C Tutorial

;e <

et araIIeI Scientific Computing Course

ciN

Aug 31 - Sept 4, 2009

Why C?

Because we can’t in good conscience espouse Fortran.

.t'/

SciNet Parallel Scientific Computing Course
Aug 31 - Sept 4, 2009

C Hello Wor

J*C itself is a very spare language. Much standard functionality
ig in libraries. The libraries usually come with header files that
describe how a program should interface with the library calls.
We include the header files {the C pre-processor will copy the files
into our program at compile-time).

stdio contains standard I/0 functions, including printing to the screen.*/
/¢ Comments can be in blocks marked off by /%...%/, or single-line, using //
int main{int oroc, char *o0rov[])
/*Main is a special routine that gets called when we run a program.
It has two input argumens: an integer argc that tells us how
many command-line arguments we had, and argv, an array of strings
of those arguments.*/

//Blocks of code in C are contained in curly braces{}

printf{"Hello world.wn");

AZprintf dumps a string to standard out {the terminal). The character ‘n is
J/a newline. The string must be in double quotes. MNote that we have

//to end each line in C with a semicolon.

[sievers@tpb4 c-tutorial]$ gcc -o hello_world hello_world.c
[sievers@tpb4 c-tutorial]$./hello_world

Hello world.

[sievers@tpb4 c-tutorial]$ |}

< : A
. <]

SciNet Parallel Scientific Computing Course
Aug 31 - Sept 4, 2009

Sciet

High Performance Computing

C For Loop

#include —=tdio.h=

int main{int oroc, char *o0rov[])

d

int 13 //declare a variable to be an integer. Other useful types are char, float, double...

A*C for-loop syntax is " for (A;B;C) ". Command A gets set at the start of the for loop.
It will continue as long as statement B remains true. Finally, at each iteration,

C d ° command C gets executed.
O e. In C, i++ is shorthand for i=i+1;
Also have i+=j {i=i+j). --, *=, /= are also commonly used*/
for (i=8;i<argc;i++)
printf{"Argunent #3d is Hsn',i,argv[i]);
¥formatted output in C. prinf will take an arbitrarily long string of arguments. The first
iz always a string, the rest are variables that will be put inside the string.
%d means an integer, X%f means a float, ¥e is a float using scientific notation, %g is
the prettier of %f and ¥g, %c is a charater, and %¥s is a string. We can put numbers between
the % and the type, which tells printf how many characters to use. So, every integer
will be given three characters of spuce.*iﬂ

[sievers@tpb4 c-tutorial]$ gcec -o for_loop for_loop.c
[sievers@tpb4 c-tutorial]$./for_loop This is a test of C for loops. Would like 18 arguments or more.
Argument is ./for_loop
Argument is This
Argument is is
Argument is a
Argument is test
Argument is of
. Argument is C
u t P u t o Argument is for
Argument is loops.
Argument is Would
Argument is like
Argument is 18
Argument is arguments
Argument is or
Argument is more.
~ [sievers@tpb4 c-tutorial]$ |
y,

SciNet Parallel Scientific Computing Course
Aug 31 - Sept 4, 2009 P J SCiflet

OO -Jmn a0 PEPE @

C Functions

#include —=tdio.h=
#include —=tdlib.h=

double get_square(double)
*ywe give each function a unigque name. We tell the compiler what sort of variable it
will return, at most one {can be zero if declared to be of type void). We also tell it
how many variables and of what kind the input is. The keyword return tells the function
what value to return. The function stops once it hits return.®/

{

return x¥x;

¥

¥ */

int main(int arc, char *argv[])

d
double v=atof(argv[1]); //otof is a standard library function to convert a string to a float/double
printf ("% squared is %" ,x,get_square(x));l

¥

[sievers@tpb4 c-tutorial]$ gec -o c_functions c_functions.c

. [sievers@tpb4 c-tutoriall$./c_functions 4
utP ut. 4 squared is 16

[sievers@tpb4 c-tutorial]$ ||

Unlike Fortran, there is no distinction in
C between functions and subroutines.

~

A

SciNet Parallel Scientific Computing Course
Aug 31 - Sept 4, 2009 P J SCiflet

C Pointers

#include ==tdio.h=
#include ==tdlib.h=
/¥Pointers are a source of much confusion. We have a class of variables that contain not
values but locations in memory. The syntax in C to go from a variable to its location, or from aQ
Cod e‘ pointer to the value of the memory to which it points is very compact. As such, it can be
o difficult until one gets used to it.
Short summary: If x is a variable, then &x is a pointer to x. If xp is a pointer, then *xp is
the value of the memory pointed to by xp. When we declare pointers, we put aq *
before them to mark them as pointers. so
int *xp; make a variable names xp {(hot *xp) that points to an integer.
C always posses by value {makes a copy of whatever arguments you send to a function, then
passes those copies). So if we waont to set lots of numbers in a function, we would pass in pointers
to variables, and then the function would modify the memory pointed to by the pointers.

' 4
void square(double *:) //this function takes a pointer to a double, not an actual double.

*x = (kx)k(kx); //Set the value pointed to by x to be equal to the value pointed to by x squared

/¥ */
int main{int argc, char *argv[])
{
double = = atof(argv[1]);
printf("Input z is %¥g3'\n",z);
square{8z); //toke the address of z and pass it to the function
printf("Zfis now #gn",z);
¥

[sievers@tpb4 c-tutorial]$./c_pointers 6
Input z is 6

Z iz now 36

[sievers@tpb4 c-tutorial]$ |

8 : A

SciNet Parallel Scientific Computing Course
Aug 31 - Sept 4, 2009 P J Sciflet

#include —=tdio.h=

C Arrays

#include -mssert.h= /Asome macros for quick & dirty sanity checks.

/*¥In C, arrays are just pointers to blocks of memory. C is zero-offset, the first element
of an array x is x[@]. We can access the i'th element of x by using x[1]. The compiler knows
how big different types are, which is why we need to specify what sort of data a pointer

points to. */

void print_array(int n, double *.)
{

for (int =@3i<n;ises+)
printf (" [2d]=4a " 1 ,x[1]);
¥

/¥
int main{(int argc, char *argv[])

1

double *:x;

int ng;

assert{argc>1); //Bail if we don't have an input. Assert will tell you if it failed, and stop.

n=atoi{argv[1]);

assert{n=a);

x=(double *malloc{n¥sizeof (double));

/¥0K - malloc creates a chunk of useable memory, and returns a pointer to its beginning.
The argument is the number of bytes we want. The function sizeof() tells you how many . .
bytes a dotatype takes up. By default, malloc returns a void *. The {double *) tells the assert In action
compiler we know a void pointer came back, treat it like a double pointer anyvways.*/

for {int 1=@;i<nji++) //Now fill up the array.
x[1]=1%i;

print_array{n,x);

free(x); //If we malloced space, we get it back with free.D

¥

. . [sievers@tpb4 c-tutorial]$./c_orrays -3
[SlgvaS@tpb4 c-tutorial]$./c_arrays 5 c_arrays: c_arrays.c:23: main: Assertion ‘"n=8' failed.
x[1]:1 Abort
X[2]:4 [sievers@tpb4 c-tutorial]l$./c_arrays
i{ 3%‘9 c_arrays: c_arrays.c:21l: main: Assertion ‘argc=1l' failed.
= Abort
x[4]-16 [sievers@tpb4 c-tutorial]$ [

~

SciNet Parallel Scientific Computing Course
Aug 31 - Sept 4, 2009 P J SCiflet

C 2-D AI"I"&)’S
#include —=tdio.h=
#include =tdlib.h=
#include «ozsert.h=
vold print_array(double *k. int n, int)
d
for {int 1=@;inji++) {
for {int =@;j<m;j++)
printf{" 50 ",x[1][3]):
printf{" ");
¥
¥
/¥ */
double **al locate_matrix(long rn, long n) //long is a 64-bit integer
d
double *vec=(double *)malloc{n¥*m¥sizeof (double)); //allocate enough space for the matrix
assert{vec!=NULL);
double *kpot=(double *malloc{n¥sizeof (double *)); //Now allocate a row of pointers.
assert{mat !=NULL);
for {int =83i<nji+s)
mat [i]=8vec[m*i]; //assign each pointer to the location of a new row
returm mat
¥
¥
int main{int oroc, char *0rov[])
d
int r=atoi{argv[1]);
int n=atoi{argv[2]);
double *¥y0t=allocate_matrix{n,m); //C knows how to convert our integers to longs .]
for (int i=B3i<niiss) assert in action
for {int =@;j<m;j++)
mat [1][1]=16%i+];
print_array{mat,n,m);

¥

[siévers@tpb4 c-tutorial]$ goc -std=c99 -o c_arrays_2d c_arrays_2d.c
[sievers@tpb4 c-tutorial]$./c_arrays_2d 4 6

a 1 2 3 4 5 - -
18 11 12 13 14 15 [sievers@tpb4 c-tutorial]$./c_arrays_2d 400008 600000

28 21 22 23 24 25 c_arrays_2d: c_arrays_2d.c:16: allocate_matrix: Assertion ‘vec!=((void *)@)' failed.

38 31 32 33 34 35 Ab?rt ‘
[sievers@tpb4 c-tutorial]$ | [sievers@tpb4 c-tutorial]$ [

~

A

SciNet Parallel Scientific Computing Course
Aug 31 - Sept 4, 2009 P J SCiflet

C Structures

Note that C does not initialize values.
Forgetting this is an extremely common
bug. Often compilers will warn - take
them seriously.

Output:

[sievers@tpb4 c-tutoring]$./c_structures

Char les Babbage is 4195968 years old at first.
Char les Babbage is now 217 years old.
[sievers@tpb4 c-tutorial]$ [

Code;

~

A

SciNetaraIIeI Scientific Computing Course

Aug 31 - Sept 4, 2009

#include —=tdio.h=
#define MAXLEN 266 /A#define tells the preprocessor to replace MAXLEN by 256
/*¥This is how we say what a structure will look like*/
struct record_t{

char rone [MAXLEN] 5

int age;

int
¥i
Lypedef struct record_t Record; //Zthis step is optional but makes structures more

/¢ convenient to declare throughout the code.

/¥ */
void assign_oge_wrong(Record dat, int v=or)

{
dat .age=year-dat .dob;

¥
/¥ */
void assign_oge_right(Record *dat, int v=or)
{
dat-zage=year-dat-=dob; //the -= iz C shorthand to get at members of a structure
J/that comes in as a pointer.
¥

/¥ */
int main{int argc, char *argv[])

1

Record mydata;

cdohb ;

/71 have passed in the value of the structure. Nothing
Z/changed here will be seen by the calling routine.

J/declare the structure using the template defined above

struct record_t doto_copys /A/Without the typedef, we have to do this every time
sprintf (mydata.name,"Char les Baobboge"); /A/sprintf works like printf, but into a string
mydata.dob=1791; //we can assign structure members like this.
assign_oge_wrong{mydata,2688); //structures get possed around

printf ("% iz %d vears old ot first.wn",mydata.name, mydata.oge);

¥almost always, vou want to pass a pointer to a structure. This prevents having to
make copies of potentially large things. It also is an extremely convenient way of
getting lots of data into or out of a routine. If we want an extra argument, we simply
add that field to the structure. The function prototype doesn't change. Large programs
would sipmly explode and be unmaintainable without this.*/

assign_oge_right (Smydata,2008);

printf ("% iz now %d years old.\n",mydata.name, mydata.oge);

Sciet

High Performance Computing

Printing in C

#FHnclude i0. Z/This has most of the printing functions in C

main(i , char *argv[])

Pnp— formatted printing in C is handled by the

el L= 57505 standard i/o library, not the language itself.
!/ e prlnte a floatlng p01nt number as an exponent "%%" prints one ¥ sign

prmtf(He: b 2. \n" ,Xbig,xsnal L); Still, a few tips on how to print things in a
/%14 .6 says use 14 dlgltS wf 6 deCImal p01nts

m’mtf(4.6e.\n" ,xbig,xsnal L); formatted way are useful. If you need

Jif you use %ﬁ, it's forced to use flxed place notation: . . .

prings ("4 61 4.61.\n" ;xbig,xsmal l); something fancier, possibly there, look on-
'/¥g lets the computer d801d8 between %b and %ﬁ

prlntf(%G : ig i . L is #g.wn",xbig,xsmall); |ir]€3.

=323
A%d 1s the prlnt code for lntegers
prlntf{ k¥, with #6d i Bo*, and &% is *EPEd* . \n",ii,11,11);
y - ’*= ;
‘/hote that chars are SIngle quotes, strings double quotes.
prlntf(i , ¥z i ing.%n" ,c,8);

[256];
Jwe can also print dlrectly to etrlngs and to files.
sprlntf(llne, ld L i re ‘ i)
printf{"| XS\t ,llne};

* =f0pen(: : "w"); . . . -y -y
fprintf(outfile," ,line); HGC}ntosh—Z?B:c—tutor}al S}evers$ gcc —wal‘-o c_printing c_printing.c
fclose{outfile};ﬂ MGCIntoeh—??B:c—tutorlal sievers$:Kc_prlntlng

¥e: xbig is 3.456808e+27, xsmall is 4.6759600e+08.
a; %¥14.6e: xbig is 3.4560008e+27, xsmall is 4.675900e+00.
#l4.6f: xbig is 3456000000000000010737415240.0000008, xsmall is 4.673%008 .,
uuui--—F1 c_printing.c ALl L38 (C/1 Abbrey 3@:‘ xbig 13‘3.456e+27, xsmall is 4.6739. ‘
i1 iz *32%, with %6d is * 32%, and %85d is *BOA32*.
0 is a char, Quwerty is a string.
line is: I would like to have 32 cores on my laptop.
Macintosh-278:c-tutorial sievers$ cat test_output.txt
I would like to have 32 cores on my laptop.
Macintosh-278:c-tutorial sievers$

Scifet

High Performance Computing

Math in C

M FHnc lude
Finally, here are some examples of how to do e uce

math in C. Because C is a compact language, #include

/*Math functions are not built into C. Instead they are library

1 1 calls, and a header file must be included. This applies to
math functions have been offloaded into a e o e ot oy PP
I|brar)’. The Ilbra’ry IS Ver)’ Standard’ SO an)’ C /*Because the math functions are in a library, vou must

1 1 1 M tell the compiler to include that library. The compile
Compl|er' WI” Support |tS funCt|OnS. flag is "-Ilm": "-1" tells the compiler it's going to get
a library, and "m" tells it the library is "libm.[a,s0...]"*/
#inclu@e .
Some compilers may have math routines built ™ *™ » char xe)
in,and hence not need the “-Im” flag to the assert (arges2);

=atof {argv[1]); //get a float number from a string.

. .) atef ;
right, but this is not standard, and you will AT (o & S - Mot Buposal;

likely be punished for your sins the first time Printf(cos (1 =006 ,,008(a));

printf 2)=50. ,0,3qrt{a));
you run on a new machine. .

Macintosh-278:c-tutorial sievers$ goc -Wall -o math_example math_example.c -Ilm
Macintosh-278:c-tutorial sievers$./math_example 2.25 2.5

2.26 A 2.5 = 7.59375

c0s(2.25)=-8.628174

sqrt{2.25)=1.5

Macintosh-27@:c-tutorial sievers$ |

And Now for Parallel

Intro to OpenMP

® Or,“Gee, | wish that loop were faster.”

® (although newer OpenMP more flexible)

OpenMP Philosophy

Goal: Add parallelism to a functioning serial code.
Add compiler directives to parallelize parts of code.
Requires shared-memory machine.

Pros: Often very easy to add to existing codes.

Major con: Large shared-memory machines $$$%

OpenMP Philosophy |

We tell OpenMP compiler to parallelize a block of code.
In practice, mostly fixed-length loops.

Mark off parallel block: C use #pragma omp ...and {},
FORTRAN use !$OMP and '$OMP END.

Compiler will spawn threads and split up work for us.

Thank you Mr. Compiler!

We must tell compiler how to use variables. Is a variable
shared between threads, or does each thread have a

private copy!

OpenMP Philosophy |

Not all compilers OpenMP-compatible. OpenMP
designed to be ignhored by non-OpenMP compilers.

Most OpenMP implemented with compiler directives.
Non-OpenMP compilers will think they’re comments.

OpenMP also provides some library calls. For

compatibility, #ifdef guard these calls. OpenMP always
defines OPENMP for this reason.

Backwards-compatibility rapidly becoming unimportant.
Even cheap machines have multiple cores!

My First OpenMP Program

® Goal of first program: figure out in serial region
total number of parallel threads.

Let’s see how many threads we have. (We set this at run
time using environment variable OMP_NUM _THREADS).

omp_get _num_threads() returns total number of threads.

omp_get thread num() returns which thread I am.

omp_get _num_threads() will return current number of
working threads. This will be one if we call it from a serial
region.

My First OpenMP Program I

To find out number of threads, we must ask in a parallel

region. To start a parallel region, use command #pragma
omp parallel (or !$OMP parallel).

® First, let’s get greetings from each thread.

® You will need to include <omp.h>, which has defines and
function prototypes for OpenMP

irst OpenMP Program Output

ffomp_ﬂimpleat_program.CD
#include -
#include =

nt maindir
1
#ragma paral lel
1

#ifdef

printf{"1 o read nunber #dn" yomp_get_thread_num{));
#endif
} //End parallel region.

¥

[sievers@tpb4 omp-intro]$

[sievers@tpb4 omp-intro]$ export OMP_NUM_THREADS=8
[sievers@tpb4 omp-intro]$./ omp_simplest_program

I am thread number @

I am thread number
I am thread number
I am thread number
I am thread number
I am thread number
I
I
[

Output:

am thread number
am thread number 6
sievers@tpb4 omp-intro]ﬂ

Scifet

High Performance Computing

MFOMPP: What Happened?

® We started a parallel region, and each thread printed out
its thread |ID number.

® What didn’t happen! The threads printed out in random
order. Threads execute independently, and in general,
order will be random.

® What else didn’t happen? No variables. Now lets
introduce some so we can see how they behave.

MFOMPP: Add a Variable

Let’s assign the number of threads to a shared variable,
nthread.

Only one thread needs to do this. So, let’s save each
thread’s number to mythread, and only have thread 0 write

to nthread.

By default, variables are shared. But each thread needs its
own copy of mythread. We will declare that to be private.

(Also going to drop #ifdef’s to reduce clutter)

MFOMPP: Getting nthread

JZomp_simplest_program2.c
#include —=tdio.h=
#include —omp.h=

int main{(int argc, char *argv[])

1

int mythread,nthread;
#pragma oo parallel private{mythread)
1
mythread=omp_get_thread_num{);
it (mythread==0)
nthread=omp_get_num_threads{);
} //End parallel region.
printf ("I have a total of %d threads in the parallel reginn.%n",lthread};

¥

[sievers@tpb4 omp-intro]$./Jomp_simplest_program2

O t to I have a total of & threads in the parallel region.
u P u ° [sievers@tpb4 omp-intro]$ |

~

A

SciNetParaIIeI Scientific Computing Course
Aug 31 - Sept 4, 2009

Sciet

High Performance Computing

MFOMPP: What Happened Now!

® The shared variable nthread was only written to by thread
0, and because it was shared, it maintained its value
outside of the parallel region.

The compiler created a private copy of mythread for each
thread. If it had been shared, each thread would have
tried to write its own value to mythread. There’s no telling
what mythread would have been by the if statement.
Program behavior would have been indeterminate.

® Another choice (and a very good one): declare mythread
locally inside parallel region.

Quick Note on Initialization

® By default, the initial values of private variables are
undefined.

By default, the values of private variables are lost outside
of the parallel region.

In the #pragma directive, we can override this behavior by
declaring variables to be firstprivate (import the value from
before the parallel region) or lastprivate (put the value
from the final loop iteration into the serial variable).

MFOMPP: Getting nthread I

Jfomp_simplest_program3.c
#include —=tdio.h=
#include <omp.h=

Code;

int main{int argc, char *argv[])

1

int nthreads;
#oragma oo paral lel
d
int Jotrreoo=omp_get_thread_num{);
it (mythread==0)
nthread=omp_get_num_threads();
} //End parallel region.
printf ("I have a total of %d threads in the parallel region.\n",nthread);

¥

[sievers@tpb4 omp-intro]$.Jomp_simplest_program3

O ut uto I have a total of 8 threads in the parallel region.
I:> ° [sievers@tpb4 omp-intro]$ |

~

A

SciNet Parallel Scientific Computing Course
Aug 31 - Sept 4, 2009 P J SCiflet

MFOMPP: What Was So Different!?

® We declared mythread inside the parallel region. Variables
declared inside regions are always private.

® What'’s the big deal! Well, we didn’t have to list mythread
in the #pragma line. Plus, we naturally treated mythread as
a new, private variable and initialized it accordingly. While
trivial, this will save a lot of debugging time.

| strongly encourage this for even serial codes. If you get
into this habit, you will never accidentally loop with the
same variable twice!

MFOMPP: Final Version

® We don’t really care which thread assigns nthread, only
that it happens once. OpenMP supports this with the
“H#pragma omp single” command inside a parallel region.

Another point: we can switch the default behavior of
variables. C supports (shared, none), Fortran also
supports private.

® Your instructors strongly suggest you always use
default(none). This will protect you from many, many bugs.
Combined with structures (which you should use) and
local declarations, overhead of default(none) is small.

MFOMPP: Final Version

Jfomp_simp lest_programd.c
#in
#in

mp
cl
il

ude
ude

in{

#Horagma paral lel shared{nthread) default(nhone)
#ragma single
Aithread=omp_get_num_threads{);

printf{ i S ynthread);
¥

[sievers@tpb4 omp-intro]$./omp_simplest_program4

Out uto I have a total of & threads in the parallel region.
P ° [sievers@tpb4 omp-intro]$ |

Use of #pragma omp single has made code
cleaner and more readable. Use of
default(none) has made it safer.

MFOMPP: Final Version in Fortran

omap_simplest_programd_f

I$0MP parallel shared{nthread)

. I$0MP single
O e . nthread=omp_get_num_threads()
!

1$0MP end single
I$0MP end paral lel

[sievers@tpb4 omp-intro]$./omp_simplest_program4_f

O ut ut’ In Fortran, we have a total of 8 threads.
. [sievers@tpb4 omp-intro]$

Code looks similar in Fortran. Ve needed to
include “omp_lib.h” instead of <omp.h>

My First OpenMP Loop

® Now let’s look at a simple loop. OpenMP will split up the
loop for us, so we don’t have to think about it.

® OpenMP shorthand for a single loop: #pragma omp
parallel for (omp parallel do in Fortran). We use the same
shared, private clauses as before.

® For each element in the loop, we will print out which
thread owns it.

MFOMP Loop

/fomp_simple_loop.cl
#include —=tdio.h=
#include <omp.h=

int main{int argc, char *argv[])

#oragna oo parallel for default{none)
for {int =0;1<A55i++)
printf("Frocess % gets 1=4dn" ,omp_get_thread_num(),1);

[sievers@tpb4 omp-intro]$ setenv OMP_NUM_THREADS 4
[sievers@tpb4 omp-intro]$./omp_simple_loop
Process 3 gets i=12

Process 3 gets i=13

Process 3 gets i=14

Process @ gets i=08

Process 8 gets i=1

Process @ gets i=2

Process @ gets i=3

Process 2 gets i=8

Process 2 gets i=9

Process 2 gets i=18

Process 2 gets i=11

Process 1 gets i=4

Process 1 gets i=6

Process 1 gets i=6

Process 1 gets i=7

[sievers@tpb4 omp-intro]$ |

~

A

SciNet Parallel Scientific Computing Course
Aug 31 - Sept 4, 2009 P J SCiflet

MFOMPL Debrief

The parallel for directive told OpenMP to split up the
work.

Each node got a chunk of the loop and spat it out.

parallel for is a shorthand for a parallel region with a split-
up for loop.

We could avoid the repeated calls to
omp_get thread num() by separating the parallel and the

for.

MFOMP Loop ||

fﬁDmp_EimplE_lDDpEDJ
#inc lude
#inc lude
maini * [

Behaves same as previous

#pragma parallel default(hone)

3 DR version, but we have now
saved the repeated calls to
omp_get thread num().

#Foragma
{ =031<1551++)

printf { smythread,i);

[sievers@tpb4 omp-intro]$./omp_simple_loop2
Process 3 gets i=12

Process 3 gets i1=13

Process 3 gets
Process 8 gets
Process 8 gets
Process 8 gets
Process 8 gets
Process 1 gets
Process 1 gets
Process 1 gets
Process 1 gets
Process 2 gets
Process 2 gets
Process 2 gets
Process 2 gets i=11
[sievers@tpb4 omp-intro]$ [

-
|

i
LU LR L | | A | A | B | B | S |

P Oo-200m s WQ0NRFPE @R
= -+

=18

-
I

Now Let’s do Something Useful

So far, we haven’t gotten our threads to do anything.
Second problem: sum x[i]*y[i] vectors x and y

We will use OpenMP work-sharing constructs to split up
the loop amongst different threads.

First let’s look at a serial version. This will show some of
the utilities we will be using in the course of the
workshop.

/¢serial_ndot.cl]

Serial ndot

#include ".. /util/poco_utils.h"

NType ndot(int n, NType *x, NType *y)

NType tot=0;

for {int =B8;i<n;i+es+)
tot+=x[i]*y[1];

return tot;

j*
int main{int oroc, char *0r0v[])

int n=1e7;
NType *x=vector{n);
NType *y=vector{n);
for (int 1=8;ianji++) {
x[1]=1;
y[i]=1;
¥
NType nn=n-1;
NType ans=nn*{nn+1)*{2¥nn+1)/6.8;
pca_time tt;
tick{&tt);
NType dot=ndot{n,x,y);
printf{"Dot product is ¥l4.4e (vs #¥14.4e) for n=¥d. Took ¥12.4e seconds.‘n",dot,ans,n,tocksilent{8tt));

[sievers@tpb4 omp-intro]$./serial_ndot

O UtP Ut' Dot product is 3.3333e420 (vs 3.3333e+20) for n=10000008. Took B.2650e-B2 seconds.
[]

[sievers@tpb4 omp-intro]$ I

SciNet ParaIIeI Scientific Computing Course
Aug 31 - Sept 4, 2009 p g %QE

Things to Note:

We have put some definitions and utility routines in pca_utils.[ch].
We will use them in the example codes.

We have created a typedef called NType. By default it will be
double, but can also be recast as a float (or even an int). (N

originally stood for N-body, since | wasn’t sure if that should be
done single or double)

vector allocates a vector of NTypes and returns a pointer to the
beginning.

bca_time is a datatype to store microsecond-precision time. The
tick() function resets a timer, and tock() tells you how much time
has passed since tick() was called.

A Parallel Dot Product

We could clearly parallelize the loop.

We need the sum from everybody. We could make tot
shared, then all threads can add to it.

Don’t!!! Multiple threads may try to update tot at the same
time. If they do, then we’ll get wrong answers.

This is known as a race condition. Threads race each other
to change shared objects. A classic parallel bug.

Let’s have a look:

Parallel ndot - Data Race

Jomp_ndot_race.c
#include
#include

ndot{ . *x , ¥y)
/7 This version of ndot will produce wrong answers because multiple threads

Jwill try to update tot at the same time.ﬂ

1
NType tot=8; .
#ragma paral lel shared{x,y,n,tot) (Maln Part Of COde UnChanged, 0n|)’

i showing the dot product routine.)
tot;

[sievers@tpbd omp-intro]$ setenv OMP_NUM_THREADS 1

[sievers@tpb4 omp-intro]$./omp_ndot_race
Dot product is 3.3333e+20 (vs 3.3333e+20) for n=10000008. Took 1.2495e-81 seconds.

[sievers@tpb4 omp-intro]$ setenv OMP_NUM_THREADS 8

[sievers@tpb4 omp-intro]$./omp_ndot_race
Dot product is 7.4971e+19 (vs 3.3333e+20) for n=10000000. Took 2.8928e-81 seconds.

[sievers@tpb4 omp-intro]$ [

Not only is the answer wrong, it
was slower to compute!

Data Races

So we got a wrong answer. What happened inside the hardware!?

Shared variables live in main memory. Cores process data in
their cache.

When a thread wants to update tot, it will pull it to its cache,
modify it, and return to main memory.

If threads try to change at the same time, both pull the same

value, update, and return to main memory. Whoever finishes
second wins.

Can be very subtle in practice. Errors are not repeatable, and may
not show up until problems get surprisingly large.

Critical Directive

® |[f threads waited for other threads to update, then we
would get the correct answer.

OpenMP supports this. The #pragma omp critical directive
tells the compiler to only let one thread in at a time.

The overhead for critical regions can be large. In this

case, the OpenMP run-time system needs to keep track of
all threads for every iteration.

However, answer should be correct.

Parallel ndot - Pure Critical

ndot_critical(. ¥y, Ky
Z7 This version of ndot will produce correct answers but

O d e ° J7 be very slow because of the critical overhead.
<::: o 1

NType tot=8;
#pragma paral lel shared{x,y,n,tot)
{ =B3i<n;i+e+)
#Fragma critical
tot+=x[1]*v[i];
tot;

h
[

[sievers@tpb4 omp-intro]$./omp_ndot_race
Dot product is 3.3333e+20 (vs 3.3333e+20) for n=10000000. Took 3.55808e+00 seconds.
[sievers@tpb4 omp-intro]$ ||

Answer is now correct, but we
are 30 times slower than the
serial version!!!

Atomic Directive

® #pragma omp critical will work for arbitrary block of code.
There usually exists specialized hardware for reading,
modifying, and writing to a single memory location.

OpenMP supports this. The #pragma omp atomic directive
lets the compiler take advantage of this hardware support.
Supports limited commands: =, +=, *= a few others.

Due to lower overhead, atomic should be faster. Still
won'’t be that good, however.

Parallel ndot - Pure Atomic

ndot_atomic(s N * o N *.)
/¢ This version of ndot will produce correct answers. It
8 will be faster than critical, but still be slow.

1
y Y
#pragma omp paral lel shared{x,y,n,tot)
{ =A31n;ies+)
#pragma omp atomic
tot+=x[1]*y[1];:
tot;
¥

[sievers@tpb4 omp-intro]$./omp_ndot_race
Dot product is 3.3333e+20 (vs 3.3333e+20) for n=10000006. Took 2.7980e+00 seconds.
[sievers@tpb4 omp-intro]$ [

For this case, atomic about 30%
faster than critical. Still 20 times
slower than serial!

Better Reduction

The big problem is that many threads are trying to update
the same location.

Dot product doesn’t depend on order of summation. So,
let each thread sum its bit into its own private variable,
then combine.

We will have a shared variable tot, updated at the end, and
private variables mytot for each thread.

At end of loop, sum mytot into tot using an atomic directive.

Parallel ndot - Atomic Reduction

ndot_atomic_reduce(. *3 *y)
¢ This version of ndot should be DK.D

NType tot=8;
#pragma paral lel shared{x,y,n,tot)

C O d e : i NType mytot=8;

#Foragma
{ =A31n;ies+)
mytot+=x[1]*y[1];

#Fpragma atomic
tot+=mytot;

¥
tot;

[sievers@tpb4 omp-intro]$ setenvy OMP_NUM_THREADS 1

[sievers@tpb4 omp-intro]$. omp_ndot_race
Dot product is 3.3333e+20 (vs 3.3333e+20) for n=10000066. Took 9.3732e-82 seconds.

[sievers@tpb4 omp-intro]$ setenvy OMP_NUM_THREADS 8

[sievers@tpb4 omp-intro]$. omp_ndot_race
Dot product is 3.3333e+20 (vs 3.3333e+20) for n=10000066. Took 3.6198e-B2 seconds.

[sievers@tpb4 omp-intro]$ ||

Now we're in business! Correct
answer, ~3x faster than serial.

What Did We Do?! What Next!

Started a parallel region. Declared a private variable. Summed
our piece of a parallel loop. Finally, at end, summed our piece into
the total.

This operation, where we sum private copies into a shared
variable, is called a reduction. Reductions are extremely common
in scientific parallel programming.

OpenMP has reductions built into the standard. Instead of
declaring a variable to be private or shared, we can declare it to be
reduction, and OpenMP will take care of it for us.

C supports +, -,and * reductions (plus some bit mask ones).
Fortran also supports min and max.

Parallel ndot - OpenMP Reduction

ndot_reduce(. ¥y, ¥y)
J¢ This wersion of ndot will be OK. The use of the
J/ reduction clause makes it much more compact.

1
NType tot=08;
< O d e ° #Horagma paral lel shared{x,y,n) reduction{+:tot) default{none)
[

{ =A31anji+e+)
tote=x[i]*y[i];

tot;

[sievers@tpb4 omp-intro]$. omp_ndot_race

O Utp Ut° Dot product is 3.3333e420 (v& 3.3333e+20) for n-10600600. Took 3.8276e-02 seconds.
[)

[sievers@tpb4 omp-intro]$

Same answer, time as our manual

reduction. But much simpler to
code!

Performance

We threw in 8 cores, got a factor of 3 speedup. Why?

Often we are limited not by CPU power but by how quickly we
can feed CPU’s.

For this problem, we had 107 long vectors, with 2 numbers 8 bytes
long flowing through in 0.036 seconds.

Combined bandwidth from main memory was 4.3 GB/s. Not far
off of what we could hope for on this architecture.

One of the keys to good OpenMP performance is using data when
we have it in cache. Complicated functions: easy. Low work-per-
element (dot product, FFT): hard.

Parallel ndot - Lots of Work

Code;

Output:

- ndot_log_reduce(. *X *y)
Z¢ This wversion of ndot will be OK. The use of the
/7 reduction clause makes it much more compact.

{
NType tot=08;
#Fporagma paral lel
{i =B3i<n;i++)
tot+=log{1+x[i] *pow(1.5+x[1],2.5)+log{Ll+y [1] ¥pow{l.5+v[1],3.98)5

shared(x,y,n) reduction{+:tot) default{none)

tot;

[sievers@tpbS omp-intro]$ setenv OMP_NUM_THREADS 1

[sievers@tpbS omp-intro]$. omp_ndot_race
Dot product is 2.3155e+35 (vs 3.3333e+20) for n=10000006. Took 6.1813e+80 seconds.

[sievers@tpbS omp-intro]$ seteny OMP_NUM_THREADS 8

[sievers@tpbS omp-intro]$. omp_ndot_race
Dot product is 2.3155e+35 (vs 3.3333e+20) for n=10000006. Took 7.9433e-01 seconds.

[sievers@tpbS omp-intro]$ [

8 threads gives me 7.8 times
faster job. That’s more like it!

Scifet

High Performance Computing

OpenMP Versions

So far, OpenMP is good mainly for loops. This was
generally true for a long time.

OpenMP 3.0 is more flexible - will will meet some
of it tomorrow.

OpenMP3 very new - best documentation is

standard itself. gcc 4.3.2 & later support(?) it.

See: http://openmp.org/wp/openmp-specifications/
for more info. Strongly encouraged - many good
sample programes.

http://openmp.org/wp/openmp-specifications/
http://openmp.org/wp/openmp-specifications/

Hand-on 0

Make a directory in your pca/src directory called ‘hw?2’.

Copy /scratch/sievers/pca/src/hw2/Makefile into hw2,
do your work there.

Digital version of these slides available on the scinet
wiki: https://support.scinet.utoronto.ca/wiki/index.php

Hands On |:

Write and compile a C program from scratch to allocate a 2-D
array using pointers. The user should be able to specify the both
dimensions of the matrix on the command line. The allocation
should be in a function, not main()

When the matrix successfully allocates, write a function to fill it
such that matrix|i][j]=sin(sqrt((1.0+i)/(1.0+j))). Print the matrix
to the screen in a separate function. Finally, write a fourth
function to sum the elements of the matrix and print it out. Call
this program mat_2d.c

If it has worked correctly, matrix is antisymmetric, elements (2,1)
and (3,1) are -0.339677 -0.522096

Hands On 2

Now let’s add check timings and add parallelism. Copy
mat_2d.c to mat_2d_ompl.c. How long does it take to fill
a 3,000 by 3,000 matrix? A 3 by 3,000,000? A 3,000,000
by 3 matrix! You may wish to turn off printing the
matrix.

Parallelize the fill using OpenMP. Repeat the same three

timing tests. How much did we improve! Did we get a
factor of 2 speedup in all cases? Any cases!?

For a 5x5 matrix, print which process did which
assignments.

Hands On 3

Now introduce a counter so that every time a thread assigns a value to the
matrix, it increments its counter by one. For our same cases (3e6 by 3, 3
by 3eb, 3k by 3k) how much work are the different threads doing? Why!?
(If the work reported by threads and the timings seem to disagree, don'’t
worry, we will see what’s happening in the next lecture.)

Can you change the parallelization so that the broken case is fixed? What
happened to the other cases!?

OpenMP 3.0 introduces a “collapse” clause to tell the compiler to combine
loops. Make sure the parallel is attached to the outer loop and add
collapse(2) to the #pragma omp for directive, and re-run the same 3 cases.
How much work is each thread doing now? Call this program
mat_2d_omp2.c

Hands On 4

Finally, write routines to sum the elements of the matrix in
parallel in a program called mat_2d_omp3.c.

One routine should have each thread explicitly keep track of its
private sum and then combined using critical or atomic directives.

One routine should use the reduction clause. This should require
only one extra line over the serial case.

You have seen each of these code snippets in the lectures, but it is
good practice to write them yourselves.

