time tt;

int n=500;

double **a=matrix(n,n);

double **b=matrix(n,n);

double **c=matrix(n,n);

fill random matrix(a,n);

tick(&tt);

matmult slowest(a,b,c,n);

printf("Time to multiply %dx%d ma-

trices with slow multiplication is

%f\",n,n,tocksilet(&tt));

printf("Sum of elements is

%e\n",matrix sum(c,n));

}

$./matmult slow

Time to multiply 1000 x 1000 matrices with slow multiplication is 12.4637

Sum of elements is 2.4997e+08

$

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 120 / 135

Slow Matrix Multiplication

What happened? For every element in C, we had to pull a fast
direction from A, but a slow direction from B.

Could change the order of the loops, making B fast, but then A would
be slow.

We pulled a slow vector for each element in C, for a total of n2 slow
column pulls.

Could make the transpose of B, then we would always pull from the
fast columns. Only have to do n slow pulls this way.

Drawback: must make a copy of B. If B is large, can take lots of
memory.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 121 / 135

Transpose Multiplication

void matmult transport(double **x, double **b, double **c, int n) {

double **bt=matrix(n,n);

matrix transpose(b,bt,n);

for (int i=0;i<n;i++)

for (int j=0;j<n;j++) {

c[i][j]=0;

for (int k=0;k<n;k++)

c[i][j]=a[i][k]*bt[j][k];

}

}

$./matmul transporse

Time to multiply 1000 x 1000 matrices with transpose multiplication is 8.8756

Sum of elements is 2.4997e+08

$

About 40% faster than slow version.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 122 / 135

Blocks

Multiplication was still kind of slow. Why?

For every column of C we calculate, we have to process all of B, for a
total of n times. That’s a lot of memory throughput.

Recall cij = aik ∗ bkj. Nowhere have we said that cij, ajk, and bkj are
scalars. They could be blocks of the matrices. If we treat them as
blocks, then we’ll have to go to main memory less often.

Say blocks are 20x20. Then I have to pull all of B each time I process
a column of blocks. Or a total of n/20 times. Much less stress on
system memory.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 123 / 135

void matmult block(double **a, double

**b, double **c, int n, int bs) {

for (int i=0;i<n;i++)

for (int j=0;j<n;j++)

c[i][j]=0;

int nb=n/bs;

assert(nb*bs==n);

double**myblock 1=matrix(bs,bs);

double**myblock 2=matrix(bs,bs);

double**myblock 3=matrix(bs,bs);

for (int ib=0;ib<nb;ib++)

for (int jb=0;jb<nb;jb++)

for (int kb=0;kb<nb;kb++) {

int ii=ib*bs;

int jj=jb*bs;

int kk=kb*bs;

// Pull blocks from A and B out

for (int i=0;i<bs;i++)

for (int j=0;j<bs;j++) {

myblock 1[i][j]=a[i+ii][j+kk];

myblock 2[i][j]=b[j+kk][i+jj];

}

// Do the block multiplication

for (int i=0;i<bs;i++)

for (int j=0;j<bs;j++) {

myblock 3[i][j]=0;

for (int k=0;k<bs;k++)

myblock 3[i][j]+=myblock 1[i][k]*myblock 2[j][k];

}

//Accumulate the product into c

for (int i=0;i<bs;i++)

for (int j=0;j<bs;j++)

c[i+ii][j+jj]+=myblock 3[i][j];

}

free matrix(myblock 1);

free matrix(myblock 2);

free matrix(myblock 3);

}

void matmult block(double **a, double

**b, double **c, int n, int bs) {

for (int i=0;i<n;i++)

for (int j=0;j<n;j++)

c[i][j]=0;

int nb=n/bs;

assert(nb*bs==n);

double**myblock 1=matrix(bs,bs);

double**myblock 2=matrix(bs,bs);

double**myblock 3=matrix(bs,bs);

for (int ib=0;ib<nb;ib++)

for (int jb=0;jb<nb;jb++)

for (int kb=0;kb<nb;kb++) {

int ii=ib*bs;

int jj=jb*bs;

int kk=kb*bs;

// Pull blocks from A and B out

for (int i=0;i<bs;i++)

for (int j=0;j<bs;j++) {

myblock 1[i][j]=a[i+ii][j+kk];

myblock 2[i][j]=b[j+kk][i+jj];

}

//Do the block multiplication

for (int i=0;i<bs;i++)

for (int j=0;j<bs;j++) {

myblock 3[i][j]=0;

for (int k=0;k<bs;k++)

myblock 3[i][j]+=

myblock 1[i][k]

*myblock 2[j][k];

}

//Accumulate the product into c

for (int i=0;i<bs;i++)

for (int j=0;j<bs;j++)

c[i+ii][j+jj]+=myblock 3[i][j];

}

free matrix(myblock 1);

free matrix(myblock 2);

free matrix(myblock 3);

}

$./matmul block

Time to multiply 1000 x 1000 matrices

with block multiplication is 9.5774

Sum of elements is 2.4997e+08

$

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 124 / 135

Blocks Debrief

Well, managed to do better in memory, calculation time was similar
(slightly larger actually).

You may gather that writing a fast, parallel matrix multiplier isn’t
easy. You are right.

People have spent a long time optimizing matrix multiplication, and
gotten to 80-90% of theoretical max, using block-based algorithms
(look up goto blas)

Important corollary: Think you need to code something? Don’t! See
if someone else has done it. For core routines, they have, and better
than you will ever do it.

For the same problem, Goto runs in 0.1972 – 50x faster.
(module load gotoblas)

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 125 / 135

Big Lesson #5

Make sure serial performance is good before worrying about parallel!

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 126 / 135

End of intermezzo on memory access

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 127 / 135

Conditional OpenMP

There is always overhead associated with starting threads, splitting
work, etc. Also, some jobs parallelize better than others.

Sometimes, overhead takes longer than 1 thread would need to do a
job - e.g. very small matrix multiplies.

OpenMP supports conditional parallelization. Add if(condition) to
parallel region beginning. So, for small tasks, overhead low, while
large tasks remain parallel.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 128 / 135

Conditional OpenMP in Action

#include <stdio.h>

#include <omp.h>

int main(int argc, char *argv[]) {

int n = atoi(argv[1]);

#pragma omp parallel if (n>10)

#pragma omp single

printf("have %d threads with

n=%d\n", omp get num threads(),n);

}

$./conditional if 12

have 8 threads with n=12

$./conditional if 9

have 1 threads with n=9

$

First, pull an integer from the com-
mand line. Check to see if it’s big-
ger than a number (in this case,
10). If so, start a parallel region.
Otherwise, execute serially.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 129 / 135

Controlling # of Threads

Sometimes you might want more or fewer threads. May even want to
change while running.

Example - IBM P6 cluster. Matrix multiply runs fast with twice as
many program threads as physical cores (hyperthreading). However,
matrix factorizations run slower with more threads.

omp set num threads(int) sets or changes the number of threads
during runtime.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 130 / 135

omp set num threads() in action

#include "stdio.h"

#include "omp.h"

int main(int argc,char *argv[]){

//find # of physical cores

//this is an openmp library routine.

int max threads=omp get num procs();

int n=atoi(argv[1]);

//set # threads equal to input

//assuming it’s less than max threads

if (n<max threads)

omp set num threads(n);

else

omp set num threads(max threads);

#pragma omp parallel

#pragma omp single

printf("Running with %d threads for

n=%d.\n", omp get num threads(),n)

}

We have changed the # of threads
during the program. We could
always change the number later on
in the same code, if we so desired.
Note the use of
omp get num procs(), a library call
to detect the physical number of
available processors.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 131 / 135

Tasks

OpenMP 3.0 supports the #pragma omp task directive.

A task is a job assigned to a thread. Powerful way of parallelizing
non-loop problems.

Tasks should help omp/mpi hybrid codes - one task can do
communications, rest of threads keep working.

Like all omp, tasks must be called from parallel region.

Raises complication of nested parallelism (what happens if a parallel
loop called from parallel loop?).

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 132 / 135

Tasks: test task.c

#include <stdio.h>

#include <omp.h>

int main(){

#pragma omp parallel

#pragma omp single

{

printf("hello");

#pragma omp task

{

printf("hello 1 from

%d.",omp get thread num());

}

#pragma omp task

printf("hello 2 from

%d.",omp get thread num());

}

}

Often want to start tasks from as if
from serial region. Must be in
parallel for tasks to spawn, so
#pragma omp parallel followed by
#pragma omp single very useful.
What would happen w/out
#pragma omp single?

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 133 / 135

Beauty of Tasks
Some problems naturally fit into tasks that are otherwise hard to
parallelize.
Example (from standard): parallel tree processing.
Each node has left, right pointers, process each sub- pointer with a
task.
Look how short the parallel tree is!

How would you do this problem with-
out tasks?

struct node {

struct node *left;

struct node *right;

};

extern void process(struct node*);

void traverse(struct node* p) {

if (p->left)

#pragma omp task

traverse(p->left);

if (p->right)

#pragma omp task

traverse(p->right);

process(p);

}
SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 134 / 135

HANDS-ON 3:
Parallelize Matrix Multiplications.

SciNet HPC Consortium () Practical Parallel Programming Intensive 9–13 May 2011 135 / 135

	The Course
	The course

	Introduction to Parallel Programming
	Intro to Parallel Programming
	Why
	Concurrency
	Amdahl's law
	Big Lesson #1
	Beating Amdahl's law
	Big Lesson #2
	Load balancing
	Locality
	Big Lesson #3

	Parallel Computers
	Distributed Memory
	Shared Memory
	Big Lesson #4
	Resources at SciNet

	Review of C
	Review of C
	Language
	Libraries
	Compilation

	Hands-on sessions
	Introduction to OpenMP
	Introduction to OpenMP
	Basics
	Variables in OpenMP
	Single execution
	Loops
	Hands-on 1
	Hands-on 2
	Reductions
	Load balancing
	Summary so far
	Memory Access
	Further OpenMP Features
	Hands-on 3

