
1/94 – Compute Ontario HPC Summer School 2016 – Toronto

Shared Memory Programming with OpenMP

Ramses van Zon
SciNet HPC Consortium

University of Toronto

July 11-12, 2016

2/94 – Compute Ontario HPC Summer School 2016 – Toronto

Outline

1. The OpenMP model: threads, memory, and performance

Hands On 1: Parallelizing daxpy

2. Reductions and load balancing

Hands-On 2: Mandelbrot set

3. Further OpenMP features

4. Heterogeneous computing with OpenMP

Assumed knowledge: C and/or Fortran scientific programming;
experience editing and compiling code in a Linux environment.

3/94 – Compute Ontario HPC Summer School 2016 – Toronto

The OpenMP programming model

4/94 – Compute Ontario HPC Summer School 2016 – Toronto

Shared Memory

One large chunk of memory,
different computing cores
acting on it. All ‘see’ same
data.

Any coordination done
through memory

Could use message passing,
but no need.

Each code is assigned a
thread of execution of a
single program that acts on
the data.

~ ~

~

~

n n

n

n

-� � -

?

6

6

?

Core 1 Core 2

Core 3

Core 4

Memory

5/94 – Compute Ontario HPC Summer School 2016 – Toronto

OpenMP

I For shared memory systems.

I Add parallelism to
functioning serial code.

I http://openmp.org

I Compiler, run-time env
does most of the work

I But we have to tell it how
to use variables, where to
run in parallel, . . .

I Mark parallel regions.

I Works by adding compiler
directives to code.

Invisible to non-openmp
compilers.

Incremental parallelism

5/94 – Compute Ontario HPC Summer School 2016 – Toronto

OpenMP

I For shared memory systems.

I Add parallelism to
functioning serial code.

I http://openmp.org

I Compiler, run-time env
does most of the work

I But we have to tell it how
to use variables, where to
run in parallel, . . .

I Mark parallel regions.

I Works by adding compiler
directives to code.

Invisible to non-openmp
compilers.

Incremental parallelism

5/94 – Compute Ontario HPC Summer School 2016 – Toronto

OpenMP

I For shared memory systems.

I Add parallelism to
functioning serial code.

I http://openmp.org

I Compiler, run-time env
does most of the work

I But we have to tell it how
to use variables, where to
run in parallel, . . .

I Mark parallel regions.

I Works by adding compiler
directives to code.
Invisible to non-openmp
compilers.

Incremental parallelism

5/94 – Compute Ontario HPC Summer School 2016 – Toronto

OpenMP

I For shared memory systems.

I Add parallelism to
functioning serial code.

I http://openmp.org

I Compiler, run-time env
does most of the work

I But we have to tell it how
to use variables, where to
run in parallel, . . .

I Mark parallel regions.

I Works by adding compiler
directives to code.
Invisible to non-openmp
compilers.

Incremental parallelism

6/94 – Compute Ontario HPC Summer School 2016 – Toronto

Compiler directives-based parallization

I OpenMP

I OpenACC
I Does for GPU programming what OpenMP does for threading
I Alternative to CUDA (but no free implementation yet).
I Similar incremental parallelism as for OpenMP
I Differs from OpenMP in that memory needs to be copied over

I Intel MIC Compilers
I MIC, or more proper, the Xeon Phi, is an Intel multicore

co-processor with its own memory.
I Host/Device setup is similar to the CPU, but internal

architecture is shared-memory x86.
I With the Intel compilers (v13+) you can use compiler

directives for offloading to the MIC as well.

I Compiler-specific vectorization hints

Much of this is in OpenMP 4, but not fully supported by
compilers.

7/94 – Compute Ontario HPC Summer School 2016 – Toronto

OpenMP basic operations

In code:

I In C, you add lines starting with #pragma omp.
This parallelizes the subsequent code block.

I In Fortran, you add lines starting with !$omp.
An !$omp end ... is needed to close the parallel region.

I These lines are skipped (for C, sometimes with a warning) by
compilers that do not support OpenMP.

When compiling:

I To turn on OpenMP support in gcc and gfortran, add the
-fopenmp flag to the compilation (and link!) commands.

When running:

I The environment variable OMP NUM THREADS determines how
many threads will be started in an OpenMP parallel block.

7/94 – Compute Ontario HPC Summer School 2016 – Toronto

OpenMP basic operations

In code:

I In C, you add lines starting with #pragma omp.
This parallelizes the subsequent code block.

I In Fortran, you add lines starting with !$omp.
An !$omp end ... is needed to close the parallel region.

I These lines are skipped (for C, sometimes with a warning) by
compilers that do not support OpenMP.

When compiling:

I To turn on OpenMP support in gcc and gfortran, add the
-fopenmp flag to the compilation (and link!) commands.

When running:

I The environment variable OMP NUM THREADS determines how
many threads will be started in an OpenMP parallel block.

7/94 – Compute Ontario HPC Summer School 2016 – Toronto

OpenMP basic operations

In code:

I In C, you add lines starting with #pragma omp.
This parallelizes the subsequent code block.

I In Fortran, you add lines starting with !$omp.
An !$omp end ... is needed to close the parallel region.

I These lines are skipped (for C, sometimes with a warning) by
compilers that do not support OpenMP.

When compiling:

I To turn on OpenMP support in gcc and gfortran, add the
-fopenmp flag to the compilation (and link!) commands.

When running:

I The environment variable OMP NUM THREADS determines how
many threads will be started in an OpenMP parallel block.

8/94 – Compute Ontario HPC Summer School 2016 – Toronto

OpenMP example

C: 1 helloworld/omp-hello-world.c

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n", omp get thread num());

}

}

Fortran: 1 helloworld/omp-hello-world-f.f90

program omp hello world

use omp lib

implicit none

print *, ’At start of program’

!$omp parallel

print *, ’Hello world from thread ’, omp get thread num(), ’!’

!$omp end parallel

end program omp hello world

9/94 – Compute Ontario HPC Summer School 2016 – Toronto

Getting started with this code

$ ssh USER@login.scinet.utoronto.ca -X #get into SciNet
$ ssh gpc01 -X #get on the GPC
$ qsub -l nodes=1:ppn=8,walltime=7:00:00 -q teach -X -I
... #get your own compute node
$ cd $SCRATCH
$ cp -r /scinet/course/ss2016/openmp .
$ cd openmp/code
$ source setup
$ cd 1 helloworld

10/94 – Compute Ontario HPC Summer School 2016 – Toronto

OpenMP example

$ gcc -fopenmp -o omp-hello-world omp-hello-world.c
or
$ gfortran -fopenmp -o omp-hello-world-f \
. omp-hello-world-f.f90
or
$ make omp-hello-world omp-hello-world-f

$ export OMP NUM THREADS=8
$./omp-hello-world
...
$ export OMP NUM THREADS=1
$./omp-hello-world
...
$ export OMP NUM THREADS=32
$./omp-hello-world
...

Let’s see what happens. . .

11/94 – Compute Ontario HPC Summer School 2016 – Toronto

OpenMP example
$ gcc -o omp-hello-world omp-hello-world.c -fopenmp
$ export OMP NUM THREADS=8
$./omp-hello-world
At start of program
Hello, world, from thread 0!
Hello, world, from thread 6!
Hello, world, from thread 5!
Hello, world, from thread 4!
Hello, world, from thread 2!
Hello, world, from thread 1!
Hello, world, from thread 7!
Hello, world, from thread 3!
$ export OMP NUM THREADS=1
$./omp-hello-world
At start of program
Hello, world, from thread 0!
$ export OMP NUM THREADS=32
$./omp-hello-world
At start of program
Hello, world, from thread 11!
Hello, world, from thread 1!
Hello, world, from thread 16!
...

12/94 – Compute Ontario HPC Summer School 2016 – Toronto

So what happened precisely?

I OMP NUM THREADS
threads were launched.

I Each prints “Hello, world
. . . ”;

I In seemingly random order.

I Only one “At start of
program”.

$ gcc -o omp-hello-world omp-hello-world.c -fopenmp
$ export OMP NUM THREADS=8
$./omp-hello-world
At start of program
Hello, world, from thread 0!
Hello, world, from thread 6!
Hello, world, from thread 5!
Hello, world, from thread 4!
Hello, world, from thread 2!
Hello, world, from thread 1!
Hello, world, from thread 7!
Hello, world, from thread 3!
$ export OMP NUM THREADS=1
$./omp-hello-world
At start of program
Hello, world, from thread 0!
$ export OMP NUM THREADS=32
$./omp-hello-world
At start of program
Hello, world, from thread 11!
Hello, world, from thread 1!
Hello, world, from thread 16!
...

13/94 – Compute Ontario HPC Summer School 2016 – Toronto

So what happened precisely?

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n", omp get thread num());

}

}

program omp hello world

use omp lib

implicit none

print *, ’At start of program’

!$omp parallel

print *, ’Hello world from thread ’, omp get thread num(), ’!’

!$omp end parallel

end program omp hello world

13/94 – Compute Ontario HPC Summer School 2016 – Toronto

So what happened precisely?

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n", omp get thread num());

}

}

program omp hello world

use omp lib

implicit none

print *, ’At start of program’

!$omp parallel

print *, ’Hello world from thread ’, omp get thread num(), ’!’

!$omp end parallel

end program omp hello world

Program starts normally (single thread)
@

@
@

@
@I

�
�
�

�
�	

13/94 – Compute Ontario HPC Summer School 2016 – Toronto

So what happened precisely?

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n", omp get thread num());

}

}

program omp hello world

use omp lib

implicit none

print *, ’At start of program’

!$omp parallel

print *, ’Hello world from thread ’, omp get thread num(), ’!’

!$omp end parallel

end program omp hello world

At start of parallel section, launching
OMP NUM THREADS threads,
Each executes the same code!

@
@I}

�
�

�
�

�	}

13/94 – Compute Ontario HPC Summer School 2016 – Toronto

So what happened precisely?

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n", omp get thread num());

}

}

program omp hello world

use omp lib

implicit none

print *, ’At start of program’

!$omp parallel

print *, ’Hello world from thread ’, omp get thread num(), ’!’

!$omp end parallel

end program omp hello world

At end of parallel section,
threads join back up,
Execution continues serially.

@
@I}

�
�

�
�

�	}

13/94 – Compute Ontario HPC Summer School 2016 – Toronto

So what happened precisely?

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n", omp get thread num());

}

}

program omp hello world

use omp lib

implicit none

print *, ’At start of program’

!$omp parallel

print *, ’Hello world from thread ’, omp get thread num(), ’!’

!$omp end parallel

end program omp hello world

Special function to find number
of current thread (first=0).

6

?

14/94 – Compute Ontario HPC Summer School 2016 – Toronto

OpenMP functions (from omp.h/omp lib)

By including omp.h, you get a smal number of omp functions:

I omp get thread num()

I omp get num threads()

I . . .

. 1 helloworld/omp-hello-world2.c

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d of %d!\n",

omp get thread num(),

omp get num threads());

}

}

omp get num threads() called by all threads.
Let’s see if we can fix that. . .

15/94 – Compute Ontario HPC Summer School 2016 – Toronto

OpenMP functions (from omp.h/omp lib)

. 1 helloworld/omp-hello-world3.c

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n",

omp get thread num());

}

printf("There were %d threads.\n", omp get num threads());

}

What do you think, will this work?

No:
Says 1 thread only!
Why?
Because that is true outside the parallel region!
Need to get the value from the parallel region somehow.

15/94 – Compute Ontario HPC Summer School 2016 – Toronto

OpenMP functions (from omp.h/omp lib)

. 1 helloworld/omp-hello-world3.c

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n",

omp get thread num());

}

printf("There were %d threads.\n", omp get num threads());

}

What do you think, will this work?
No:
Says 1 thread only!

Why?
Because that is true outside the parallel region!
Need to get the value from the parallel region somehow.

15/94 – Compute Ontario HPC Summer School 2016 – Toronto

OpenMP functions (from omp.h/omp lib)

. 1 helloworld/omp-hello-world3.c

#include <stdio.h>

#include <omp.h>

int main() {

printf("At start of program\n");

#pragma omp parallel

{

printf("Hello world from thread %d!\n",

omp get thread num());

}

printf("There were %d threads.\n", omp get num threads());

}

What do you think, will this work?
No:
Says 1 thread only!
Why?
Because that is true outside the parallel region!
Need to get the value from the parallel region somehow.

16/94 – Compute Ontario HPC Summer School 2016 – Toronto

Variables in OpenMP
Variables in parallel regions are a bit tricky.

#include <stdio.h>

#include <omp.h>

int main() {

int mythread, nthreads;

#pragma omp parallel default(none) shared(nthreads) private(mythread)

{

mythread = omp get thread num();

if (mythread == 0)

nthreads = omp get num threads();

}

printf("There were %d threads.\n", nthreads);

}

I Program runs, launches threads.

I Each thread gets copy of mythread.

I Only thread 0 writes to nthreads.

I Good idea to declare mythread locally! (avoids many bugs)

I 1 helloworld/omp-hello-world4.c

16/94 – Compute Ontario HPC Summer School 2016 – Toronto

Variables in OpenMP
Variables in parallel regions are a bit tricky.

#include <stdio.h>

#include <omp.h>

int main() {

int mythread, nthreads;

#pragma omp parallel default(none) shared(nthreads) private(mythread)

{

mythread = omp get thread num();

if (mythread == 0)

nthreads = omp get num threads();

}

printf("There were %d threads.\n", nthreads);

}

Variable declarations
�����

How used in parallel region

?

I Program runs, launches threads.

I Each thread gets copy of mythread.

I Only thread 0 writes to nthreads.

I Good idea to declare mythread locally! (avoids many bugs)

I 1 helloworld/omp-hello-world4.c

16/94 – Compute Ontario HPC Summer School 2016 – Toronto

Variables in OpenMP
Variables in parallel regions are a bit tricky.

#include <stdio.h>

#include <omp.h>

int main() {

int mythread, nthreads;

#pragma omp parallel default(none) shared(nthreads) private(mythread)

{

mythread = omp get thread num();

if (mythread == 0)

nthreads = omp get num threads();

}

printf("There were %d threads.\n", nthreads);

}

Variable declarations
�����

How used in parallel region

?

I default(none) can save you hours of debugging!
I shared: each thread sees it and can modify (be careful!).

Preserves value.
I private: each thread gets it own copy, invisible for others

Initial and final value undefined!
(Advanced: firstprivate, lastprivate – copy in/out.)

I Program runs, launches threads.
I Each thread gets copy of mythread.
I Only thread 0 writes to nthreads.
I Good idea to declare mythread locally! (avoids many bugs)

I 1 helloworld/omp-hello-world4.c

16/94 – Compute Ontario HPC Summer School 2016 – Toronto

Variables in OpenMP
Variables in parallel regions are a bit tricky.

#include <stdio.h>

#include <omp.h>

int main() {

int mythread, nthreads;

#pragma omp parallel default(none) shared(nthreads) private(mythread)

{

mythread = omp get thread num();

if (mythread == 0)

nthreads = omp get num threads();

}

printf("There were %d threads.\n", nthreads);

}

I Program runs, launches threads.

I Each thread gets copy of mythread.

I Only thread 0 writes to nthreads.

I Good idea to declare mythread locally! (avoids many bugs)

I 1 helloworld/omp-hello-world4.c

16/94 – Compute Ontario HPC Summer School 2016 – Toronto

Variables in OpenMP
Variables in parallel regions are a bit tricky.

#include <stdio.h>

#include <omp.h>

int main() {

int mythread, nthreads;

#pragma omp parallel default(none) shared(nthreads) private(mythread)

{

mythread = omp get thread num();

if (mythread == 0)

nthreads = omp get num threads();

}

printf("There were %d threads.\n", nthreads);

}

I Program runs, launches threads.

I Each thread gets copy of mythread.

I Only thread 0 writes to nthreads.

I Good idea to declare mythread locally! (avoids many bugs)

I 1 helloworld/omp-hello-world4.c

16/94 – Compute Ontario HPC Summer School 2016 – Toronto

Variables in OpenMP
Variables in parallel regions are a bit tricky.

#include <stdio.h>

#include <omp.h>

int main() {

int nthreads;

#pragma omp parallel default(none) shared(nthreads)

{

int mythread = omp get thread num();

if (mythread == 0)

nthreads = omp get num threads();

}

printf("There were %d threads.\n", nthreads);

}

I Program runs, launches threads.

I Each thread gets copy of mythread.

I Only thread 0 writes to nthreads.

I Good idea to declare mythread locally! (avoids many bugs)

I 1 helloworld/omp-hello-world4.c

17/94 – Compute Ontario HPC Summer School 2016 – Toronto

Variables in OpenMP - Fortran version

. 1 helloworld/omp-hello-world4-f.f90
program omp vars

use omp lib

implicit none

integer :: mythread, nthreads

!$omp parallel default(none) private(mythread) shared(nthreads)

mythread = omp get thread num()

if (mythread == 0) then

nthreads = omp get num threads()

endif

!$omp end parallel

print *,’Number of threads was ’, nthreads, ’.’

end program omp vars

18/94 – Compute Ontario HPC Summer School 2016 – Toronto

Single Execution in OpenMP

. 1 helloworld/omp-hello-world4.c

#include <stdio.h>

#include <omp.h>

int main() {

int nthreads;

#pragma omp parallel default(none) shared(nthreads)

{

int mythread = omp get thread num();

if (mythread == 0)

nthreads = omp get num threads();

}

printf("There were %d threads.\n", nthreads);

}

I Do we care that it’s thread 0 in particular that updates
nthreads?

I Often, we just want the first thread to go through, do not
care which one.

19/94 – Compute Ontario HPC Summer School 2016 – Toronto

Single Execution in OpenMP
#include <stdio.h> // 1 helloworld/omp-hello-world5.c

#include <omp.h>

int main() {

int nthreads;

#pragma omp parallel default(none) shared(nthreads)

#pragma omp single

nthreads = omp get num threads();

printf("There were %d threads.\n", nthreads);

}

program omp vars

use omp lib

implicit none

integer :: nthreads

!$omp parallel default(none) shared(nthreads)

!$omp single

nthreads = omp get num threads()

!$omp end single

!$omp end parallel

print *,’Number of threads was ’, nthreads, ’.’

end program omp vars

20/94 – Compute Ontario HPC Summer School 2016 – Toronto

Loops in OpenMP

21/94 – Compute Ontario HPC Summer School 2016 – Toronto

Loops in OpenMP

Consider following openmp programs with a loop.

#include <stdio.h>

#include <omp.h>

int main() {

int i, mythread;

#pragma omp parallel default(none)\

XXXXX(i) private(mythread)

{

mythread = omp get thread num();

for (i=0; i<16; i++)

printf("Thread %d gets i=%d\n",

XXXXXXXmythread, i);

}

}

program omp loop

use omp lib

implicit none

integer :: i, mythread

!$omp parallel default(none) &

!$omp XXXX(i) private(mythread)

mythread = omp get thread num()

do i=1,16

print *, ’thread ’, mythread, &

XXXXXXXX ’ gets i=’, i

enddo

!$omp end parallel

end program omp loop

2 loop/omp-loop.c 2 loop/omp-loop-f.f90

How should we declare i, as private or as shared?
What would you imagine this does when run with e.g.
OMP NUM THREADS=8?

21/94 – Compute Ontario HPC Summer School 2016 – Toronto

Loops in OpenMP

Consider following openmp programs with a loop.

#include <stdio.h>

#include <omp.h>

int main() {

int i, mythread;

#pragma omp parallel default(none)\

XXXXX(i) private(mythread)

{

mythread = omp get thread num();

for (i=0; i<16; i++)

printf("Thread %d gets i=%d\n",

XXXXXXXmythread, i);

}

}

program omp loop

use omp lib

implicit none

integer :: i, mythread

!$omp parallel default(none) &

!$omp XXXX(i) private(mythread)

mythread = omp get thread num()

do i=1,16

print *, ’thread ’, mythread, &

XXXXXXXX ’ gets i=’, i

enddo

!$omp end parallel

end program omp loop

2 loop/omp-loop.c 2 loop/omp-loop-f.f90

How should we declare i, as private or as shared?
What would you imagine this does when run with e.g.
OMP NUM THREADS=8?

21/94 – Compute Ontario HPC Summer School 2016 – Toronto

Loops in OpenMP

Consider following openmp programs with a loop.

#include <stdio.h>

#include <omp.h>

int main() {

int i, mythread;

#pragma omp parallel default(none)\

XXXXX(i) private(mythread)

{

mythread = omp get thread num();

for (i=0; i<16; i++)

printf("Thread %d gets i=%d\n",

XXXXXXXmythread, i);

}

}

program omp loop

use omp lib

implicit none

integer :: i, mythread

!$omp parallel default(none) &

!$omp XXXX(i) private(mythread)

mythread = omp get thread num()

do i=1,16

print *, ’thread ’, mythread, &

XXXXXXXX ’ gets i=’, i

enddo

!$omp end parallel

end program omp loop

2 loop/omp-loop.c 2 loop/omp-loop-f.f90

How should we declare i, as private or as shared?

What would you imagine this does when run with e.g.
OMP NUM THREADS=8?

21/94 – Compute Ontario HPC Summer School 2016 – Toronto

Loops in OpenMP

Consider following openmp programs with a loop.

#include <stdio.h>

#include <omp.h>

int main() {

int i, mythread;

#pragma omp parallel default(none)\

XXXXX(i) private(mythread)

{

mythread = omp get thread num();

for (i=0; i<16; i++)

printf("Thread %d gets i=%d\n",

XXXXXXXmythread, i);

}

}

program omp loop

use omp lib

implicit none

integer :: i, mythread

!$omp parallel default(none) &

!$omp XXXX(i) private(mythread)

mythread = omp get thread num()

do i=1,16

print *, ’thread ’, mythread, &

XXXXXXXX ’ gets i=’, i

enddo

!$omp end parallel

end program omp loop

2 loop/omp-loop.c 2 loop/omp-loop-f.f90

How should we declare i, as private or as shared?
What would you imagine this does when run with e.g.
OMP NUM THREADS=8?

21/94 – Compute Ontario HPC Summer School 2016 – Toronto

Loops in OpenMP

Consider following openmp programs with a loop.

#include <stdio.h>

#include <omp.h>

int main() {

int i, mythread;

#pragma omp parallel default(none)\

XXXXX(i) private(mythread)

{

mythread = omp get thread num();

for (i=0; i<16; i++)

printf("Thread %d gets i=%d\n",

XXXXXXXmythread, i);

}

}

program omp loop

use omp lib

implicit none

integer :: i, mythread

!$omp parallel default(none) &

!$omp XXXX(i) private(mythread)

mythread = omp get thread num()

do i=1,16

print *, ’thread ’, mythread, &

XXXXXXXX ’ gets i=’, i

enddo

!$omp end parallel

end program omp loop

2 loop/omp-loop.c 2 loop/omp-loop-f.f90

How should we declare i, as private or as shared?
What would you imagine this does when run with e.g.
OMP NUM THREADS=8?

22/94 – Compute Ontario HPC Summer School 2016 – Toronto

Worksharing constructs in OpenMP

I We don’t generally want tasks to do exactly the same thing.

I Want to partition a problem into pieces, each thread works on
a piece.

I Most scientific programming full of work-heavy loops.

I OpenMP has a work-sharing construct: omp for (or omp do).

#include <stdio.h>

#include <omp.h>

int main() {

int i, mythread;

#pragma omp parallel default(none) XXXX(i) private(mythread)

{

mythread = omp get thread num();

#pragma omp for

for (i=0; i<16; i++)

printf("Thread %d gets i=%d\n",mythread,i);

}

}

2 loop/omp-loop2.c

22/94 – Compute Ontario HPC Summer School 2016 – Toronto

Worksharing constructs in OpenMP

I We don’t generally want tasks to do exactly the same thing.

I Want to partition a problem into pieces, each thread works on
a piece.

I Most scientific programming full of work-heavy loops.

I OpenMP has a work-sharing construct: omp for (or omp do).

#include <stdio.h>

#include <omp.h>

int main() {

int i, mythread;

#pragma omp parallel default(none) XXXX(i) private(mythread)

{

mythread = omp get thread num();

#pragma omp for

for (i=0; i<16; i++)

printf("Thread %d gets i=%d\n",mythread,i);

}

}

2 loop/omp-loop2.c

23/94 – Compute Ontario HPC Summer School 2016 – Toronto

Fortran version

program omp loop

use omp lib

implicit none

integer :: i, mythread

!$omp parallel default(none) XXXX(i) private(mythread)

mythread = omp get thread num()

!$omp do

do i=1,16

print *, ’thread ’, mythread, ’ gets i=’, i

enddo

!$omp end do

!$omp end parallel

end program omp loop

2 loop/omp-loop2-f.f90

24/94 – Compute Ontario HPC Summer School 2016 – Toronto

Worksharing constructs in OpenMP

I omp for/omp do construct
breaks up the iterations by
thread.

I If doesn’t divide evenly, does
the best it can.

I Allows easy breaking up of
work!

I Advanced: can break up work
of arbitrary blocks of code
with omp task construct.

$./omp-loop2

thread 3 gets i=6

thread 3 gets i=7

thread 4 gets i=8

thread 4 gets i=9

thread 5 gets i=10

thread 5 gets i=11

thread 6 gets i=12

thread 6 gets i=13

thread 1 gets i=2

thread 1 gets i=3

thread 0 gets i=0

thread 0 gets i=1

thread 2 gets i=4

thread 2 gets i=5

thread 7 gets i=14

thread 7 gets i=15

$

25/94 – Compute Ontario HPC Summer School 2016 – Toronto

Less trivial example: DAXPY

I multiply a vector by a
scalar, add a vector.

I (a X plus Y, in double
precision)

I Given serial
implementation, will start
adding OpenMP

I daxpy.c or daxpy.f90

I cd 3 daxpy; make daxpy or
make daxpy-f

z = ax + y

Warning

This is a common linear algebra construct that you really shouldn’t
implement yourself. Various so-called BLAS implementations will
do a much better job than you. But good for illustration.

26/94 – Compute Ontario HPC Summer School 2016 – Toronto

#include <stdio.h>
#include <pca utils.h>
void fill(int n, double* x, double* y) {
for (int i=0; i<n; i++) {
x[i] = (double)i*i;
y[i] = (double)(i+1)*(i+1);

}
}
void daxpy(int n, double a, double *x, double *y, double *z) {
for (int i=0; i<n; i++)
z[i] += a*x[i] +y[i];

}
int main() {
pca time tt;
int n=100000000;
double a = 5./3.;
double *x=vector(n), *y=vector(n), *z=vector(n);
for(int i=0;i<n;i++) z[i]=0;
tick(&tt);
daxpy(n,a,x,y,z);
tock(&tt);
free(z); free(y); free(x);

}

HANDS-ON: Try OpenMP-ing daxpy. . .

26/94 – Compute Ontario HPC Summer School 2016 – Toronto

#include <stdio.h>
#include <pca utils.h>
void fill(int n, double* x, double* y) {
for (int i=0; i<n; i++) {
x[i] = (double)i*i;
y[i] = (double)(i+1)*(i+1);

}
}
void daxpy(int n, double a, double *x, double *y, double *z) {
for (int i=0; i<n; i++)
z[i] += a*x[i] +y[i];

}
int main() {
pca time tt;
int n=100000000;
double a = 5./3.;
double *x=vector(n), *y=vector(n), *z=vector(n);
for(int i=0;i<n;i++) z[i]=0;
tick(&tt);
daxpy(n,a,x,y,z);
tock(&tt);
free(z); free(y); free(x);

}

Utilities for memory and timingH
HH

H
HH

H
HH

H
HHY

HANDS-ON: Try OpenMP-ing daxpy. . .

26/94 – Compute Ontario HPC Summer School 2016 – Toronto

#include <stdio.h>
#include <pca utils.h>
void fill(int n, double* x, double* y) {
for (int i=0; i<n; i++) {
x[i] = (double)i*i;
y[i] = (double)(i+1)*(i+1);

}
}
void daxpy(int n, double a, double *x, double *y, double *z) {
for (int i=0; i<n; i++)
z[i] += a*x[i] +y[i];

}
int main() {
pca time tt;
int n=100000000;
double a = 5./3.;
double *x=vector(n), *y=vector(n), *z=vector(n);
for(int i=0;i<n;i++) z[i]=0;
tick(&tt);
daxpy(n,a,x,y,z);
tock(&tt);
free(z); free(y); free(x);

}

Fill arrays with calculated values.�

HANDS-ON: Try OpenMP-ing daxpy. . .

26/94 – Compute Ontario HPC Summer School 2016 – Toronto

#include <stdio.h>
#include <pca utils.h>
void fill(int n, double* x, double* y) {
for (int i=0; i<n; i++) {
x[i] = (double)i*i;
y[i] = (double)(i+1)*(i+1);

}
}
void daxpy(int n, double a, double *x, double *y, double *z) {
for (int i=0; i<n; i++)
z[i] += a*x[i] +y[i];

}
int main() {
pca time tt;
int n=100000000;
double a = 5./3.;
double *x=vector(n), *y=vector(n), *z=vector(n);
for(int i=0;i<n;i++) z[i]=0;
tick(&tt);
daxpy(n,a,x,y,z);
tock(&tt);
free(z); free(y); free(x);

}

Do calculation.������)

HANDS-ON: Try OpenMP-ing daxpy. . .

26/94 – Compute Ontario HPC Summer School 2016 – Toronto

#include <stdio.h>
#include <pca utils.h>
void fill(int n, double* x, double* y) {
for (int i=0; i<n; i++) {
x[i] = (double)i*i;
y[i] = (double)(i+1)*(i+1);

}
}
void daxpy(int n, double a, double *x, double *y, double *z) {
for (int i=0; i<n; i++)
z[i] += a*x[i] +y[i];

}
int main() {
pca time tt;
int n=100000000;
double a = 5./3.;
double *x=vector(n), *y=vector(n), *z=vector(n);
for(int i=0;i<n;i++) z[i]=0;
tick(&tt);
daxpy(n,a,x,y,z);
tock(&tt);
free(z); free(y); free(x);

}

Driver (setup, call, timing).�

HANDS-ON: Try OpenMP-ing daxpy. . .

26/94 – Compute Ontario HPC Summer School 2016 – Toronto

#include <stdio.h>
#include <pca utils.h>
void fill(int n, double* x, double* y) {
for (int i=0; i<n; i++) {
x[i] = (double)i*i;
y[i] = (double)(i+1)*(i+1);

}
}
void daxpy(int n, double a, double *x, double *y, double *z) {
for (int i=0; i<n; i++)
z[i] += a*x[i] +y[i];

}
int main() {
pca time tt;
int n=100000000;
double a = 5./3.;
double *x=vector(n), *y=vector(n), *z=vector(n);
for(int i=0;i<n;i++) z[i]=0;
tick(&tt);
daxpy(n,a,x,y,z);
tock(&tt);
free(z); free(y); free(x);

}

HANDS-ON: Try OpenMP-ing daxpy. . .

27/94 – Compute Ontario HPC Summer School 2016 – Toronto

HANDS-ON 1:

Parallelize daxpy with OpenMP:
Edit the files omp-daxpy.c or omp-daxpy.f90.
Compile with make
Also do the scaling analysis!

28/94 – Compute Ontario HPC Summer School 2016 – Toronto

void daxpy(int n, double a, double *x, double *y, double *z) {

#pragma omp parallel default(none) shared(n,x,y,a,z) private(i)

{

#pragma omp for

for (int i=0; i<n; i++)

z[i] += a * x[i] + y[i];
}

}

subroutine calc daxpy(n, a, x, y, z)

implicit none

integer, intent(in) :: n

double precision, intent(in) :: a

double precision, dimension(n), intent(out) :: x,y,z

integer :: i

!$omp parallel default(none) private(i) shared(a,x,b,y,z)

!$omp do

do i=1,n

z(i) = a*x(i) + y(i)

enddo

!$omp end parallel

end subroutine

29/94 – Compute Ontario HPC Summer School 2016 – Toronto

30/94 – Compute Ontario HPC Summer School 2016 – Toronto

Reductions in OpenMP

31/94 – Compute Ontario HPC Summer School 2016 – Toronto

Dot Product

I Dot product of two vectors

I Implement this, first
serially, then with OpenMP

I ndot.c or ndot.f90

I make ndot or make fndot

I Tells time, answer, correct
answer.

n = ~x · ~y

=
∑

i

xi yi

$./ndot

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 4.9254e-02 seconds.

32/94 – Compute Ontario HPC Summer School 2016 – Toronto

Dot Product - serial
#include <stdio.h>

#include "pca utils.h"

double ndot(int n, double *x, double *y){

double tot=0;

for (int i=0; i<n; i++)

tot += x[i] * y[i];

return tot;

}

int main() {

int n=1e7;

double *x = vector(n), *y = vector(n);

for (int i=0; i<n; i++)

x[i] = y[i] = i;

double nn=n-1;

double ans=nn*(nn+1)*(2*nn+1)/6.0;

pca time tt;

tick(&tt);

double dot=ndot(n,x,y);

printf("Dot product is %14.4e (vs %14.4e) for n=%d.\n"

"Took %12.4e secs.\n", dot, ans, n, tocksilent(&tt));

}

$ make ndot

$./ndot

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 4.9254e-02 secs.

32/94 – Compute Ontario HPC Summer School 2016 – Toronto

Dot Product - serial
#include <stdio.h>

#include "pca utils.h"

double ndot(int n, double *x, double *y){

double tot=0;

for (int i=0; i<n; i++)

tot += x[i] * y[i];

return tot;

}

int main() {

int n=1e7;

double *x = vector(n), *y = vector(n);

for (int i=0; i<n; i++)

x[i] = y[i] = i;

double nn=n-1;

double ans=nn*(nn+1)*(2*nn+1)/6.0;

pca time tt;

tick(&tt);

double dot=ndot(n,x,y);

printf("Dot product is %14.4e (vs %14.4e) for n=%d.\n"

"Took %12.4e secs.\n", dot, ans, n, tocksilent(&tt));

}

$ make ndot

$./ndot

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 4.9254e-02 secs.

33/94 – Compute Ontario HPC Summer School 2016 – Toronto

Towards A Parallel Dot Product

I We could clearly parallelize the loop.

I We need the sum from everybody.

I We could make tot shared, then all threads can add to it.

double ndot(int n, double *x, double *y){

double tot=0;

#pragma omp parallel for default(none) shared(tot,n,x,y)

for (int i=0; i<n; i++)

tot += x[i] * y[i];

return tot;

}

$ make omp ndot race

$ export OMP NUM THREADS=8

$./omp ndot race

Dot product is 1.1290e+20

(vs 3.3333e+20) for n=10000000.

Took 5.2628e-02 secs.

Wrong answer, and not much faster!

34/94 – Compute Ontario HPC Summer School 2016 – Toronto

Race Condition - why it’s wrong

I Classical parallel bug.

I Multiple writers to some
shared resource.

I Can be very subtle, and
only appear intermittently.

I Your program can have a
bug but not display any
symptoms for small runs!

I Primarily a problem with
shared memory.

tot = 0
Thread 0: Thread 1:
add 1 add 2

read tot(=0)
into register

reg = reg+1 read tot(=0)
into register

store reg(=1) reg=reg+2
into tot

store reg(=2)
into tot

tot = 2

34/94 – Compute Ontario HPC Summer School 2016 – Toronto

Race Condition - why it’s wrong

I Classical parallel bug.

I Multiple writers to some
shared resource.

I Can be very subtle, and
only appear intermittently.

I Your program can have a
bug but not display any
symptoms for small runs!

I Primarily a problem with
shared memory.

tot = 0
Thread 0: Thread 1:
add 1 add 2

read tot(=0)
into register

reg = reg+1 read tot(=0)
into register

store reg(=1) reg=reg+2
into tot

store reg(=2)
into tot

tot = 2

34/94 – Compute Ontario HPC Summer School 2016 – Toronto

Race Condition - why it’s wrong

I Classical parallel bug.

I Multiple writers to some
shared resource.

I Can be very subtle, and
only appear intermittently.

I Your program can have a
bug but not display any
symptoms for small runs!

I Primarily a problem with
shared memory.

tot = 0
Thread 0: Thread 1:
add 1 add 2

read tot(=0)
into register

reg = reg+1 read tot(=0)

into register

store reg(=1) reg=reg+2
into tot

store reg(=2)
into tot

tot = 2

34/94 – Compute Ontario HPC Summer School 2016 – Toronto

Race Condition - why it’s wrong

I Classical parallel bug.

I Multiple writers to some
shared resource.

I Can be very subtle, and
only appear intermittently.

I Your program can have a
bug but not display any
symptoms for small runs!

I Primarily a problem with
shared memory.

tot = 0
Thread 0: Thread 1:
add 1 add 2

read tot(=0)
into register

reg = reg+1 read tot(=0)
into register

store reg(=1) reg=reg+2
into tot

store reg(=2)
into tot

tot = 2

34/94 – Compute Ontario HPC Summer School 2016 – Toronto

Race Condition - why it’s wrong

I Classical parallel bug.

I Multiple writers to some
shared resource.

I Can be very subtle, and
only appear intermittently.

I Your program can have a
bug but not display any
symptoms for small runs!

I Primarily a problem with
shared memory.

tot = 0
Thread 0: Thread 1:
add 1 add 2

read tot(=0)
into register

reg = reg+1 read tot(=0)
into register

store reg(=1) reg=reg+2
into tot

store reg(=2)
into tot

tot = 2

34/94 – Compute Ontario HPC Summer School 2016 – Toronto

Race Condition - why it’s wrong

I Classical parallel bug.

I Multiple writers to some
shared resource.

I Can be very subtle, and
only appear intermittently.

I Your program can have a
bug but not display any
symptoms for small runs!

I Primarily a problem with
shared memory.

tot = 0
Thread 0: Thread 1:
add 1 add 2

read tot(=0)
into register

reg = reg+1 read tot(=0)
into register

store reg(=1) reg=reg+2
into tot

store reg(=2)
into tot

tot = 2

35/94 – Compute Ontario HPC Summer School 2016 – Toronto

Race Condition - why it’s slow

I Multiple cores repeatedly
trying to read, access, store
same variable in memory.

I Not (such) a problem for
constants (read only); but a
big problem for writing.

I Sections of arrays – better.

~ ~

~

~

n n

n

n

tot- �
?

6

� -

6

?

36/94 – Compute Ontario HPC Summer School 2016 – Toronto

OpenMP critical construct

I Defines a critical region.

I Only one thread can be
operating within this region
at a time.

I Keeps modifications to
shared resources safe.

I #pragma omp critical

I !$omp critical

!$omp end critical

double ndot(int n,double*x,double*y)

{

double tot=0;

#pragma omp parallel for \

default(none) shared(tot,n,x,y)

for (int i=0; i<n; i++)

#pragma omp critical

tot += x[i] * y[i];

return tot;

}

$ make omp ndot critical

$ export OMP NUM THREADS=8

$./omp ndot critical

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 5.1377e+00 secs.

Correct, but 100x slower than serial version!

37/94 – Compute Ontario HPC Summer School 2016 – Toronto

OpenMP atomic construct

I Most hardware has support
for atomic instructions
(indivisible so cannot get
interrupted)

I Small subset, but
load/add/stor usually one.

I Not as general as critical

I Much lower overhead.

I #pragma omp atomic

[read|write|update|capture]

I !$omp atomic

[read|write|update|capture]

double ndot(int n,double*x,double*y)

{

double tot=0;

#pragma omp parallel for \

default(none) shared(tot,n,x,y)

for (int i=0; i<n; i++)

#pragma omp atomic update

tot += x[i] * y[i];

return tot;

}

$ make omp ndot atomic $ export

OMP NUM THREADS=8

$./omp ndot atomic

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 8.5156e-01 secs.

Correct, and better – only 16x slower than serial.

38/94 – Compute Ontario HPC Summer School 2016 – Toronto

How should we fix the slowdown?

I Local sums.

I Each processor sums its
local values (107/P
additions).

I And then sums to tot (only
P additions with critical or
atomic. . .

n = ~x · ~y

=
∑

i

xi yi

=
∑
p

(∑
i

xi yi

)

39/94 – Compute Ontario HPC Summer School 2016 – Toronto

Local variables
tot = 0;

#pragma omp parallel shared(x,y,n,tot)

{

int mytot = 0;

#pragma omp for

for (int i=0; i<n; i++)

mytot += x[i]*y[i];

#pragma omp atomic update

tot += mytot;

}

ndot = 0.

!$omp parallel shared(x,y,n,ndot) &

!$omp private(i,mytot)

mytot = 0.

!$omp do

do i=1,n

mytot = mytot + x(i)*y(i)

enddo

!$omp atomic update

ndot = ndot + mytot

!$omp end parallel

$ export OMP NUM THREADS=8

$./omp ndot local

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 1.7902-02 seconds.

Now we’re talking! 2.77x faster.

40/94 – Compute Ontario HPC Summer School 2016 – Toronto

OpenMP Reduction Operations

I This is such a common
operation, this is something
built into OpenMP to
handle it.

I “Reduction” variables - like
shared or private.

I Can support several types
of operations: - + * . . .

I omp ndot reduction.c,
fomp ndot reduction.f90

41/94 – Compute Ontario HPC Summer School 2016 – Toronto

OpenMP Reduction Operations

tot = 0;

#pragma omp parallel \

shared(x,y,n) reduction(+:tot)

{

#pragma omp for

for (int i=0; i<n; i++)

tot += x[i]*y[i];

}

ndot = 0.

!$omp parallel shared(x,y,n) &

!$omp private(i) reduction(+:ndot)

!$omp do

do i=1,n

ndot = ndot + x(i)*y(i)

enddo

!$omp end parallel

$ export OMP NUM THREADS=8

$./omp ndot local

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 1.8134-02 seconds.

Same speed, simpler code!

42/94 – Compute Ontario HPC Summer School 2016 – Toronto

OpenMP Reduction Operations

tot = 0;

#pragma omp parallel for \

shared(x,y,n) reduction(+:tot)

for (int i=0; i<n; i++)

tot += x[i]*y[i];

ndot = 0.

!$omp parallel do shared(x,y,n) &

!$omp private(i) reduction(+:ndot)

do i=1,n

ndot = ndot + x(i)*y(i)

enddo

!$omp end parallel

$ export OMP NUM THREADS=8

$./omp ndot local

Dot product is 3.3333e+20

(vs 3.3333e+20) for n=10000000.

Took 1.8928e-02 seconds.

Same speed, simpler code!

43/94 – Compute Ontario HPC Summer School 2016 – Toronto

Performance

I We threw in 8 cores, got a factor of 3 speedup. Why?

I Often we are limited not by CPU power but by how quickly
we can feed CPUs.

I For this problem, we had 107 long vectors, with 2 numbers 8
bytes long flowing through in 0.036 seconds.

I Combined bandwidth from main memory was 4.3 GB/s. Not
far off of what we could hope for on this architecture.

I One of the keys to good OpenMP performance is using data
when we have it in cache. Complicated functions: easy. Low
work-per-element (dot product, FFT): hard.

44/94 – Compute Ontario HPC Summer School 2016 – Toronto

Memory Access

I Processors work on local bits of memory in their cache.

I Cache is small and fast. Main memory is big, but slow.

I There is a large latency in getting things from main memory
— often hundreds of clock cycles. The fewer times we access
main memory, the faster we will go.

I Computers bring in chunks of memory at a time. If you access
data in contiguous memory chunks, much of it may already be
in cache. Always try to do this - serial or parallel.

I C - last index is rapidly varying. Fortran first index.

45/94 – Compute Ontario HPC Summer School 2016 – Toronto

Memory Access

I Memory access is important for serial programs, but can
become particularly important in OpenMP

I There is typically a limited bandwidth to main memory. If it
has to be shared 2, 4, or 8 ways, it becomes especially critical
to access it sensibly.

I Note on shared variables in OpenMP: If you aren’t changing
them, the compiler can copy the shared variable to local cache
and no performance hit. Modifying shared variables is
expensive - we have already seen this with the dot product.

46/94 – Compute Ontario HPC Summer School 2016 – Toronto

Load Balancing in OpenMP

47/94 – Compute Ontario HPC Summer School 2016 – Toronto

Load Balancing in OpenMP

I So far every iteration of the loop had the same amount of
work.

I Not always the case

I Sometimes cannot predict beforehand how unbalanced the
problem is

OpenMP has work sharing construct that allow you do statically or
dynamically balance the load.

48/94 – Compute Ontario HPC Summer School 2016 – Toronto

Example - Mandelbrot Set

I Mandelbrot set simple example
of non-balanced problem.

I Defined as complex points a
where |b∞| finite, with b0 = 0
and bn+1 = b2

n + a.
If |bn| > 2, point diverges.

I Calculation:
I pick some nmax
I iterate for each point a, see

if crosses 2.
I Plot n or nmax as colour.

Outside of set, points diverge
quickly (2-3 steps).
Inside, we have to do lots of
work (1000s steps).

I make mandel; ./mandel

Lots of work

Little work
�

�	

6

49/94 – Compute Ontario HPC Summer School 2016 – Toronto

HANDS-ON 2:
Use OpenMP to parallelize the main loop in mandel.c or
mandel-f.f90.
Perform scaling analysis.

50/94 – Compute Ontario HPC Summer School 2016 – Toronto

First OpenMP Mandelbrot Set

I Default work sharing breaks N
iterations into

∑
N/nthreads

contiguous chunks and assigns
them to threads.

I But now threads 7,6,5 will be
done and sitting idle while
threads 3 and 4 work alone. . .

I Inefficient use of resources.

Serial 0.63s

Nthreads=8 0.29s

Speedup 2.2x

Efficiency 27%

0 1 2 3 4 5 6 7

800x800 pix; N/nthreads ∼ 100x800

50/94 – Compute Ontario HPC Summer School 2016 – Toronto

First OpenMP Mandelbrot Set

I Default work sharing breaks N
iterations into

∑
N/nthreads

contiguous chunks and assigns
them to threads.

I But now threads 7,6,5 will be
done and sitting idle while
threads 3 and 4 work alone. . .

I Inefficient use of resources.

Serial 0.63s

Nthreads=8 0.29s

Speedup 2.2x

Efficiency 27%

0 1 2 3 4 5 6 7

800x800 pix; N/nthreads ∼ 100x800

51/94 – Compute Ontario HPC Summer School 2016 – Toronto

Scheduling constructs in OpenMP

I Default: each thread gets a big consecutive chunk of the loop.
Often better to give each thread many smaller
interleaved chunks.

I Can add schedule clause to omp for to change work sharing.

I We can decide either at compile-time (static schedule) or
run-time (dynamic schedule) how work will be split.

I #pragma omp for schedule(static, m) gives m consecutive
loop elements to each thread instead of a big chunk.

I With schedule(dynamic, m), each thread will work through
m loop elements, then go to the OpenMP run-time system
and ask for more.

I Load balancing (possibly) better with dynamic, but larger
overhead than with static.

52/94 – Compute Ontario HPC Summer School 2016 – Toronto

HANDS-ON 3:
Use the OpenMP scheduling constructs to try and make mandel

more efficient.

53/94 – Compute Ontario HPC Summer School 2016 – Toronto

Second Try OpenMP Mandelbrot Set

I Can change the chunk size
different from ∼ N/nthreads

I In this case, more columns –
work distributed a bit better.

I Now, for instance, chunk size
50, and thread 7 gets both a
big work chunk and a little one:

#pragma omp for schedule(static,50)

or
!$omp do schedule(static,50)

Serial 0.63s

Nthreads=8 0.15s

Speedup 4.2x

Efficiency 52%

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

800x800 pix; each threads: 50x800

53/94 – Compute Ontario HPC Summer School 2016 – Toronto

Second Try OpenMP Mandelbrot Set

I Can change the chunk size
different from ∼ N/nthreads

I In this case, more columns –
work distributed a bit better.

I Now, for instance, chunk size
50, and thread 7 gets both a
big work chunk and a little one:

#pragma omp for schedule(static,50)

or
!$omp do schedule(static,50)

Serial 0.63s

Nthreads=8 0.15s

Speedup 4.2x

Efficiency 52%

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

800x800 pix; each threads: 50x800

54/94 – Compute Ontario HPC Summer School 2016 – Toronto

Third Try: Schedule dynamic

I Break up into many pieces and
hand them to threads when
they are ready.

I Dynamic scheduling.

I Increases overhead, decreases
idling threads.

I Can also choose chunk size.

#pragma omp for schedule(dynamic)

or
!$omp do schedule(dynamic)

Serial 0.63s

Nthreads=8 0.10s

Speedup 6.3x

Efficiency 79%

54/94 – Compute Ontario HPC Summer School 2016 – Toronto

Third Try: Schedule dynamic

I Break up into many pieces and
hand them to threads when
they are ready.

I Dynamic scheduling.

I Increases overhead, decreases
idling threads.

I Can also choose chunk size.

#pragma omp for schedule(dynamic)

or
!$omp do schedule(dynamic)

Serial 0.63s

Nthreads=8 0.10s

Speedup 6.3x

Efficiency 79%

55/94 – Compute Ontario HPC Summer School 2016 – Toronto

Tuning

I schedule(static) (default) or schedule(dynamic) are good
starting points.

I To get best performance in badly imbalanced problems, may
have to play with chuck size; depends on your problem and on
hardware.

(static,4) (dynamic,16)

0.084s 0.099s

7/6x 6.4x

95% 79%

56/94 – Compute Ontario HPC Summer School 2016 – Toronto

Two-level loops

In scientific code, we usually have
nested loops were all the work is.

Almost without exception, want the
pragma omp on the outside-most
loop.
Why?

You can also use
#pragma omp for collapse(n)
to schedule nested loops as one big
loop.

#pragma omp for

for (int i=0;i<npix;i++)

for (int j=0;j<npix;j++){

double

x=((double)i)/((double)npix);

double

y=((double)j)/((double)npix);

double complex a=x+I*y;

mymap[i][j]=how many iter(a,maxiter);

}

56/94 – Compute Ontario HPC Summer School 2016 – Toronto

Two-level loops

In scientific code, we usually have
nested loops were all the work is.

Almost without exception, want the
pragma omp on the outside-most
loop.
Why?

You can also use
#pragma omp for collapse(n)
to schedule nested loops as one big
loop.

#pragma omp for collapse(2)

for (int i=0;i<npix;i++)

for (int j=0;j<npix;j++){

double

x=((double)i)/((double)npix);

double

y=((double)j)/((double)npix);

double complex a=x+I*y;

mymap[i][j]=how many iter(a,maxiter);

}

57/94 – Compute Ontario HPC Summer School 2016 – Toronto

Summary

I Start a parallel region:
#pragma omp parallel shared() private() default()

I Parallelize a loop:
#pragma omp for schedule(static/dynamic, chunk)

I Mark off a region only one thread can be in at a time:
#pragma omp critical

I Safely update a single memory location:
#pragma omp atomic [read|write|update|capture]

I In a parallel region, have only one process do something:
#pragma omp single

58/94 – Compute Ontario HPC Summer School 2016 – Toronto

Style Points

I If a variable is a private temporary variable inside a parallel
region, try declaring it inside the region.
Makes parallel region easier to specify, and can prevent bugs.

I OpenMP supports reduction and initialization clauses. These
are never necessary to use, but are convenient and can
streamline code.

I You have seen how to find out how many threads exist, etc.
However, in none of our examples did we use that info.
If you think you need to know how many threads you have,
you may well be doing something wrong (with some notable
exceptions such as complex reduction). Using locally declared
variables, and critical regions most likely will do everything
you need.

59/94 – Compute Ontario HPC Summer School 2016 – Toronto

Further OpenMP Features

60/94 – Compute Ontario HPC Summer School 2016 – Toronto

More Directives

I #pragma omp ordered - execute the loop in the order it would
have run serially. Useful if you want ordered output in a
parallel region. Never useful for performance.

I #pragma omp master - a block that only the master thread
(thread 0) executes. Usually, #pragma omp single is better.

I #pragma omp sections - execute a list of things in parallel. In
OpenMP 3, task directive (later in lecture) is more powerful

61/94 – Compute Ontario HPC Summer School 2016 – Toronto

A bit more on variables

I We had :
I #pragma omp . . . shared(), private(), and reduction.

I Want private variable to get value from the serial part?
Use firstprivate():

#include <stdio.h>

int main() {

int n = 0;

#pragma omp parallel firstprivate(n)

{

#pragma omp for

for (int i=0;i<100;i++)

n++;

printf("My n=%\n",n);

}

}

62/94 – Compute Ontario HPC Summer School 2016 – Toronto

A bit more on variables

I Private variables are destroyed after parallel region. What if
you want the result of a private variable to be preserved?
lastprivate():

#include <stdio.h>

int main() {

int n;

#pragma omp parallel for lastprivate(n)

for (int i=0;i<100;i++)

if (i>70) n=i;

printf("Last n was %\",n);

}

63/94 – Compute Ontario HPC Summer School 2016 – Toronto

Conditional OpenMP

I There is always overhead associated with starting threads,
splitting work, etc. Also, some jobs parallelize better than
others.

I Sometimes, overhead takes longer than 1 thread would need
to do a job - e.g. very small matrix multiplies.

I OpenMP supports conditional parallelization. Add
if(condition) to parallel region beginning. So, for small
tasks, overhead low, while large tasks remain parallel.

64/94 – Compute Ontario HPC Summer School 2016 – Toronto

Conditional OpenMP in Action

#include <stdio.h>

#include <omp.h>

int main(int argc, char *argv[]) {

int n = atoi(argv[1]);

#pragma omp parallel if (n>10)

#pragma omp single

printf("have %d

threads with n=%d\n",

omp get num threads(),n);

}

$./conditional if 12

have 8 threads with n=12

$./conditional if 9

have 1 threads with n=9

$

First, pull an integer from the
command line. Check to see if
it’s bigger than a number (in
this case, 10). If so, start a
parallel region. Otherwise, ex-
ecute serially.

65/94 – Compute Ontario HPC Summer School 2016 – Toronto

Controlling # of Threads

I Sometimes you might want more or fewer threads. May even
want to change while running.

I Example - IBM P6 cluster. Matrix multiply runs fast with
twice as many program threads as physical cores
(hyperthreading). However, matrix factorizations run slower
with more threads.

I omp set num threads(int) sets or changes the number of
threads during runtime.

66/94 – Compute Ontario HPC Summer School 2016 – Toronto

omp set num threads() in action

#include "stdio.h"

#include "omp.h"

int main(int argc,char *argv[]){

//find # of physical cores

//this is an openmp library routine.

int max threads=omp get num procs();

int n=atoi(argv[1]);

//set # threads equal to input

//assuming it’s less than max threads

if (n<max threads)

omp set num threads(n);

else

omp set num threads(max threads);

#pragma omp parallel

#pragma omp single

printf("Running with %d threads for

n=%d.\n", omp get num threads(),n)

}

We have changed the # of threads
during the program.

We could always change the number
later on in the same code, if we so
desired.

Note the use of
omp get num procs(), a library call
to detect the physical number of
available processors.

67/94 – Compute Ontario HPC Summer School 2016 – Toronto

Vectorization with OpenMP

68/94 – Compute Ontario HPC Summer School 2016 – Toronto

Vectorization with OpenMP

I OpenMP can enable vectorization of
both serial as well as parallelized loops.

I vectorization = processing multiple
elements of an array at the same time.

I This is done using SIMD instructions.

I SIMD=single instruction multiple data.
Usually 2, 4,or 8 SIMD lanes wide.

I Can also indicate to OpenMP to create
versions of functions that can be invoked
across SIMD lanes.

Note: This is new in OpenMP 4.0; supported by gcc v4.9.0 for
c/c++ (not fortran), and by the intel compilers v14.

69/94 – Compute Ontario HPC Summer School 2016 – Toronto

Directives for SIMD Support (new in OpenMP 4.0)

I omp simd

marks a loop to be executed using SIMD lanes

I omp declare simd

marks a function that can be called from a SIMD loop

I omp parallel for simd
omp parallel do simd

marks a loop for thread work-sharing as well as SIMDing

70/94 – Compute Ontario HPC Summer School 2016 – Toronto

OpenMP SIMD Loop Example

#include <stdio.h>
#define N 65536

int main()
{

double a[N], b[N];
long long d1=0;
double d2=0.0;
#pragma omp simd reduction(+:d1)

for (int i=0;i<N;i++)
d1+=i*(N+1−i);

#pragma omp simd

for (int i=0; i<N;i++) {
a[i]=i;
b[i]=N+1−i;

}
#pragma omp parallel for simd reduction(+:d2)

for (int i=0; i<N; i++)
d2+=a[i]*b[i];

printf("result1 = %lld\nresult2 = %.2lf\n", d1, d2);
}

71/94 – Compute Ontario HPC Summer School 2016 – Toronto

OpenMP SIMD Loop Example - Fortran

program examplesimd1f

implicit none

integer, parameter :: N=65536

double precision :: a(N), b(N), d2=0.0

integer(kind=8) :: d1=0, i
!$omp simd reduction(+:d1)

do i=1,N
d1=d1+(i−1)*(N+1−(i−1))

end do

!$omp simd

do i=1,N
a(i)=i−1

b(i)=N+1−(i−1)
end do

!$omp parallel do simd reduction(+:d2)

do i=1,N
d2=d2+a(i)*b(i)

end do

print *,"result1 =",d1; print *,"result2 =",d2
end program examplesimd1f

72/94 – Compute Ontario HPC Summer School 2016 – Toronto

Nested OpenMP parallelism

73/94 – Compute Ontario HPC Summer School 2016 – Toronto

Nested OpenMP parallelism

Could one create a parallel region from within a parallel region?
Yes... if implementation supports it, and you turn the capability on:

#include <stdio.h>
#include <omp.h>
int main()
{
omp set nested(1);
omp set dynamic(0);
#pragma omp parallel num threads(2)

{
int othread=omp get thread num();
#pragma omp parallel num threads(3)

{
int ithread=omp get thread num();
printf("othread=%d, ithread=%d\n", othread, ithread);

}
}

}

74/94 – Compute Ontario HPC Summer School 2016 – Toronto

Nested OpenMP parallelism

program examplenestf

use omp lib

integer:: ithread, othread
call omp set nested(.TRUE.)
call omp set dynamic(.FALSE.)

!$omp parallel num threads(2) private(othread)

othread=omp get thread num()
!$omp parallel num threads(3) private(ithread)

ithread=omp get thread num();
print *, "othread=", othread, "ithread=", ithread

!$omp end parallel

!$omp end parallel

end program examplenestf

I Instead of hardcoding the number of threads, can specify
OMP NUM THREADS=2,3.

I Most useful when calling openmp-parallelized functions.

I For nested loops, collapse typically better.

75/94 – Compute Ontario HPC Summer School 2016 – Toronto

Task-based parallelism

76/94 – Compute Ontario HPC Summer School 2016 – Toronto

Non-loop constructs

OpenMP supports non-loop parallelism as well:

I Sections:
#pragma omp parallel

{

#pragma omp sections

{

#pragma omp section

{

something to do

}

#pragma omp section

{

something to do at the

same time

}

}

}

I More flexible: tasks

77/94 – Compute Ontario HPC Summer School 2016 – Toronto

Tasks

I OpenMP 3.0+ supports the #pragma omp task directive.

I A task is a job assigned to a thread. Powerful way of
parallelizing non-loop problems.

I Tasks should help omp/mpi hybrid codes - one task can do
communications, rest of threads keep working.

I Like all omp, tasks must be called from parallel region.

I Raises complication of nested parallelism (what happens if a
parallel loop called from parallel loop?).

78/94 – Compute Ontario HPC Summer School 2016 – Toronto

Tasks: test task.c

#include <stdio.h>

#include <omp.h>

int main(){

#pragma omp parallel

#pragma omp single

{

printf("hello");

#pragma omp task

{

printf("hello 1 from

%d.",omp get thread num());

}

#pragma omp task

printf("hello 2 from

%d.",omp get thread num());

}

}

Often want to start tasks from
as if from serial region. Must be
in parallel for tasks to spawn, so
#pragma omp parallel followed
by #pragma omp single very
useful. What would happen
w/out #pragma omp single?

79/94 – Compute Ontario HPC Summer School 2016 – Toronto

Beauty of Tasks
I Some problems naturally fit into tasks that are otherwise hard

to parallelize.
I Example (from standard): parallel tree processing.
I Each node has left, right pointers, process each sub- pointer

with a task.
I Look how short the parallel tree is!
I Works for a variety of non-array structure (linked lists, etc.)

How would you do this problem
without tasks?

struct node {

struct node *left;

struct node *right;

};

void process(struct node*);

void traverse(struct node* p) {

if (p->left)

#pragma omp task firstprivate(p)

traverse(p->left);

if (p->right)

#pragma omp task firstprivate(p)

traverse(p->right);

process(p);

}

80/94 – Compute Ontario HPC Summer School 2016 – Toronto

Many task-related features in OpenMP

I Can abort parallel OpenMP execution by
conditional cancellation at implicit and
user-defined cancellation points.

I Tasks can be grouped to into task
groups can be aborted to reflect
completion of cooperative tasking
activities such as search.

I Task-to-task synchronization is
supported through the specification of
task dependency.

However, for many scientific codes the overhead of scheduling
these tasks cancels any benefits; often, rewriting your computation
to use a loop is more efficient.

81/94 – Compute Ontario HPC Summer School 2016 – Toronto

Heterogeneous Computing with
OpenMP

First, let’s recap the OpenMP model thus far.

81/94 – Compute Ontario HPC Summer School 2016 – Toronto

Heterogeneous Computing with
OpenMP

First, let’s recap the OpenMP model thus far.

82/94 – Compute Ontario HPC Summer School 2016 – Toronto

Memory Model in OpenMP (3.1)

83/94 – Compute Ontario HPC Summer School 2016 – Toronto

Execution Model in OpenMP

84/94 – Compute Ontario HPC Summer School 2016 – Toronto

Execution Model in OpenMP with Tasks

85/94 – Compute Ontario HPC Summer School 2016 – Toronto

Enter OpenMP 4.0

86/94 – Compute Ontario HPC Summer School 2016 – Toronto

Memory Model in OpenMP 4.0

87/94 – Compute Ontario HPC Summer School 2016 – Toronto

Memory Model in OpenMP 4.0

I Device has its own data environment

I And its own shared memory

I Threads can be bundled in a teams of threads

I These threads can have memory shared among threads of the
same team

I Whether this is beneficial depends on the memory architecture
of the device. (team ≈ CUDA thread blocks, MPI COMM?)

88/94 – Compute Ontario HPC Summer School 2016 – Toronto

Data mapping

I Host memory and device memory usually district.

I OpenMP 4.0 allows host and device memory to be shared.

I To accommodate both, the relation between variables on host
and memory gets expressed as a mapping

Different types:
I to: existing host variables copied to a corresponding variable

in the target before
I from: target variables copied back to a corresponding variable

in the host after
I tofrom: Both from and to

I alloc: Neither from nor to, but ensure the variable exists on
the target but no relation to host variable.

Note: arrays and array sections are supported.

89/94 – Compute Ontario HPC Summer School 2016 – Toronto

OpenMP Device Example using target

/* example2.c */

#include <stdio.h>
#include <omp.h>
int main()
{
int host threads, trgt threads;
host threads = omp get max threads();
#pragma omp target map(from:trgt threads)

trgt threads = omp get max threads();
printf("host_threads = %d\n", host threads);
printf("trgt_threads = %d\n", trgt threads);

}

> $CC -fopenmp example2.c -o example2

> ./example2

host threads = 16

trgt threads = 224

90/94 – Compute Ontario HPC Summer School 2016 – Toronto

OpenMP Device Example using target

program example2

use omp lib

integer host threads, trgt threads

host threads = omp get max threads()
!$omp target map(from:target threads)
trgt threads = omp get max threads();
!$omp end target

print *, "host threads =", host threads

print *, "trgt threads =", trgt threads

end program example2

> $FC -fopenmp example2.f90 -o example2

> ./example2

host threads = 16

trgt threads = 224

91/94 – Compute Ontario HPC Summer School 2016 – Toronto

OpenMP Device Example using teams, distribute
#include <stdio.h>
#include <omp.h>
int main()
{

int ntprocs;
#pragma omp target map(from:ntprocs)

ntprocs = omp get num procs();
int ncases=2240, nteams=4, chunk=ntprocs*2;

#pragma omp target

#pragma omp teams num teams(nteams) thread limit(ntprocs/nteams)

#pragma omp distribute

for (int starti=0; starti<ncases; starti+=chunk)
#pragma omp parallel for

for (int i=starti; i<starti+chunk; i++)
printf("case i=%d/%d by team=%d/%d thread=%d/%d\n",

i+1, ncases,
omp get team num()+1, omp get num teams(),
omp get thread num()+1, omp get num threads());

}

92/94 – Compute Ontario HPC Summer School 2016 – Toronto

OpenMP Device Example using teams, distribute

program example3

use omp lib

integer i, ntprocs, ncases, nteams, chunk
!$omp target map(from:ntprocs)
ntprocs = omp get num procs()
!$omp end target

ncases=2240

nteams=4

chunk=ntprocs*2
!$omp target

!$omp teams num teams(nteams) thread limit(ntprocs/nteams)
!$omp distribute

do starti=0,ncases,chunk
!$omp parallel do

do i=starti,starti+chunk

print *,"i=",i,"team=",omp get team num(),"thread=",omp get thread num()
end do

!$omp end parallel

end do

!$omp end target

end program example3

93/94 – Compute Ontario HPC Summer School 2016 – Toronto

Summary of New Directives and Functions for Devices

I omp target [map]

marks a region to execute on device

I omp teams

creates a league of thread teams

I omp distribute

distributes a loop over the teams in the league

I omp declare target / omp end declare target

marks function(s) that can be called on the device

I omp get team num()

I omp get team size()

I omp get num devices()

94/94 – Compute Ontario HPC Summer School 2016 – Toronto

BUT...

I This is only really implemented by the Intel compiler for their
Intel Xeon Phi co-processors (see intro to HPC).

I You would think OpenMP 4.0 would be a good platform to
program GPUs as well, but there is a slightly more apt
contented, called OpenACC.

95/94 – Compute Ontario HPC Summer School 2016 – Toronto

OpenACC

I Also a directive-based parallel programming framework.

I Fits more closely with GPUs: gangs-workers-vectors.

I More explicit about data copying to the accellerator (vs.
mapping in OpenMP).

I A bit more mature than accellerators in OpenMp.

I Supported by the PGI compiler for NVidia cards.

I See CUDA session for more info.

Open standard != Open source
But Gcc is starting/planning to support OpenACC for GPUs and
OpenMP for Xeon Phis.

96/94 – Compute Ontario HPC Summer School 2016 – Toronto

Useful references

I Chapman, Jost, Van der Pas: Using OpenMP
(2008, MIT Press)

I openmp.org/wp/openmp-specifications
(Strongly recommended – many good sample programs)

I SciNet Wiki: wiki.scinethpc.ca: Tutorials & Manuals

http://openmp.org/wp/openmp-specifications
http://wiki.scinethpc.ca/wiki/index.php/Knowledge_Base:_Tutorials_and_Manuals

