
Numerical Tools for
Physical Scientists

Feb/Mar 2013

The Course

• We’ve covered some basics of
programming for scientists in the last class:

• C/C++

• git for version control

• unit tests

• Here we’re going to focus on specifics of
numerical computing for physical scientists.

Course Outline
• Today: Intro, Numerics

• Feb 14: Random Numbers

• Feb 26: Integration, ODE solvers

• Feb 28: Molecular Dynamics

• Mar 5: Numerical Linear Algebra I

• Mar 7: Numerical Linear Algebra II, PDEs

• Mar 12: Fast Fourier Transforms I

• Mar 14: Fast Fourier Transforms II

Today

• What numerical computing is, and how to
think about it

• Modelling vs reality; Validation & Verification

• Real arithmetic on computers - floating
point math

• Random Number Generators

Computational Science

• “Third Leg” of Science?

• Different than theoretical science or
experimental science; requires skills of each

• “Experimental theory” - exploring complex
regions of theory

• Requires note-taking, methodical approach
of experimentalists; mathematical chops of
theorists; and other knowledge too.

Computational Science
• Often done incredibly badly

• If experimentalists work was of quality of
much computational work, we still would be
arguing over the charge on an electron

• Experimentalists, theoreticians have had
centuries to determine best practices for
their disciplines

• Computationalists starting to develop ours -
eg this course.

Computational Science

• Computational science, like experimental or
theoretical science, is a modelling endevor

• Creating simplified picture of reality that
includes (only) bits you want to study.

Phenomenon

M +
mf g

F

Conceptual/
Mathematical Model

z

Numerical
Computation

z̈ = m(t)(F � g)
ṁf / F

Phenomenon

Conceptual/
Mathematical Model

Numerical
Computation

model

model

Can go wrong at each
step

z̈ = m(t)(F � g)
ṁf / F

Are we solving the
right equations?

Can go wrong at each
step

z̈ = m(t)(F � g)
ṁf / F

Are we solving the
equations right?

Verification: Testing
math ⇒ numerics

• Can go wrong in
translation from
mathematical model to
computational model

• Discretization error,
Truncation error,
roundoff, ... or just plain
bug.

• Process of testing this:
Verification

z̈ = m(t)(F � g)
ṁf / F

Discretization error

• Error caused by going
from continuum to
discrete domain

• Eg: grid in space; discrete
timesteps; etc.

• Should decrease as you
increase resolution.

Truncation Error

• Typically occurs when an
expansion is truncated

e

x ⇡ 1 + x +
x

2

2

Roundoff

• Floating point
mathematics can go
wrong (more on this
later)

(a + b) + c 6= a + (b + c)

Just plain bugs

• Scientific software can
get large, complex

• Bugs creep in

• Unit testing, version
control can greatly help

• Still happens

Verification: Analytics,
Bechmarks, Comparisons
• Trying to make sure we are correctly solving the

intended equations in the regime of interest.

• Comparison to known analytic solutions:

• Easy to do

• Solutions tend to be of very simple situations - not
hard tests of the computation, particularly
integrated.

• But very useful for unit tests.

Verification: Analytics,
Bechmarks, Convergence
• Trying to make sure we are correctly solving the

intended equations in the regime of interest.

• Benchmarking a complex solution from your code to
that of another code (could be: same code last year,
saved results)

• CAN NOT show that either solution is correct

• CAN show that at least one code/version has a
problem, or that something has caused changes.

Verification: Analytics,
Bechmarks, Convergence
• Trying to make sure we are correctly solving the

intended equations in the regime of interest.

• Convergence testing: compare solutions at higher and
higher resolution (or terms in expansion, or...)

• Again, doesn’t mean converges to correct result, but
lack of convergence indicates a problem

• Relatedly - does slightly varying input parameters, result
in robust result, or do huge changes occur in relevant
metrics?

Validation: Testing
reality ⇒ numerics

• Can go wrong in
translation from
phenomenon to
mathematical model

z̈ = m(t)(F � g)
ṁf / F

Validation: Testing
reality ⇒ numerics

• Can go wrong in
translation from
phenomenon to
mathematical model

• Typically only
implementation of full
mathematical model you
have is the code

• Testing code against
reality

z̈ = m(t)(F � g)
ṁf / F

Validation: Code/
Experiment comparisons
• Only way to do validation is

to compare directly to
experimental results

• Must be in regime you are
realistically interested in, but
still experimentally accessible

• Requires collaboration with
experimentalists.

• Proves that there’s a regime
in which your code
accurately reproduces reality.

arXiv:astro-ph/0206251

Not a one-off

• Even after an extensive V&V effort, code changes

• Still giving right answer?

• Unit tests, regular integrated tests crucial to
maintaining correctness

• Who cares that your code once gave correct answer
once, some Thursday two years ago?

Regimes of Interest

Floating Point
Mathematics

Like real numbers, but different.

Integer Math and
Computers

• Infinite number of
integers

• Finite size of integer
representation

• Finite range. One bit
for sign; can go from
-231 to (almost) 2+31
(−2,147,483,648 to
2,147,483,647)

• Unsigned: 0..232-1

int: 32 bits = 4 bytes

http://en.wikipedia.org/wiki/2147483647_%28number%29
http://en.wikipedia.org/wiki/2147483647_%28number%29
http://en.wikipedia.org/wiki/2147483647_%28number%29
http://en.wikipedia.org/wiki/2147483647_%28number%29

Integer Math and
Computers

• long long int:

• One bit for sign; can go
from -2-63 to (almost)
2+63
(−9,223,372,036,854,775
,808 to
9,223,372,036,854,775,8
07)

• Unsigned: 0..264-1

long long int: 64 bits =
8 bytes

Integer Math and
Computers

• All integers within range are exactly representable.

• Absolute spacing (1) constant across range; relative
spacing varies

• All operations (+,-,*) between representable integers
represented unless overflow (with either sign)

Fixed point numbers

• Could treat real numbers like integers - 0...INT_MAX,
with say the last two digits ‘behind decimal point’.

• Financial stuff often uses this; only ever need/want two
decimal points

• Horrifically bad for scientific computing - relative
precision varies with magnitude; cannot represent small
and large numbers at same time.

Floating Point Numbers

• Analog of numbers in
scientific notation

• Inclusion of an exponent
means point is “floating”

• Again, one bit dedicated
to sign

�1.34⇥ 10�7

sign mantissa exponent

base

Floating Point Numbers
• Standard: IEEE 754

• Single precision real
number (float):

• 1 bit sign

• 8 bit exponent (-126..127)

• 23 bit mantissa

• double precision: 1/11/52

�1.34⇥ 10�7

sign
mantissa

base

exponent

Floating Point Numbers
• To ensure uniqueness of

represention (don’t
waste patterns), first bit
of mantissa always 1.

• Since always 1, don’t
need to store it

• Really 24 (53) bits of
mantissa

• Normalized numbers

�1.34⇥ 10�7

sign
mantissa

base

exponent

Denormal numbers
• This actually leads to a

big jump between
smallest possible number
and zero

• Relative accurracy
doesn’t degrade
gracefully

• So if exponent =
minimum, assume first
bit of mantissa = 0

Special “Numbers”
• There’s room in the format for the storing of a few

special numbers:

• Signed infinities (+Inf, -Inf): result of overflow, or divide by
zero.

• Signed zeros - signed underflow, or divide by +/-Inf

• Not a Number - NaN. Sqrt of a negative, 0/0, Inf/Inf, etc.

• All of the events which lead to these are (usually) errors
and can be made to cause exceptions.

Underflow: mostly
harmless?

• Try the following:

• Repeatedly take sqrts, then
square a number

• Plot this from 0..2

• What should you get? What
do you get?

• Loss of precision in early
stage of calcuation can cause
problem

In [9]: def sqrts(x):
 ...: y = x
 ...: for i in xrange(128):
 ...: y = sqrt(y)
 ...: for i in xrange(128):
 ...: y = y*y
 ...: return y
 ...:

In [10]: x = linspace(0.,2.,1000)

In [11]: y = sqrts(x)

In [12]: plot(x,y,'o-')

Floating Point
Exceptions

• Let’s look at the
following Fortran code

• Second division should
fail

• If compile and run as is,
will just print NaN for C

• Can have it stop at
error:

Floating Point
Exceptions

• Compiling with gfortran,
can give -ffpe-trap options

• will trap (throw
exception, stop) for
invalid, divide by zero,
overflow

• Could also do underflow

• Debugger stops at line
that causes exception

$ gfortran -o nantest nantest.f90
 -ffpe-trap=invalid,zero,overflow -g

$ gdb nantest
[...]
(gdb) run
Starting program: /scratch/ljdursi/Testing/fortran/nantest
 0.50000000 1.0000000 2.0000000

Program received signal SIGFPE, Arithmetic exception.
0x0000000000400384 in nantest () at nantest.f90:13
13 c = a/b
Current language: auto; currently fortran

Floating Point
Exceptions

• C: include fenv.h, and use
feenableexcept (enable
exceptions)

• constants defined

• gdb again works

Floating Point
Exceptions

• C: include fenv.h, and use
feenableexcept (enable
exceptions)

• constants defined

• gdb again works

$ gcc -o nantest nantest.c -lm -g
$ gdb ./nantest
[...]
(gdb) run
Starting program: /scratch/s/scinet/ljdursi/Testing/
exception/nantest
1.000000 2.000000 0.500000

Program received signal SIGFPE, Arithmetic exception.
0x00000000004005d0 in main (argc=1, argv=0x7fffffffe4b8) at
nantest.c:17
17" c = a/b;

Floating Point Math

• Fire up Python, and try
the following:

In [1]: print 1
1

In [2]: print 1.e-17
1e-17

In [3]: print (1. + 1.e-17) - 1.
??

In [4]: print (1. - 1.) + 1.e-17
??

Floating Point Math

• Fire up Python, and try
the following:

In [1]: print 1
1

In [2]: print 1.e-17
1e-17

In [3]: print (1. + 1.e-17) - 1.
0.0

Errors in Floating Point
Math

• Assigning a real to a
flaotting point variable
involves truncation

• Error of 1/2 ulp (Unit in
Last Place) due to
rounding due to
assignment to finite
precision

• (single precision: 1 part
in 2-24 ~ 6e-8; double,
1e-16)

x = 1/5 = 0.210

= 0.001100110011 . . .2
�= 0.00112

Rounding

• Rounding should not introduce any systematic biases

• IEEE 754 defines 4 rounding modes:

• to nearest (even in ties): default

• to 0 (truncate)

• to +Inf (round up)

• to -Inf (round down)

Don’t test for equality!

• Because of this error in assignments, and other small
perturbations we’ll see, testing for floating point
equality is prone to failure.

• Generally don’t test for x== 0, or x==y

• abs(x) < tolerance, or abs(x-y) < tolerance

Rounding
• Can set rounding mode

• C: #include <fenv.h>, fesetround()

• FE_TONEAREST, FE_UPWARD, FE_DOWNWARD,
FE_TOZERO

• Fortran: use,intrinsic IEEE_ARITHMETIC

• call IEEE_SET_ROUNDING_MODE(),

• IEEE_DOWN, IEEE_UP, IEEE_TO_ZERO,
IEEE_NEAREST

Machine Epsilon

• Let’s work in base 10,
with mantisa precision=3
and exponent
precision=2.

• (ignore denormal/
normalized for now;
weird with non-binary)

• 1 + 0.001

Machine Epsilon
• Let’s work in base 10,

with mantisa precision=3
and exponent
precision=2.

• (ignore denormal/
normalized for now;
weird with non-binary)

• 1 + 0.001

• There are numbers x
such that 1 + x = 1 even
though x isn’t 0!

1 + 10-3

 1.00 x 100
 + 1.00 x 10-3

 1.00 x 100
 + 0.001 x 100

1.00 x 100

Machine Epsilon

• Defined to be the smallest number s.t. 1+x != 1

• (or sometimes, the largest number s.t. 1+x = 1)

• single IEEE precision: ~1.19209e-07; double, ~2.22045e-16

• By repeated halving, try to see if you can calculate machine
epsilon this way. What precision is default floating point
number in python?

Machine Epsilon

In [4]: x = 1.

In [5]: while 1. + x > 1.:
 ...: print x, 1.+x
 ...: x = x / 2.
[...]
2.22044604925e-16 1.0

First lesson of floating
point numbers

• Be wary of adding numbers that are potentially of very
different magnitude

• Relative size ~ machine epsilon, regardless of absolute
magnitude (eg, 10 + 10emach ~ 10).

• What should we do when adding large series of
numbers, even if of roughly same magnitude?

Subtraction:
cancellation

• The same effect in
opposite with
subtraction

• Be wary subtracting very
similar numbers.

 1.23 x 100
 - 1.22 x 100

1.00 x 10-2

Subtraction:
cancellation

• The same effect in
opposite with
subtraction

• Be wary subtracting very
similar numbers.

• “catastrophic
cancellation” - lose
precision

• Dangerous in
intermediate results

 1.23 x 100
 - 1.22 x 100

1.00 x 10-2

3 sig fig 3 sig fig

1 sig fig

Things you do know
• Subtraction: if x, y floating-point representable numbers

and x within a factor of 2 of y, then FP subtraction exact

• Rounding error when adding FP x and y is an FP number,
and can be computed:

• subtraction is addition of a negative

• similar results exists for multiplication

x/2 < y < 2) x y = x� y

r = x + y � (x� y)) r = b ((a� b) a)

Things you do know

• Math libraries typically provide functions (sin, cos, sqrt, pow,
etc) results accurate to ~1-3 ulp, for given FP input

• For exact details, check manual

Be cautious, but don’t
despair

• FP errors are normally not a concern ~ 1 ulp

• Shouldn’t normally be biased one way or another - error of
N calculations ~sqrt(N) ulp

• (Note: iterate trillion computations in single precision -
likely have O(1) errors)

• BUT need to be careful, especially of repeatedly iterated
calculations or of awkward things early in a long calculation
- if (eg) lose much precision early in a multi-stage
computation

How do you know if
there’s a problem?

• Can test:

• Change precision (single to or from double; fortran
allows quad). Does answer significantly change?

• Perturb calculation at ulp level by changing rounding
behaviour. Does answer significantly change?

• Perturb calculation by slightly changing inputs. Does
answer significantly change?

• If you pass 3 tests, some evidence you’re doing ok.

Floating Point and
Compilers

• You generally want to turn on heavy levels of
optimization when compiling (-O2, -O3); this can speed
up your code significantly

• At -O3 levels (by convention), the compiler is allowed to
re-order mathematical operations in such a way that,
mathematically, give same answer

• But numerically may not!

• Overview of optimization flags for intel compilers: http://
wiki.scinethpc.ca/wiki/images/7/77/
Snug_techtalk_compiler.pdf

http://wiki.scinethpc.ca/wiki/images/7/77/Snug_techtalk_compiler.pdf
http://wiki.scinethpc.ca/wiki/images/7/77/Snug_techtalk_compiler.pdf
http://wiki.scinethpc.ca/wiki/images/7/77/Snug_techtalk_compiler.pdf
http://wiki.scinethpc.ca/wiki/images/7/77/Snug_techtalk_compiler.pdf
http://wiki.scinethpc.ca/wiki/images/7/77/Snug_techtalk_compiler.pdf
http://wiki.scinethpc.ca/wiki/images/7/77/Snug_techtalk_compiler.pdf

Floating Point and
Compilers

• If your code is already demonstrated to be numerically
stable, these perturbations shouldn’t be a big issue.

• BUT:

• Compiler may, by dumb luck, stumble on a reordering
which is numerically unstable. Test with different
optimization flags.

• If your code includes something you’ve carefully
written for numerical stability that you don’t want
reordered, put it in a separate file and compile it with
-O2 or less

Floating Point and
Compilers

• Other optimization flags include things like -ffast-math (or
-funsafe-optimizations) which do more agressive changes

• -ffast-math likely does things like replace divisions with
multiplication-by-reciprical, which is less accurate; may use
less accurate but faster math functions. Worth trying,
but be careful with this.

• -funsafe-math-optimizations: ditto.

Architecture and
Floating Point

• In theory, all IEEE-754 compliant hardware should give same results.

• Mostly true; some small non-compliances here and there. Not normally
a big worry (change in compilers more likely to cause numerical
changes)

• Biggest difference: x86 does FP math on variables in registers in
“extended precision” - 80 bits vs. 64.

• Higher precision, but depends on whether variables are in registers, etc.

• Can cause difference between x86 and other achitectures.

• Be aware of this.

Easiest way to avoid
problem

• Don’t write numerical code when you don’t have to!

• If there exist numerical libraries for things you want to do
(ODE, integration, FFTs, linear algebra, solvers), use them.

• Amongst other benefits, the numerical issues have been
worked out in most mature, highly-used code bases.

Things to avoid

• Subtractions of like-sized variables early in calcuation

• Sumations of large amounts of numbers, or numbers of
widely varying magnitudes

• Testing for exact floating-point equality

Things to do

• Try to keep values normalized in some sense so that all the
values you’re likely to deal with are of order unity (avoids
machine epsilon problems)

• Try to use existing libraries when necessary

• Routinely test your code

