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Fourier Transform (FT)

J. Fourier

I Let f be a function of some variable x.

I Transform to a function f̂ of k:

f̂(k) ∝
∫

f(x) e±i k·x dx

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-4 -2  0  2  4

I This transformation can be inverted. If k is continuous:

f̂(k) ∝
∫

f̂(k) e∓i k·x dk
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Fourier Transform (FT)

I Fourier made the claim that any function can be expressed as
a harmonic series.

I The FT is a mathematical expression of that.

I Constitutes a linear (basis) transformation in function space.

I Transforms from spatial to wavenumber, or time to frequency,
etc.

I Constants and signs are just convention.∗

∗ some restritions apply.



Application of the Fourier transform

I Many equations become simpler in the fourier basis.

I Reason: exp(ik · x) are eigenfunctions of the ∂/∂x operator.

I Partial diferential equation become algebraic ones, or ODEs.

I Thus avoids matrix operations.

Examples

I Periodic phenomena

I Spectral analysis

I Signal processing/filtering

I PDEs: virtually anything with a Laplacian



Application of the Fourier transform: examples

Heat equation

∂u

∂t
= α∇2u

⇓
dû

dt
= −α‖k‖2û

Schrödinger equation:

i~
∂Ψ

∂t
= −

~2

2m
∇2Ψ

⇓

i~
dΨ̂

dt
=

~2‖k‖2

2m
Ψ̂



Discrete Fourier Transform (DFT)

C. F. Gauss

I Given a set of n function values on a regular grid:

fj = f(j∆x)

I Transform these to n other values f̂k

f̂k =
n−1∑
j=0

fj e± 2πi j k/n

I Easily back-transformed:

fj =
1

n

n−1∑
j=0

f̂k e∓ 2πi j k/n

I Negative frequencies: f−k = fn−k.

I General aliasing: k becomes equivalent to k + `n. (max
frequency = k = n/2: Nyquist)



Slow Fourier Transform

I Discrete fourier transform is a linear transformation.

I In particular, it’s a matrix-vector multiplication.

I Naively, costs O(n2). Slow!

I Same scaling as many solvers.



Slow DFT

#include <complex>
#include <cmath>

typedef std::complex<double> complex;

void fftn2(int n, complex* f, complex* fhat, int dir)
{

complex* w = new complex[n];
double v = (dir<0?-2:2)*M PI/n;
for (int j=0; j<n; j++)

w[j] = complex(cos(v*j), sin(v*j));
for (int k=0; k<n; k++) {

fhat[k] = 0.0;
for (int l=0; l<n;l++)

fhat[k] += w[(k*l)%n]*f[l];
}
delete[] w;

}

Even Gauss realized O(n2) was too slow and came up with . . .



Fast Fourier Transform (FFT)

C. F. Gauss

Derived in partial form several times before and even
after Gauss, because he’d just written it in his diary
in 1805 (published later).

Rediscovered (in general form) by Cooley and Tukey in 1965.

J. TukeyJ. W. Cooley

Basic idea

I Write each n-point FT as a sum of
two n

2 point FTs.

I Do this recursively 2 log n times.

I Each level requires ∼ n computations:
O(n log n) instead of O(n2).

I Could as easily into 3, 5, 7, . . . parts.



If O(n log n) versus O(n2) does not impress you. . .

n n log2 n n2 ratio
32 160 1,024 6×

128 896 16,384 18×
512 4,608 262,144 57×

2,048 22,528 4,194,304 186×
8,192 106,496 67,108,864 630×



Fast Fourier Transform: How can you do that?

I Define ωn = e2πi/n.
Note that ω2

n = ωn/2.

I DFT takes form of matrix-vector multiplication:

f̂k =
n−1∑
j=0

ωkj
n fj

I With a bit of rewriting (assuming n is even):

f̂k =

n/2−1∑
j=0

ωkj
n/2 f2j︸ ︷︷ ︸

FT of even samples

+ ωk
n

n/2−1∑
j=0

ωkj
n/2 f2j+1︸ ︷︷ ︸

FT of odd samples

I Repeat, until the lowest level (for n = 1, f̂ = f).

I Note that a fair amount of shuffling is involved.



Fast Fourier Transform: How do you really do that?

Do not write your own: use existing libraries.

I Because getting all the pieces right is tricky;

I Getting it to compute fast requires intimate knowledge of how
processors work and access memory;

I Because there are libraries available.
Examples: fftw, Intel mkl, IBM essl

I Because you have better things to do.



Example of using a library: FFTW

Example (rewrite of slow ft)

#include <complex>
#include <fftw3.h>

typedef std::complex<double> complex;

void fftw(int n, complex* f, complex* fhat, int dir)
{

fftw plan p = fftw plan dft 1d(n,
(fftw complex*)f, (fftw complex*)fhat,
dir<0?FFTW BACKWARD:FFTW FORWARD, FFTW ESTIMATE);

fftw execute(p);
fftw destroy plan(p);

}



Inverse DFT

I Inverse DFT is similar to forward DFT, up to a normalization:
almost just as fast.

fj =
1

n

n−1∑
k=0

f̂k e∓ 2πi j k/n

Many implementations (almost all in fact) leave out the 1/n
normalization.

I FFT allows quick back-and-forth between x and k domain (or
e.g. time and frequency domain).

I Allows parts of the computation and/or analysis to be done in
the most convenient or efficient domain.



Working example

I Create a 1d input signal: a discretized sinc(x) = sin(x)/x
with 16384 points on the interval [-30:30].

I Perform forward transform

I Write to standard out

I Compile, and linking to fftw3 library.

I Continous FT of sinc(x) is

rect(f) =

{
a if |f| ≤ b
0 if |f| > b

I Let’s see if it matches?



#include <iostream>
#include <complex>
#include <cmath>
#include <fftw3.h>
typedef std::complex<double> complex;
int main(int argc, char ** argv) {

int n = 16384;
double len = 60, dx = len/n;
complex* f = new complex[n];
complex* g = new complex[n];
for (int i=0; i<n; i++) {

double x = (i-n/2+1.0e-5)*dx;
f[i] = sin(x)/x;

}
fftw plan p = fftw plan dft 1d(n,

(fftw complex*)f, (fftw complex*)g,
FFTW FORWARD, FFTW ESTIMATE);

fftw execute(p);
fftw destroy plan(p);
for (int i=0; i<n; i++)

std::cout << f[i] << "," << g[i] << std::endl;
delete [] f; delete [] g;

}



Compile, link, run

$ g++ -c -O2 -Wall sincfftw.cc -o sincfftw.o
$ g++ sincfftw.o -o sincfftw -lfftw3
$ ./sincfftw | tr -d '()' > output.dat

Plots
$ ipython --pylab
>>> data=genfromtxt('output.dat',delimiter=',')
>>> plot(data[:,0])
>>> figure()
>>> plot(data[:,2])



>>> x1=range(30)
>>> x2=range(len(data)-30,len(data))
>>> y1=data[x1,2]
>>> y2=data[x2,2]
>>> subplot(1,2,1)
>>> plot(range(-30,0),y2)
>>> subplot(1,2,2)
>>> plot(x1,y1)



>>> x1=range(30)
>>> x2=range(len(data)-30,len(data))
>>> y1=data[x1,2]
>>> y2=data[x2,2]
>>> subplot(1,2,1)
>>> plot(range(-30,0),y2)
>>> subplot(1,2,2)
>>> plot(x1,y1)

Aliasing

Phase factor



About FFTW

Supposedly the “Fastest Fourier Transform in the West”

version 2 ! = version 3

Capabilities

I Complex one-dimensional transforms

I Complex multi-dimensional transforms.

I Real-to-half-complex array transforms

I Format real transforms different in 1d and nd.

I Threaded, MPI, SIMD vectorized

I Read the manual!



Notes

I Always create a plan first.
An fftw plan contains all information necessary to compute
the transform, including the pointers to the input and output
arrays.
Plans can be reused in the program, and even saved on disk!

I When creating a plan, you can have FFTW measure the
fastest way of computing dft’s of that size
(FFTW MEASURE), instead of guessing
(FFTW ESTIMATE).

I FFTW works with doubles by default, but you can install
single precision too.



Symmetries for real data

I All arrays were complex so far.

I If input f is real, this can be exploited.

f∗j = fj ↔ f̂k = f̂∗n−k

I Each complex number holds two real numbers, but for the
input f we only need n real numbers.

I If n is even, the transform f̂ has real f̂0 and f̂n/2, and the

values of f̂k > n/2 can be derived from the complex valued
f̂0<k<n/2: again n real numbers need to be stored.



Symmetries for real data

I A different way of storing the result is in “half-complex
storage”. First, the n/2 real parts of f̂0<k<n/2 are stored,
then their imaginary parts in reversed order.

I Seems odd, but means that the magnitude of the
wave-numbers is like that for a complex-to-complex transform.

I These kind of implementation dependent storage patterns can
be tricky, especially in higher dimensions.



Multidimensional transforms

In principle a straighforward generalization:

I Given a set of n×m function values on a regular grid:

fab = f(a∆x, b∆y)

I Transform these to n other values f̂k

f̂kl =
n−1∑
a=0

m−1∑
b=0

fab e± 2πi (a k+b l)/n

I Easily back-transformed:

fab =
1

nm

n−1∑
k=0

m−1∑
l=0

f̂kl e∓ 2πi (a k+b l)/n

I Negative frequencies: f−k,−l = fn−k,m−l.



Multidimensional FFT

I We could successive apply the FFT to each dimension

I This may require transposes, can be expensive.

I Alternatively, could apply FFT on rectangular patches.

I Mostly should let the libraries deal with this.

I FFT scaling still n log n.

I Real transform even more convoluted.


