
GNU Parallel for Large Batches of Small Jobs

TechTalk, November 2012

Ramses van Zon

SciNet HPC Consortium University of Toronto

Introduction

SciNet is primarily a parallel computing resource. (Parallel
here means OpenMP and MPI, not many serial jobs.)

You should never submit purely serial jobs to the GPC queue.
The scheduling queue gives you a full 8-core node. Per-node
scheduling of serial jobs would mean wasting 7 cpus.

Nonetheless, if you can make efficient use of the resources
using serial runs and get good science done, that’s good too.

Users need to utilize whole nodes by running at least 8 serial
runs at once.

Introduction

SciNet is primarily a parallel computing resource. (Parallel
here means OpenMP and MPI, not many serial jobs.)

You should never submit purely serial jobs to the GPC queue.
The scheduling queue gives you a full 8-core node. Per-node
scheduling of serial jobs would mean wasting 7 cpus.

Nonetheless, if you can make efficient use of the resources
using serial runs and get good science done, that’s good too.

Users need to utilize whole nodes by running at least 8 serial
runs at once.

Introduction

SciNet is primarily a parallel computing resource. (Parallel
here means OpenMP and MPI, not many serial jobs.)

You should never submit purely serial jobs to the GPC queue.
The scheduling queue gives you a full 8-core node. Per-node
scheduling of serial jobs would mean wasting 7 cpus.

Nonetheless, if you can make efficient use of the resources
using serial runs and get good science done, that’s good too.

Users need to utilize whole nodes by running at least 8 serial
runs at once.

Introduction

SciNet is primarily a parallel computing resource. (Parallel
here means OpenMP and MPI, not many serial jobs.)

You should never submit purely serial jobs to the GPC queue.
The scheduling queue gives you a full 8-core node. Per-node
scheduling of serial jobs would mean wasting 7 cpus.

Nonetheless, if you can make efficient use of the resources
using serial runs and get good science done, that’s good too.

Users need to utilize whole nodes by running at least 8 serial
runs at once.

Easy case: serial runs of equal duration

#PBS -l nodes=1:ppn=8,walltime=1:00:00
cd $PBS O WORKDIR
(cd rundir1; ./dorun1) &
(cd rundir2; ./dorun2) &
(cd rundir3; ./dorun3) &
(cd rundir4; ./dorun4) &
(cd rundir5; ./dorun5) &
(cd rundir6; ./dorun6) &
(cd rundir7; ./dorun7) &
(cd rundir8; ./dorun8) &
wait # or all runs get killed immediately

Hard case: serial runs of unequal duration

Different runs may not take the same time: load imbalance.

Want to keep all 8 cores on a node busy.

Or even 16 virtual cores on a node (HyperThreading).

⇒ GNU Parallel can do this

Hard case: serial runs of unequal duration

Different runs may not take the same time: load imbalance.

Want to keep all 8 cores on a node busy.

Or even 16 virtual cores on a node (HyperThreading).

⇒ GNU Parallel can do this

GNU Parallel

GNU parallel is a a tool to run multiple (serial) jobs in parallel.
As parallel is used within a GPC job, we’ll call these subjobs.

It allows you to keep the processors on each 8-core node busy,
if you provide enough subjobs.

GNU Parallel can use multiple nodes as well.

On the GPC cluster:

GNU parallel is accessible on the GPC in the module
gnu-parallel, which you can load in your .bashrc.

$ module load gnu-parallel/20121022

There are currently (Nov 2012) three gnu-parallel modules on
the GPC. Although for compatibility gnu-parallel/2010 is the
default, we recommend using gnu-parallel/20121022.

GNU Parallel Example

SETUP

A serial c++ code ’mycode.cc’ needs to be compiled.

It needs to be run 32 times with different parameters, 1
through 32.

The parameters are given as a command line argument.

8 subjobs of this code fit into the GPC compute nodes’s
memory.

Each serial run on average takes ∼ 2 hour.

GNU Parallel Example

SETUP

A serial c++ code ’mycode.cc’ needs to be compiled.

It needs to be run 32 times with different parameters, 1
through 32.

The parameters are given as a command line argument.

8 subjobs of this code fit into the GPC compute nodes’s
memory.

Each serial run on average takes ∼ 2 hour.

GNU Parallel Example

SETUP

A serial c++ code ’mycode.cc’ needs to be compiled.

It needs to be run 32 times with different parameters, 1
through 32.

The parameters are given as a command line argument.

8 subjobs of this code fit into the GPC compute nodes’s
memory.

Each serial run on average takes ∼ 2 hour.

GNU Parallel Example

SETUP

A serial c++ code ’mycode.cc’ needs to be compiled.

It needs to be run 32 times with different parameters, 1
through 32.

The parameters are given as a command line argument.

8 subjobs of this code fit into the GPC compute nodes’s
memory.

Each serial run on average takes ∼ 2 hour.

GNU Parallel Example

SETUP

A serial c++ code ’mycode.cc’ needs to be compiled.

It needs to be run 32 times with different parameters, 1
through 32.

The parameters are given as a command line argument.

8 subjobs of this code fit into the GPC compute nodes’s
memory.

Each serial run on average takes ∼ 2 hour.

GNU Parallel Example

$

cd $SCRATCH/example

$ module load intel

$ icpc -O3 -xhost mycode.cc -o myapp

$ cat > subjob.lst
mkdir run01; cd run01; ../myapp 1 > out
mkdir run02; cd run02; ../myapp 2 > out
. . .
mkdir run32; cd run32; ../myapp 32 > out

$ cat > GPJob
#PBS -l nodes=1:ppn=8,walltime=12:00:00
cd $SCRATCH/example
module load intel gnu-parallel/20121022
parallel --jobs 8 < subjob.lst

$ qsub GPJob
2961985.gpc-sched

$ ls

GPJob GPJob.e2961985 GPJob.o2961985 subjob.lst
myapp run01 run02 run03
...

GNU Parallel Example

$ cd $SCRATCH/example

$

module load intel

$ icpc -O3 -xhost mycode.cc -o myapp

$ cat > subjob.lst
mkdir run01; cd run01; ../myapp 1 > out
mkdir run02; cd run02; ../myapp 2 > out
. . .
mkdir run32; cd run32; ../myapp 32 > out

$ cat > GPJob
#PBS -l nodes=1:ppn=8,walltime=12:00:00
cd $SCRATCH/example
module load intel gnu-parallel/20121022
parallel --jobs 8 < subjob.lst

$ qsub GPJob
2961985.gpc-sched

$ ls

GPJob GPJob.e2961985 GPJob.o2961985 subjob.lst
myapp run01 run02 run03
...

GNU Parallel Example

$ cd $SCRATCH/example

$ module load intel

$

icpc -O3 -xhost mycode.cc -o myapp

$ cat > subjob.lst
mkdir run01; cd run01; ../myapp 1 > out
mkdir run02; cd run02; ../myapp 2 > out
. . .
mkdir run32; cd run32; ../myapp 32 > out

$ cat > GPJob
#PBS -l nodes=1:ppn=8,walltime=12:00:00
cd $SCRATCH/example
module load intel gnu-parallel/20121022
parallel --jobs 8 < subjob.lst

$ qsub GPJob
2961985.gpc-sched

$ ls

GPJob GPJob.e2961985 GPJob.o2961985 subjob.lst
myapp run01 run02 run03
...

GNU Parallel Example

$ cd $SCRATCH/example

$ module load intel

$ icpc -O3 -xhost mycode.cc -o myapp

$

cat > subjob.lst
mkdir run01; cd run01; ../myapp 1 > out
mkdir run02; cd run02; ../myapp 2 > out
. . .
mkdir run32; cd run32; ../myapp 32 > out

$ cat > GPJob
#PBS -l nodes=1:ppn=8,walltime=12:00:00
cd $SCRATCH/example
module load intel gnu-parallel/20121022
parallel --jobs 8 < subjob.lst

$ qsub GPJob
2961985.gpc-sched

$ ls

GPJob GPJob.e2961985 GPJob.o2961985 subjob.lst
myapp run01 run02 run03
...

GNU Parallel Example

$ cd $SCRATCH/example

$ module load intel

$ icpc -O3 -xhost mycode.cc -o myapp

$ cat > subjob.lst
mkdir run01; cd run01; ../myapp 1 > out
mkdir run02; cd run02; ../myapp 2 > out
. . .
mkdir run32; cd run32; ../myapp 32 > out

$

cat > GPJob
#PBS -l nodes=1:ppn=8,walltime=12:00:00
cd $SCRATCH/example
module load intel gnu-parallel/20121022
parallel --jobs 8 < subjob.lst

$ qsub GPJob
2961985.gpc-sched

$ ls

GPJob GPJob.e2961985 GPJob.o2961985 subjob.lst
myapp run01 run02 run03
...

GNU Parallel Example

$ cd $SCRATCH/example

$ module load intel

$ icpc -O3 -xhost mycode.cc -o myapp

$ cat > subjob.lst
mkdir run01; cd run01; ../myapp 1 > out
mkdir run02; cd run02; ../myapp 2 > out
. . .
mkdir run32; cd run32; ../myapp 32 > out

$ cat > GPJob
#PBS -l nodes=1:ppn=8,walltime=12:00:00
cd $SCRATCH/example
module load intel gnu-parallel/20121022
parallel --jobs 8 < subjob.lst

$

qsub GPJob
2961985.gpc-sched

$ ls

GPJob GPJob.e2961985 GPJob.o2961985 subjob.lst
myapp run01 run02 run03
...

GNU Parallel Example

$ cd $SCRATCH/example

$ module load intel

$ icpc -O3 -xhost mycode.cc -o myapp

$ cat > subjob.lst
mkdir run01; cd run01; ../myapp 1 > out
mkdir run02; cd run02; ../myapp 2 > out
. . .
mkdir run32; cd run32; ../myapp 32 > out

$ cat > GPJob
#PBS -l nodes=1:ppn=8,walltime=12:00:00
cd $SCRATCH/example
module load intel gnu-parallel/20121022
parallel --jobs 8 < subjob.lst

$ qsub GPJob
2961985.gpc-sched

$

ls

GPJob GPJob.e2961985 GPJob.o2961985 subjob.lst
myapp run01 run02 run03
...

GNU Parallel Example

$ cd $SCRATCH/example

$ module load intel

$ icpc -O3 -xhost mycode.cc -o myapp

$ cat > subjob.lst
mkdir run01; cd run01; ../myapp 1 > out
mkdir run02; cd run02; ../myapp 2 > out
. . .
mkdir run32; cd run32; ../myapp 32 > out

$ cat > GPJob
#PBS -l nodes=1:ppn=8,walltime=12:00:00
cd $SCRATCH/example
module load intel gnu-parallel/20121022
parallel --jobs 8 < subjob.lst

$ qsub GPJob
2961985.gpc-sched

$ ls

GPJob GPJob.e2961985 GPJob.o2961985 subjob.lst
myapp run01 run02 run03
...

GNU Parallel Example

17 hours
42% utilization

⇒

10 hours
72% utilization

GNU Parallel Example

17 hours
42% utilization

⇒

10 hours
72% utilization

GNU Parallel Testimonial
http://memegenerator.net/instance/22638454

GNU Parallel Syntax

Main modes

1 Reading commands to be run in parallel from an input file.

parallel [OPTIONS] < CMDFILE

2 Reading command arguments from an input file.

parallel [OPTIONS] COMMAND [ARGUMENTS] < ARGFILE

This converts each line from the ARGFILE into the argument
of COMMAND to run in parallel. If present, in the ARGUMENTS

given to parallel, {} is replaced by each input line.

3 Giving command arguments on the command line.

parallel [OPTIONS] COMMAND [ARGUMENTS] ::: ARGLIST

Works as case 2, as if the ’words’ in the ARGLIST were in a file.

GNU Parallel Syntax

Main modes

1 Reading commands to be run in parallel from an input file.

parallel [OPTIONS] < CMDFILE

2 Reading command arguments from an input file.

parallel [OPTIONS] COMMAND [ARGUMENTS] < ARGFILE

This converts each line from the ARGFILE into the argument
of COMMAND to run in parallel. If present, in the ARGUMENTS

given to parallel, {} is replaced by each input line.

3 Giving command arguments on the command line.

parallel [OPTIONS] COMMAND [ARGUMENTS] ::: ARGLIST

Works as case 2, as if the ’words’ in the ARGLIST were in a file.

GNU Parallel Syntax

Main modes

1 Reading commands to be run in parallel from an input file.

parallel [OPTIONS] < CMDFILE

2 Reading command arguments from an input file.

parallel [OPTIONS] COMMAND [ARGUMENTS] < ARGFILE

This converts each line from the ARGFILE into the argument
of COMMAND to run in parallel. If present, in the ARGUMENTS

given to parallel, {} is replaced by each input line.

3 Giving command arguments on the command line.

parallel [OPTIONS] COMMAND [ARGUMENTS] ::: ARGLIST

Works as case 2, as if the ’words’ in the ARGLIST were in a file.

GNU Parallel Syntax

Common OPTIONS

--jobs NUM sets number of simultaneous subjobs.
Default: number of virtual cores, i.e. 16 on the GPC.

--joblog LOGFILE causes a record for each completed subjob
to be written to LOGFILE, with info on how long they took,
their exit status, etc.

--resume, combined with --joblog, continues a gnu-parallel
job that was killed prematurely.

--pipe splits stdin into chunks given to the stdin of each job.

--block-size NUM sets approx. number of bytes per chunk.

--L NUM sets number of lines in each chunks.

Resource utility beyond CPU cycles

Apart from CPU cycles, your runs will use other resources as well:

Network

Memory

File system

Of these, network is not too important for the serial runs that we
are considering here (no communication).

Memory

Each regular GPC compute node has about 14.5 GB available
(16GB - 1.5GB for the operating system)

There is no ‘swap’ space.

Do the 8–16 runs fit in memory?

Use fewer simultaneous runs if really needed.

Or request one of 80 nodes with 32 GB memory
(-l nodes=1:m32g:ppn=8).

Or request one of 2 nodes with 128 GB memory
(-q largemem).

Or explore parallization (MPI, OpenMP, pthreads).

File system

One shared file system

Good: optimized for large files

Good: your files are everywhere

Not-so-good: small files (and small file access) can be slow

Not-so-good: everybody can be affected.

Guidelines

Maximize size of files. Large block I/O optimal!

Minimize number of files. Makes filesystem more responsive!

Write binary format files: Faster I/O, less space.

Write and read big chunks at a time, in a linear fashion.

File system

One shared file system

Good: optimized for large files

Good: your files are everywhere

Not-so-good: small files (and small file access) can be slow

Not-so-good: everybody can be affected.

Guidelines

Maximize size of files. Large block I/O optimal!

Minimize number of files. Makes filesystem more responsive!

Write binary format files: Faster I/O, less space.

Write and read big chunks at a time, in a linear fashion.

Or use ramdisk

Ramdisk properties

Good: not shared so not affected by other GPC jobs

Good: does not care about small files

Good: low latency and high bandwidth

Not-so-good: not shared so you have to stage files in and out

Not-so-good: takes memory from your application

Up to 11GB of the memory of the node can be used as a local
storage: ramdisk.

Ramdisk

Memory real estate

P
R

O
C

E
S

S
 2

P
R

O
C

E
S

S
 3

P
R

O
C

E
S

S
 4

P
R

O
C

E
S

S
 5

P
R

O
C

E
S

S
 6

P
R

O
C

E
S

S
 7

P
R

O
C

E
S

S
 8

S
Y

S
T

E
M

T
E

M
P

.F
IL

E
S

R
A

M
D

IS
K

P
R

O
C

E
S

S
 1

If your GPC job runs out of memory, it simply crashes!

Ramdisk

Suggested use cases:

Your app creates many temp files that you do not need.
Put them on ramdisk instead and forget about them

Your app accesses data through random reads (e.g. database)
Put input data on ramdisk

Your application needs many small input files
Keep them in a tarball on $SCRATCH and untar into ramdisk

Your application creates many small output files
Write to ramdisk and tar result into a tarball on $SCRATCH

All provide you have enough memory real estate.

Ramdisk

Using ramdisk in a single-node GPC job is easy enough:

The ramdisk is located at the directory /dev/shm/.

Anything put in that directory is actually in memory.

Memory is shared on the node: all subjobs see the same
content.

Regular cp or tar commands in your job script can stage files
in and out.

Example

mkdir /dev/shm/work/
cp database.db subjob.lst /dev/shm/work/
cd /dev/shm/work
parallel --jobs 8 --joblog $SCRATCH/log < subjob.lst
tar cf $SCRATCH/result.tar *.out

Ramdisk

Using ramdisk in a single-node GPC job is easy enough:

The ramdisk is located at the directory /dev/shm/.

Anything put in that directory is actually in memory.

Memory is shared on the node: all subjobs see the same
content.

Regular cp or tar commands in your job script can stage files
in and out.

Example

mkdir /dev/shm/work/
cp database.db subjob.lst /dev/shm/work/
cd /dev/shm/work
parallel --jobs 8 --joblog $SCRATCH/log < subjob.lst
tar cf $SCRATCH/result.tar *.out

GNU Parallel On Multiple Nodes

If you have hundreds of serial subjobs that you want to run
concurrently, the approach above would require tens of scripts
to be submitted separately.

Luckily, GNU Parallel can distribute jobs over a number of
nodes.

GNU Parallel On Multiple Nodes

How do we do it?

GNU Parallel can be passed a file with the list of nodes to
which to ssh.

Such a file is in fact automatically generated by the
Moab/Torque scheduler and its name is made available in the
environment variable $PBS NODEFILE.

Important: Properly set the working directory on the other
nodes. Otherwise, the run tries to start from the wrong place
($HOME) and will likely fail.

GNU Parallel On Multiple Nodes

Relevant options

--sshloginfile FILE: FILE contains the hostnames to use.
You should give the option --sshloginfile $PBS NODEFILE.

--jobs NUM: Run NUM simultaneous subjobs per node.

--workdir DIR: The working directory on all nodes is DIR.

--env VAR copies environment variable VAR to other nodes.
Useful for threaded applications (OMP NUM THREADS).

--basefile FILE copies FILE to all nodes before starting
subjobs. Use an absolute path.

--nonall execute the given command on each node.

GNU Parallel On Multiple Nodes

Example (Twenty-five node GNU Parallel Job)

#PBS -l nodes=25:ppn=8,walltime=1:00:00
cd $SCRATCH/example
module load gnu-parallel/20121022
parallel --jobs 8 --sshloginfile $PBS NODEFILE \
--joblog progress.log --workdir $PWD < subjob.lst

This runs 200 subjobs at the same time on 25 nodes.
There should be at least a couple thousand subjobs in subjob.lst
for this to make sense.

How about ramdisk?

GNU Parallel On Multiple Nodes

Example (Twenty-five node GNU Parallel Job)

#PBS -l nodes=25:ppn=8,walltime=1:00:00
cd $SCRATCH/example
module load gnu-parallel/20121022
parallel --jobs 8 --sshloginfile $PBS NODEFILE \
--joblog progress.log --workdir $PWD < subjob.lst

This runs 200 subjobs at the same time on 25 nodes.
There should be at least a couple thousand subjobs in subjob.lst
for this to make sense.

How about ramdisk?

GNU Parallel On Multiple Nodes with Ramdisk

Ramdisks not shared among nodes.

Stage-in and stage-out become a bit more complicated.

Default GNU Parallel staging (e.g. --basefile) does not
account well for “master node” being a “compute node” too
(--basefile removes file afterward even on the master node).

parallel --sshloginfile $PBS NODEFILE --nonall COMMAND

very useful for stage-in and stage-out.

GNU Parallel On Multiple Nodes with Ramdisk

Stage in a file to each node

parallel --sshloginfile $PBS NODEFILE --nonall \
cp $SCRATCH/f /dev/shm/f

Untar a tar file to /dev/shm on each node

parallel --sshloginfile $PBS NODEFILE --nonall \
tar xf $SCRATCH/data.tar -C /dev/shm

Tar results to a tar file on scratch, one for each node

NDS=$(uniq $PBS NODEFILE|wc -l)
seq $NDS|parallel --sshloginfile $PBS NODEFILE -j1 \
tar cf $SCRATCH/result{}.tar -C /dev/shm *.out

GNU Parallel On Multiple Nodes with Ramdisk

Stage in a file to each node

parallel --sshloginfile $PBS NODEFILE --nonall \
cp $SCRATCH/f /dev/shm/f

Untar a tar file to /dev/shm on each node

parallel --sshloginfile $PBS NODEFILE --nonall \
tar xf $SCRATCH/data.tar -C /dev/shm

Tar results to a tar file on scratch, one for each node

NDS=$(uniq $PBS NODEFILE|wc -l)
seq $NDS|parallel --sshloginfile $PBS NODEFILE -j1 \
tar cf $SCRATCH/result{}.tar -C /dev/shm *.out

GNU Parallel On Multiple Nodes with Ramdisk

Stage in a file to each node

parallel --sshloginfile $PBS NODEFILE --nonall \
cp $SCRATCH/f /dev/shm/f

Untar a tar file to /dev/shm on each node

parallel --sshloginfile $PBS NODEFILE --nonall \
tar xf $SCRATCH/data.tar -C /dev/shm

Tar results to a tar file on scratch, one for each node

NDS=$(uniq $PBS NODEFILE|wc -l)
seq $NDS|parallel --sshloginfile $PBS NODEFILE -j1 \
tar cf $SCRATCH/result{}.tar -C /dev/shm *.out

GNU Parallel On Multiple Nodes with Ramdisk

Stage in a file to each node

parallel --sshloginfile $PBS NODEFILE --nonall \
cp $SCRATCH/f /dev/shm/f

Untar a tar file to /dev/shm on each node

parallel --sshloginfile $PBS NODEFILE --nonall \
tar xf $SCRATCH/data.tar -C /dev/shm

Tar results to a tar file on scratch, one for each node

NDS=$(uniq $PBS NODEFILE|wc -l)
seq $NDS|parallel --sshloginfile $PBS NODEFILE -j1 \
tar cf $SCRATCH/result{}.tar -C /dev/shm *.out

Notes

These were just examples of what you could do with parallel.

Submitting several bunches to single nodes is more failsafe,
since a node failure would only affect one node, rather than
all.

If memory allows it, run upto 16 runs per node. This utilizes
the HyperThreading capabilities of the Nehalem chips, often
leading to better throughput (but test!).

Shorter forms for parallel’s command line options

--sshloginfile --slf

--jobs -j

--workdir --wd

--block-size --block

--basefile --bf

Links

Serial Subjobs on the GPC:

wiki.scinethpc.ca/wiki/index.php/User Serial

Using Ramdisk on the GPC:

wiki.scinethpc.ca/wiki/index.php/User Ramdisk

Using GNU Parallel

www.gnu.org/software/parallel

www.gnu.org/software/parallel/man.html

www.youtube.com/playlist?list=PL284C9FF2488BC6D1

O. Tange, GNU Parallel – The Command-Line Power Tool,
;login: The USENIX Magazine, February 2011:42-47.

