Introduction to SciNet

DON'T PANIC

Outline

- 1. About SciNet
 - SciNet is ...
 - How to get access
 - Useful sites
 - SciNet systems
- 2. Using SciNet
 - Software/Libraries
 - Compilers
 - Job submission
 - Final tips

PART 1 — ABOUT SCINET

... a consortium for High-Performance Computing consisting of researchers at U. of T. and its associated hospitals.

... home to the first and third largest supercomputers in Canada.

- ...4 technical analysts who can work directly with you to use our resources to produce good science.
 - Jonathan Dursi
 - Scott Northrup
 - Ramses van Zon
 - Daniel Gruner

- + 7 people that make sure everything runs smoothly.
 - Jaime Pinto
 - Joseph Chen
 - Jason Chong
 - Ching-Hsing Yu
 - Neil Knecht
 - Leslie Groer
 - Chris Loken
- + Technical director Prof. Richard Peltier
- + Business manager Teresa Henriques
- Project coordinator Jillian Dempsey

... 4 technical analysts work directly with you to our resources to produscience.

Jonathan Dursi

Scott Northrup

Ramses van Zon

Daniel Gruner

7 people that make sure verything runs smoothly.

Jaime Pinto

Joseph Chen

Jason Chong

Ching-Hsing Yu

Neil Knecht

Leslie Groer

Chris Loken

- + Technical director Prof. Richard Peltier
- + Business manager Teresa Henriques
- + Project coordinator Jillian Dempsey

- ... 4 technical analysts who can work directly with you to use our resources to produce discience.
 - Jonathan Dursi
 - Scott Northrup
 - Ramses van Zon
 - Daniel Gruner

- + 7 people that make sure everything runs smoothly.
 - Jaime Pinto
 - Joseph Chen
 - Jason Chong
 - Ching-Hsing Yu
 - Neil Knecht
 - Leslie Groer
 - Chris Loken
- + Technical director Prof. Richard Peltier
- + Business manager Teresa Henriques
- + Project coordinator Jillian Dempsey

... 4 technical analysts w work directly with you to our resources to produscience.

Jonathan Dursi

Scott Northrup

Ramses van Zon

Daniel Gruner

t make sure smoothly.

0

hen

ng

ng Yu

- Neil Knecht
- Leslie Groer
- Chris Loken
- + Technical director Prof. Richard Peltier
- + Business manager Teresa Henriques
- Project coordinator Jillian Dempsey

... 4 technical analysts who can work directly with you to use our resources to produce discience.

- Jonathan Dursi
- Scott Northrup
- Ramses van Zon
- Daniel Gruner

- + 7 people that make sure everything runs smoothly.
 - Jaime Pinto
 - Joseph Chen
 - Jason Chong
 - Ching-Hsing Yu
 - Neil Knecht
 - Leslie Groer
 - Chris Loken
- + Technical director Prof. Richard Peltier
- + Business manager Teresa Henriques
- + Project coordinator Jillian Dempsey

...4 technical analysts who can work directly with you to use

our resources to produscience.

Jonathan Dursi

Scott Northrup

Ramses van Zon

Daniel Gruner

+ 7 people that make sure everything runs smoothly.

Jaime Pinto

Joseph Chen

Jason Chong

Ching-Hsing Yu

Neil Knecht

Leslie Groer

Chris Loken

- + Technical director Prof. Richard Peltier
- + Business manager Teresa Henriques
- + Project coordinator Jillian Dempsey

... 4 technical analysts who can work directly with you to use our resources to produce discience.

Jonathan Dursi

Scott Northrup

Ramses van Zon

Daniel Gruner

+ 7 people that make sure everything runs smoothly.

Jaime Pinto

Joseph Chen

Jason Chong

Ching-Hsing Yu

Neil Knecht

Leslie Groer

Chris Loken

- + Technical director Prof. Richard Peltier
- + Business manager Teresa Henriques
- Project coordinator Jillian Dempsey

...4 technical analysts who can work directly with you to use our resources to produce discience.

Jonathan D

Scott North

Ramses va

Daniel Gru

- Jaime Pinto
- Joseph Chen
- Jason Chong
- Ching-Hsing Yu
- Neil Knecht
- Leslie Groer
- Chris Loken
- + Technical director Prof. Richard Peltier
- + Business manager Teresa Henriques
- Project coordinator Jillian Dempsey

... 4 technical analysts who can work directly with you to use our resources to produce of science.

Jonathan Dursi

Scott Northrup

Ramses van Zon

Daniel Gruner

+ 7 people that make sure everything runs smoothly.

Jaime Pinto

Joseph Chen

Jason Chong

Ching-Hsing Yu

Neil Knecht

Leslie Groer

Chris Loken

- + Technical director Prof. Richard Peltier
- + Business manager Teresa Henriques
- Project coordinator Jillian Dempsey

Any qualified researcher at a Canadian university can get a SciNet account through this two-step process:

- Register for a Compute Canada Database (CCDB) account
- Non-faculty need a sponsor (supervisor's CCRI number), who has to have a SciNet account already.
- Login to CCDB and apply for a SciNet account (click Apply beside SciNet on the Consortium Accounts page)

Getting more resources on SciNet

- Users who will be needing more than the default amount of resources must have their PI apply for it through the competitively awarded.
- Resource competition occurs in the fall of each year.
- Without such an allocation, a user may still use up to 32 GPC nodes at a times at low priority.

Portal: https://portal.scinet.utoronto.ca

SciNet usage reports

Change password, default allocation, maillist subscriptions

Portal: https://portal.scinet.utoronto.ca

SciNet usage reports Change password, default allocation, maillist subscriptions

Portal: https://portal.scinet.utoronto.ca

SciNet usage reports

Change password, default allocation, maillist subscriptions

Wiki: https://support.scinet.utoronto.ca/wiki

More information can be found at the wiki.

Portal: https://portal.scinet.utoronto.ca

SciNet usage reports Change password, default allocation, maillist subscriptions

Wiki: https://support.scinet.utoronto.ca/wiki

More information can be found at the wiki.

Portal: https://portal.scinet.utoronto.ca

SciNet usage reports

Change password, default allocation, maillist subscriptions

Wiki: https://support.scinet.utoronto.ca/wiki

More information can be found at the wiki.

Courses: https://support.scinet.utoronto.ca/courses

To learn about SciNet courses and sign up.

Portal: https://portal.scinet.utoronto.ca

SciNet usage reports Change password, default allocation, maillist subscriptions

Wiki: https://support.scinet.utoronto.ca/wiki

More information can be found at the wiki.

Courses: https://support.scinet.utoronto.ca/courses

To learn about SciNet courses and sign up.

Portal: https://portal.scinet.utoronto.ca

SciNet usage reports

Change password, default allocation, maillist subscriptions

Wiki: https://support.scinet.utoronto.ca/wiki

More information can be found at the wiki.

Courses: https://support.scinet.utoronto.ca/courses

To learn about SciNet courses and sign up.

Technical support: support@scinet.utoronto.ca

For further questions, mail our system administrators and technical analysts.

Portal: https://portal.scinet.utoronto.ca

SciNet usage reports

Change password, default allocation, maillist subscriptions

Wiki: https://support.scinet.utoronto.ca/wiki

More information can be found at the wiki.

Courses: https://support.scinet.utoronto.ca/courses

To learn about SciNet courses and sign up.

Technical support: support@scinet.utoronto.ca

For further questions, mail our system administrators and technical analysts.

Login: login.scinet.utoronto.ca

Access SciNet systems: ssh to login (not part of clusters)

ssh -l <username> login.scinet.utoronto.ca

Overview of the SciNet Systems

General Purpose Cluster (GPC)

General Purpose Cluster (GPC)

- 3780 nodes with two 2.53GHz quad-core Intel Xeon 5500 (Nehalem) x86-64 processors
- 16GB RAM per node
- Gigabit ethernet network on all nodes for management, disk I/O, boot, etc.
- InfiniBand network on 1/4 of the nodes only used for job communication
- 306 TFlops
- #16 on the June 2009 TOP500 supercomputer sites
- #1 in Canada

Tightly Coupled System (TCS)

Tightly Coupled System (TCS)

- 104 nodes of 16 dual-core 4.7GHz P6 processors.
- 128GB RAM per node
- Interconnected by full non-blocking InfiniBand
- 62 TFlops
- #80 on the June 2009 *TOP500* supercomputer sites
- #3 in Canada

Tightly Coupled System (TCS)

- 104 nodes of 16 dual-core 4.7GHz P6 processors.
- 128GB RAM per node
- Interconnected by full non-blocking InfiniBand
- 62 TFlops
- #80 on the June 2009 *TOP500* supercomputer sites
- #3 in Canada

Access disabled by default. For access, email us explaining the nature of your work. Your application should scale well to over 32 procs.

Disk space

- 1790 1TB disk drives, for a total of 1.4 PB of storage
- Two DCS9900 couplets, each delivering 4-5GB/s read/write access to the drives
- Single GPFS filesystem on both TCS and GPC
- I/O goes over Gb ethernet network on the GPC, and over the infiniband network on the TCS

location	quota	block-size	time-limit	backup	devel	comp
/home	10GB	256kB	perpetual	yes	rw	ro
/scratch	X TB	4MB	3 months	no	rw	rw

Moving large data

Moving less than 10GB through the login nodes

- Only login nodes visible from outside SciNet (1Gb/s link).
- Use scp or rsync.
- but datamover1 node is faster.

Moving more than 10GB through the datamover1 node

- Should be done from the datamover1 node (10Gb/s link).
- From any SciNet node, ssh to datamover1.
- Transfers must originate from datamover1.
 Cannot copy files from the outside world to datamover1.
- Your machine must be reachable from the outside.

File system

- Compute nodes do not contain hard drives
- The available disk space, /home and /scratch, all part of the GPFS file system which runs over the network.
- GPFS is a high-performance file system which provides rapid reads and writes to large data sets in parallel from many nodes.
- It performs quite poorly at accessing data sets which consist of many, small files.
- Don't keep many small files on the system.
 They waste space, and are slower to access, read and write.

Systems

I/O strategies

- Do not read and write lots of small amounts of data to disk. Reading data in from one 4MB file can be enormously faster than from 100 40KB files.
- Write your data out in binary. Faster and takes less space.
- Each process writing to a file of its own is not scalable. A directory gets locked by the first process accessing it, so the other processes have to wait for it.
- Consider using MPI-IO (part of the MPI-2 standard), NetCDF or HDF5.
- If you must read and write a lot to disk, use ramdisk if possible. The ramdisk can be accessed using /dev/shm/ and is currently set to 8GB max.
- Copy back from ramdisk at end of run.

PART 2 — USING SCINET

Modules

- Once you log into devel nodes, what's already installed?
- Other than essentials, all software installed as modules.
- modules set environment variables (LD_LIBRARY_PATH, PATH,...) to include the appropriate package.
- Allows multiple versions of package to be available.
- More on Software and Libraries page of wiki.

```
gpc-f103n084-$ module avail
 ---- /scinet/qpc/Modules/version inde
3.2.6
 ---- /scinet/gpc/Modules/3.2.6/module
dot
                 modules
                                  use.c
module-cvs
                 use.deprecated
module-info
                 use.experimental
----- /scinet/gpc/Modules/modulefiles
ROOT/5.26.00
Xlibraries/X11-32
Xlibraries/X11-64(default)
amber10/amber10
autoconf/autoconf-2.64
blast/2.2.23+
cmake/2.8.0
```

Intro to SciNet - Sept. 2010 ◀●▶

```
module load <module-name>
module purge
module avail
module list
module help <module-name>
```

use particular software remove currently loaded modules list available software packages list loaded modules describe a module

- Load frequently used modules in .bashrc in home directory.
- Short name prefered (intel not intel/intel-v11.1.056)
- To compile code that uses that package add

```
-I${SCINET_[shortmodulename]_INC}
```

To link, add

```
-L${SCINET_[shortmodulename]_LIB} -l[libname]
```


Dependencies

- Modules sometimes require other modules to be loaded first.
- Module will let you know if you didn't.
- For example:

```
gpc-f103n084-$ module purge

gpc-f103n084-$ module load python
python/2.6.2(11):ERROR:151: Module
'python/2.6.2' depends on one of the
module(s) 'gcc/gcc-4.4.0'
python/2.6.2(11):ERROR:102: Tcl
command execution failed: prereq gcc/
gcc-4.4.0
gpc-f103n084-$ module load gcc python

gpc-f103n084-$
```

Commercial Software?

- We have an extremely large and broad user base
- We cannot buy everyone's favourite commercial software package.
- Only commercial software we have installed is software that can benefit everyone:
 - GPC: intel compilers, MKL (both in module intel)
 - TCS: ibm compilers, ESSL
- No matlab, gaussian, idl, . . .
- Can work with you to get commercial software that you have license for installed.

Compiling

WARNING:

The login machines are not the same architecture as either the GPC or TCS nodes, so you should not compile programs on the login machines.

Compile on devel nodes:

```
gpc01, gpc02, gpc03, gpc04
tcs01, tcs02
```

Also good for short, small scale tests.

- Test your job's requirements and scaling behaviour before submitting a large scale computation.
- Devel nodes are used by everyone who needs to use the SciNet systems, so be considerate.

Compiling

GPC compilation

From login.scinet.utoronto.ca, ssh to one of the four GPC devel nodes, e.g.

```
ssh gpc04
```

- We recommend Intel compilers, which are icc, icpc, and ifort for C, C++, and Fortran, from the module intel.
- Optimize your code for the GPC machine using of at least the following compiler flags

- Add -openmp to the command line for OpenMP
- Compile MPI code with mpif77/mpif90/mpicc/mpicxx.
 - 1. Open MPI, in module openmpi (v1.4.1) default
 - 2. Intel MPI, in module intelmpi (v4.0.0)

Compiling

TCS compilers

ssh to tcs devel nodes

```
ssh tcs01 or ssh tcs02
```

- Use the IBM compilers on the TCS devel nodes. These are xlc, xlc, xlf for C, C++, and Fortran.
- For OpenMP code, use xlc_r,xlC_r,xlf_r.
- For MPI code, mpcc, mpcc, mpxlf are the mpi wrappers.
- We strongly suggest the compiler flags

supplemented by -qsmp=omp for OpenMP programs.

On the link line we suggest using

also supplemented by -qsmp=omp for OpenMP programs.

- To run a job, you must submit to a queue.
- You submit jobs from a devel node in the form of a script
- Best to run from the scratch directory (home=read-only)
- Copy essential results out after your runs have finished.

- Group based allocation: possible for your colleagues to exhaust group limits.
- Talk to us first to run massively parallel jobs (over 2048 cores).
- While their resources last, jobs will run at a higher priority than others for groups with an allocation.

GPC queues

queue	time(hrs)	max jobs	max cores
batch	48	32/1000	256/8000 (512/16000 threads)
debug	2/0.5	1	16/64 (32/128 threads)
largemem	48	1	16 (32 threads)

You submit to these queues with

```
qsub [options] <script>
```

Common options:

- -1: specifies requested nodes and time, e.g.
 - -1 nodes=1:ppn=8, walltime=1:00:00
 - -l nodes=1:ib:ppn=8, walltime=1:00:00
- -q: specifies the queue, e.g.
 - -q largemem
 - -q debug
- I specifies that you want an interactive session; no script needed
 Mandatory number of nodes may be specified in script.

- GPC HyperThreading: Appears as if there are 16 processors rather than 8 per node. For OpenMP application, try setting OMP_NUM_THREADS=16. For MPI, try -np 16.
- Always first test if this is beneficial and feasible!
- Once the job is incorporated into the queue, you can use: showq to show the queue, and job-specific commands such as showstart, checkjob, canceljob
- There is no separate queue for inifiniband nodes. You request these through the option :ib.
- Always request ppn=8, even with hyperthreading.
- ▶ The largemem queue is exceptional, in that it provides access to two nodes (only) that have 16 processors and 128GB of ram.
- There is no queue for serial jobs, so if you have serial jobs, YOU will have to bunch together 8 of them to use the node's full power.

TCS queue

queue	time(hrs)	max jobs	max cores
verylong	48	2/25	64/800 (128/1600 threads)

Submitting is done with

```
llsubmit <script>
```

and llq shows the queue.

- The POWER6 processors have Simultaneous Multi Threading. Similar to hyperthreading.
- Once your job is in the queue, you can use llq to show the queue, and job-specific commands such as llcancel, llhold, ...
- Do not run serial jobs on the TCS!
- To make your jobs start sooner, reduce the wall_clock_limit to be closer to the estimated run time (perhaps adding about 10 % to be sure). Shorter jobs are scheduled sooner than longer ones.

```
#!/bin/bash
#PBS -l nodes=8:ppn=8,walltime=1:00:00
#PBS -N myInformativeJobName
cd $PBS O WORKDIR
#assume module load openmpi in .bashrc
mpirun -np 64 ./mycode > out
$ qsub myjob.pbs
$ qstat
Job id Name User Time Use S Queue
2961983.qpc-sched myInformat... rzon ...... C batch_eth
$ 1s
myInformativeJobName.e2961983 mycode out
myInformativeJobName.o2961983
```

Final tips

- Use the right compilers and compile with optimization.
- Test your job's requirements and scaling behaviour. Start runs on a small scale and work your way up to larger scales.
- Accurately specify the walltime when you submit a job.
- Avoid reading and writing lots of small amounts of data to disk.
- Do not create lots of files.
- Do not submit single serial jobs.
- Do not keep lots of files in your directory (use tar).
- Read the SciNet user wiki at support.scinet.utoronto.ca/wiki
- Take SciNet classes: support.scinet.utoronto.ca/courses
- Email to support@scinet.utoronto.ca with any SciNet questions or problems.