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The Course

• We’ve covered some basics of 
programming for scientists in the last class:

• C/C++

• git for version control

• unit tests

• Here we’re going to focus on specifics of 
numerical computing for physical scientists.



Course Outline
• Today: Intro, Numerics

• Feb 14: Random Numbers

• Feb 26: Integration, ODE solvers

• Feb 28: Molecular Dynamics

• Mar 5: Numerical Linear Algebra I

• Mar 7: Numerical Linear Algebra II, PDEs

• Mar 12: Fast Fourier Transforms I

• Mar 14: Fast Fourier Transforms II



Today

• What numerical computing is, and how to 
think about it

• Modelling vs reality; Validation & Verification

• Real arithmetic on computers - floating 
point math

• Random Number Generators



Computational Science

• “Third Leg” of Science?

• Different than theoretical science or 
experimental science; requires skills of each

• “Experimental theory” - exploring complex 
regions of theory

• Requires note-taking, methodical approach 
of experimentalists; mathematical chops of 
theorists; and other knowledge too.



Computational Science
• Often done incredibly badly

• If experimentalists work was of quality of 
much computational work, we still would be 
arguing over the charge on an electron

• Experimentalists, theoreticians have had 
centuries to determine best practices for 
their disciplines

• Computationalists starting to develop ours - 
eg this course.



Computational Science

• Computational science, like experimental or 
theoretical science, is a modelling endevor

• Creating simplified picture of reality that 
includes (only) bits you want to study.



Phenomenon
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Numerical
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z̈ = m(t)(F � g)
ṁf / F
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Can go wrong at each 
step

z̈ = m(t)(F � g)
ṁf / F

Are we solving the 
right equations? 



Can go wrong at each 
step

z̈ = m(t)(F � g)
ṁf / F

Are we solving the 
equations right?



Verification: Testing 
math ⇒ numerics

• Can go wrong in 
translation from 
mathematical model to 
computational model

• Discretization error, 
Truncation error, 
roundoff, ... or just plain 
bug.

• Process of testing this: 
Verification

z̈ = m(t)(F � g)
ṁf / F



Discretization error

• Error caused by going 
from continuum to 
discrete domain

• Eg: grid in space; discrete 
timesteps; etc.

• Should decrease as you 
increase resolution.



Truncation Error

• Typically occurs when an 
expansion is truncated 

e

x ⇡ 1 + x +
x

2

2



Roundoff

• Floating point 
mathematics can go 
wrong (more on this 
later)

(a + b) + c 6= a + (b + c)



Just plain bugs

• Scientific software can 
get large, complex

• Bugs creep in

• Unit testing, version 
control can greatly help 

• Still happens



Verification:  Analytics, 
Bechmarks, Comparisons
• Trying to make sure we are correctly solving the 

intended equations in the regime of interest.

• Comparison to known analytic solutions:

• Easy to do

• Solutions tend to be of very simple situations - not 
hard tests of the computation, particularly 
integrated.

• But very useful for unit tests.



Verification:  Analytics, 
Bechmarks, Convergence
• Trying to make sure we are correctly solving the 

intended equations in the regime of interest.

• Benchmarking a complex solution from your code to 
that of another code (could be: same code last year, 
saved results)

• CAN NOT show that either solution is correct

• CAN show that at least one code/version has a 
problem, or that something has caused changes.



Verification:  Analytics, 
Bechmarks, Convergence
• Trying to make sure we are correctly solving the 

intended equations in the regime of interest.

• Convergence testing: compare solutions at higher and 
higher resolution (or terms in expansion, or...)

• Again, doesn’t mean converges to correct result, but 
lack of convergence indicates a problem

• Relatedly - does slightly varying input parameters, result 
in robust result, or do huge changes occur in relevant 
metrics?



Validation: Testing 
reality ⇒ numerics

• Can go wrong in 
translation from 
phenomenon to 
mathematical model

z̈ = m(t)(F � g)
ṁf / F



Validation: Testing 
reality ⇒ numerics

• Can go wrong in 
translation from 
phenomenon to 
mathematical model

• Typically only 
implementation of full 
mathematical model you 
have is the code

• Testing code against 
reality

z̈ = m(t)(F � g)
ṁf / F



Validation: Code/
Experiment comparisons
• Only way to do validation is 

to compare directly to 
experimental results

• Must be in regime you are 
realistically interested in, but 
still experimentally accessible

• Requires collaboration with 
experimentalists.

• Proves that there’s a regime 
in which your code 
accurately reproduces reality.

arXiv:astro-ph/0206251



Not a one-off

• Even after an extensive V&V effort, code changes

• Still giving right answer?

• Unit tests, regular integrated tests crucial to 
maintaining correctness

• Who cares that your code once gave correct answer 
once, some Thursday two years ago?



Regimes of Interest



Floating Point 
Mathematics

Like real numbers, but different.



Integer Math and 
Computers

• Infinite number of 
integers

• Finite size of integer 
representation

• Finite range.   One bit 
for sign; can go from  
-231 to (almost) 2+31 
(  −2,147,483,648 to 
2,147,483,647)

• Unsigned: 0..232-1

int: 32 bits = 4 bytes

http://en.wikipedia.org/wiki/2147483647_%28number%29
http://en.wikipedia.org/wiki/2147483647_%28number%29
http://en.wikipedia.org/wiki/2147483647_%28number%29
http://en.wikipedia.org/wiki/2147483647_%28number%29


Integer Math and 
Computers

• long long int:

• One bit for sign; can go 
from  -2-63 to (almost) 
2+63 
(−9,223,372,036,854,775
,808 to 
9,223,372,036,854,775,8
07)

• Unsigned: 0..264-1

long long int: 64 bits = 
8 bytes



Integer Math and 
Computers

• All integers within range are exactly representable.

• Absolute spacing (1) constant across range; relative 
spacing varies

• All operations (+,-,*) between representable integers 
represented unless overflow (with either sign)



Fixed point numbers

• Could treat real numbers like integers - 0...INT_MAX, 
with say the last two digits ‘behind decimal point’.

• Financial stuff often uses this; only ever need/want two 
decimal points

• Horrifically bad for scientific computing - relative 
precision varies with magnitude; cannot represent small 
and large numbers at same time.



Floating Point Numbers

• Analog of numbers in 
scientific notation 

• Inclusion of an exponent 
means point is “floating” 

• Again, one bit dedicated 
to sign

�1.34⇥ 10�7

sign mantissa exponent

base



Floating Point Numbers
• Standard: IEEE 754

• Single precision real 
number (float):

• 1 bit sign

• 8 bit exponent (-126..127)

• 23 bit mantissa

• double precision: 1/11/52

�1.34⇥ 10�7

sign
mantissa

base

exponent



Floating Point Numbers
• To ensure uniqueness of 

represention (don’t 
waste patterns), first bit 
of mantissa always 1.

• Since always 1, don’t 
need to store it

• Really 24 (53) bits of 
mantissa

• Normalized numbers

�1.34⇥ 10�7

sign
mantissa

base

exponent



Denormal numbers
• This actually leads to a 

big jump between 
smallest possible number 
and zero

• Relative accurracy 
doesn’t degrade 
gracefully

• So if exponent = 
minimum, assume first 
bit of mantissa = 0



Special “Numbers”
• There’s room in the format for the storing of a few 

special numbers:

• Signed infinities (+Inf, -Inf): result of overflow, or divide by 
zero.

• Signed zeros - signed underflow, or divide by +/-Inf

• Not a Number - NaN.   Sqrt of a negative, 0/0, Inf/Inf, etc.

• All of the events which lead to these are (usually) errors 
and can be made to cause exceptions.



Underflow: mostly 
harmless?

• Try the following:

• Repeatedly take sqrts, then 
square a number

• Plot this from 0..2

• What should you get?  What 
do you get?

• Loss of precision in early 
stage of calcuation can cause 
problem

In [9]: def sqrts(x):
   ...:     y = x
   ...:     for i in xrange(128):
   ...:         y = sqrt(y)
   ...:     for i in xrange(128):
   ...:         y = y*y
   ...:     return y
   ...:

In [10]: x = linspace(0.,2.,1000)

In [11]: y = sqrts(x)

In [12]: plot(x,y,'o-') 



Floating Point 
Exceptions

• Let’s look at the 
following Fortran code

• Second division should 
fail

• If compile and run as is, 
will just print NaN for C

• Can have it stop at 
error:



Floating Point 
Exceptions

• Compiling with gfortran, 
can give -ffpe-trap options

• will trap (throw 
exception, stop) for 
invalid, divide by zero, 
overflow

• Could also do underflow

• Debugger stops at line 
that causes exception

$ gfortran -o nantest nantest.f90 
   -ffpe-trap=invalid,zero,overflow -g 

$ gdb nantest
[...]
(gdb) run
Starting program: /scratch/ljdursi/Testing/fortran/nantest 
  0.50000000       1.0000000       2.0000000    
 
Program received signal SIGFPE, Arithmetic exception.
0x0000000000400384 in nantest () at nantest.f90:13
13          c = a/b
Current language:  auto; currently fortran



Floating Point 
Exceptions

• C: include fenv.h, and use 
feenableexcept (enable 
exceptions)

• constants defined

• gdb again works



Floating Point 
Exceptions

• C: include fenv.h, and use 
feenableexcept (enable 
exceptions)

• constants defined

• gdb again works

$ gcc -o nantest nantest.c -lm -g
$ gdb ./nantest
[...]
(gdb) run
Starting program: /scratch/s/scinet/ljdursi/Testing/
exception/nantest 
1.000000 2.000000 0.500000
 
Program received signal SIGFPE, Arithmetic exception.
0x00000000004005d0 in main (argc=1, argv=0x7fffffffe4b8) at 
nantest.c:17
17"     c = a/b;



Floating Point Math

• Fire up Python, and try 
the following:

In [1]: print 1
1

In [2]: print 1.e-17
1e-17

In [3]: print (1. + 1.e-17) - 1.
??

In [4]: print (1. - 1.) + 1.e-17
??



Floating Point Math

• Fire up Python, and try 
the following:

In [1]: print 1
1

In [2]: print 1.e-17
1e-17

In [3]: print (1. + 1.e-17) - 1.
0.0



Errors in Floating Point 
Math

• Assigning a real to a 
flaotting point variable 
involves truncation

• Error of 1/2 ulp (Unit in 
Last Place) due to 
rounding due to 
assignment to finite 
precision

• (single precision: 1 part 
in 2-24 ~ 6e-8; double, 
1e-16)

x = 1/5 = 0.210

= 0.001100110011 . . .2
�= 0.00112



Rounding

• Rounding should not introduce any systematic biases

• IEEE 754 defines 4 rounding modes: 

• to nearest (even in ties): default

• to 0 (truncate)

• to +Inf (round up)

• to -Inf (round down)



Don’t test for equality!

• Because of this error in assignments, and other small 
perturbations we’ll see, testing for floating point 
equality is prone to failure.

• Generally don’t test for x== 0, or x==y

• abs(x) < tolerance,  or abs(x-y) < tolerance



Rounding
• Can set rounding mode

• C: #include <fenv.h>, fesetround()

• FE_TONEAREST, FE_UPWARD, FE_DOWNWARD, 
FE_TOZERO

• Fortran: use,intrinsic IEEE_ARITHMETIC

• call IEEE_SET_ROUNDING_MODE(), 

• IEEE_DOWN, IEEE_UP, IEEE_TO_ZERO, 
IEEE_NEAREST



Machine Epsilon

• Let’s work in base 10, 
with mantisa precision=3 
and exponent 
precision=2.

• (ignore denormal/
normalized for now; 
weird with non-binary)

• 1 + 0.001



Machine Epsilon
• Let’s work in base 10, 

with mantisa precision=3 
and exponent 
precision=2.

• (ignore denormal/
normalized for now; 
weird with non-binary)

• 1 + 0.001

• There are numbers x 
such that 1 + x = 1 even 
though x isn’t 0!

1 + 10-3

   1.00 x 100   
 + 1.00 x 10-3

   1.00  x 100   
 + 0.001 x 100

1.00 x 100



Machine Epsilon

• Defined to be the smallest number s.t. 1+x != 1 

• (or sometimes, the largest number s.t. 1+x = 1)

• single IEEE precision: ~1.19209e-07; double, ~2.22045e-16

• By repeated halving, try to see if you can calculate machine 
epsilon this way.  What precision is default floating point 
number in python?



Machine Epsilon

In [4]: x = 1.

In [5]: while 1. + x > 1.:
   ...:     print x, 1.+x
   ...:     x = x / 2.
[...]
2.22044604925e-16 1.0



First lesson of floating 
point numbers

• Be wary of adding numbers that are potentially of very 
different magnitude

• Relative size ~ machine epsilon, regardless of absolute 
magnitude (eg, 10 + 10emach ~ 10).

• What should we do when adding large series of 
numbers, even if of roughly same magnitude?



Subtraction: 
cancellation

• The same effect in 
opposite with 
subtraction

• Be wary subtracting very 
similar numbers.

   1.23 x 100   
 - 1.22 x 100

1.00 x 10-2



Subtraction: 
cancellation

• The same effect in 
opposite with 
subtraction

• Be wary subtracting very 
similar numbers.

• “catastrophic 
cancellation” - lose 
precision

• Dangerous in 
intermediate results

   1.23 x 100   
 - 1.22 x 100

1.00 x 10-2

3 sig fig 3 sig fig

1 sig fig



Things you do know
• Subtraction: if x, y floating-point representable numbers 

and x within a factor of 2 of y, then FP subtraction exact

• Rounding error when adding FP x and y is an FP number, 
and can be computed:

• subtraction is addition of a negative

• similar results exists for multiplication

x/2 < y < 2 ) x y = x� y

r = x + y � (x� y)) r = b ((a� b) a)



Things you do know

• Math libraries typically provide functions (sin, cos, sqrt, pow, 
etc) results accurate to ~1-3 ulp, for given FP input 

• For exact details, check manual



Be cautious, but don’t 
despair

• FP errors are normally not a concern ~ 1 ulp

• Shouldn’t normally be biased one way or another - error of 
N calculations ~sqrt(N) ulp

• (Note: iterate trillion computations in single precision - 
likely have O(1) errors) 

• BUT need to be careful, especially of repeatedly iterated 
calculations or of awkward things early in a long calculation 
- if (eg) lose much precision early in a multi-stage 
computation



How do you know if 
there’s a problem?

• Can test:

• Change precision (single to or from double; fortran 
allows quad).  Does answer significantly change?

• Perturb calculation at ulp level by changing rounding 
behaviour.   Does answer significantly change?

• Perturb calculation by slightly changing inputs.  Does 
answer significantly change?

• If you pass 3 tests, some evidence you’re doing ok.



Floating Point and 
Compilers

• You generally want to turn on heavy levels of 
optimization when compiling (-O2, -O3); this can speed 
up your code significantly

• At -O3 levels (by convention), the compiler is allowed to 
re-order mathematical operations in such a way that, 
mathematically, give same answer

• But numerically may not!

• Overview of optimization flags for intel compilers: http://
wiki.scinethpc.ca/wiki/images/7/77/
Snug_techtalk_compiler.pdf

http://wiki.scinethpc.ca/wiki/images/7/77/Snug_techtalk_compiler.pdf
http://wiki.scinethpc.ca/wiki/images/7/77/Snug_techtalk_compiler.pdf
http://wiki.scinethpc.ca/wiki/images/7/77/Snug_techtalk_compiler.pdf
http://wiki.scinethpc.ca/wiki/images/7/77/Snug_techtalk_compiler.pdf
http://wiki.scinethpc.ca/wiki/images/7/77/Snug_techtalk_compiler.pdf
http://wiki.scinethpc.ca/wiki/images/7/77/Snug_techtalk_compiler.pdf


Floating Point and 
Compilers

• If your code is already demonstrated to be numerically 
stable, these perturbations shouldn’t be a big issue.

• BUT:

• Compiler may, by dumb luck, stumble on a reordering 
which is numerically unstable.   Test with different 
optimization flags.

• If your code includes something you’ve carefully 
written for numerical stability that you don’t want 
reordered, put it in a separate file and compile it with  
-O2 or less



Floating Point and 
Compilers

• Other optimization flags include things like -ffast-math (or 
-funsafe-optimizations) which do more agressive changes 

• -ffast-math likely does things like replace divisions with 
multiplication-by-reciprical, which is less accurate; may use 
less accurate but faster math functions.     Worth trying, 
but be careful with this.

• -funsafe-math-optimizations: ditto.



Architecture and 
Floating Point

• In theory, all IEEE-754 compliant hardware should give same results.

• Mostly true; some small non-compliances here and there.  Not normally 
a big worry (change in compilers more likely to cause numerical 
changes)

• Biggest difference: x86 does FP math on variables in registers in 
“extended precision” - 80 bits vs. 64.   

• Higher precision, but depends on whether variables are in registers, etc.

• Can cause difference between x86 and other achitectures.

• Be aware of this.



Easiest way to avoid 
problem

• Don’t write numerical code when you don’t have to!

• If there exist numerical libraries for things you want to do 
(ODE, integration, FFTs, linear algebra, solvers), use them.

• Amongst other benefits, the numerical issues have been 
worked out in most mature, highly-used code bases.



Things to avoid

• Subtractions of like-sized variables early in calcuation

• Sumations of large amounts of numbers, or numbers of 
widely varying magnitudes

• Testing for exact floating-point equality



Things to do

• Try to keep values normalized in some sense so that all the 
values you’re likely to deal with are of order unity (avoids 
machine epsilon problems)

• Try to use existing libraries when necessary

• Routinely test your code


