Numerical Tools for
Physical Scientists

Feb/Mar 2013

The Course

® VWe've covered some basics of
programming for scientists in the last class:

o C/C++
® git for version control
® UnNit tests

® Here we're going to focus on specifics of
numerical computing for physical scientists.

(ng et

(’ compute «calcul
CANADA

Course Outline

Today: Intro, Numerics

Feb 14: Random Numbers

Feb 26: Integration, ODE solvers

Feb 28: Molecular Dynamics

Mar 5: Numerical Linear Algebra |

Mar 7: Numerical Linear Algebra Il, PDEs
Mar 12: Fast Fourier Transforms |

Mar |4: Fast Fourier Transforms Il SCiet
(, ompute « calcul

Today

What numerical computing is, and how to
think about it

Modelling vs reality;Validation & Verification

Real arithmetic on computers - floating
point math

Random Number Generators

(Sﬁm et

" compute « calcul
CANADA

Computational Science

® “Third Leg” of Science!

® Different than theoretical science or
experimental science; requires skills of each

® “Experimental theory” - exploring complex
regions of theory

® Requires note-taking, methodical approach
of experimentalists; mathematical chops of
theorists; and other knowledge too.
<SEH\Iet

(, compute «calcul
CANADA

Computational Science

Often done incredibly badly

If experimentalists work was of quality of
much computational work, we still would be
arguing over the charge on an electron

Experimentalists, theoreticians have had
centuries to determine best practices for
their disciplines

Computationalists starting to develop ours -

eg this course. SCHlet
(, compgufs: S&::Icul

Computational Science

® Computational science, like experimental or
theoretical science, is a modelling endevor

® Creating simplified picture of reality that
includes (only) bits you want to study.

Conceptual/ Numerical
Phenomenon Mathematical Model Computation

A S ——

dfde(d time, ma fuelmass,
do el, ¢ force, double double dt,
double *df) {

double g = Mearth®*newtonG/(z%z);

df[@]) = (mass+fuelmass)*(alpha*burnrate-g);

df(1] = vel;

df[2] = burnrate;

}
I . I + a 5y | All

Phenomenon

model

Conceptual/
Mathematical Model

model

Numerical
Computation

SCiet

Can go wrong at each
step

Are we solving the
right equations?

Sciet

Can go wrong at each
step

Are we solving the
equations right?

Verification: Testing
math = numerics

e Can go wrong in
translation from
mathematical model to
computational model

® Discretization error,
Truncation error,
roundoff, ... or just plain
bug.

® Process of testing this:
Verification

ScChet

Discretization error

® Error caused by going
from continuum to
discrete domain

® Eg:grid in space; discrete &

timesteps; etc.

® Should decrease as you

increase resolution.

=SITvNC L
(compute «calcul

LLLLLLL

Truncation Error

® TJypically occurs when an 9
expansion is truncated

ScChet

(’ compute «calcul
CANADA

Roundoff

® Floating point

mathematics can go (a+b)+c#a+ (b+c)

wrong (more on this
later)

Sciet

(’ compute «calcul
CANADA

Just plain bugs

Scientific software can
get large, complex

Bugs creep in

Unit testing, version [
control can greatly help

Still happens

(Sgﬁ\l et

(, compute «calcul
CANADA

Verification: Analytics,
Bechmarks, Comparisons

® Trying to make sure we are correctly solving the
intended equations in the regime of interest.

® Comparison to known analytic solutions:
® FEasy to do
® Solutions tend to be of very simple situations - not
hard tests of the computation, particularly
integrated.
® But very useful for unit tests.

Sciet

compute «calcul
CANADA

Verification: Analytics,
Bechmarks, Convergence

® Trying to make sure we are correctly solving the
intended equations in the regime of interest.

® Benchmarking a complex solution from your code to
that of another code (could be: same code last year,
saved results)

® CAN NOT show that either solution is correct

® CAN show that at least one code/version has a
problem, or that something has caused changes.

(SQFN et

compute «calcul
CANADA

Verification: Analytics,
Bechmarks, Convergence

® Trying to make sure we are correctly solving the
intended equations in the regime of interest.

® Convergence testing: compare solutions at higher and
higher resolution (or terms in expansion, or...)

® Again, doesn’t mean converges to correct result, but
lack of convergence indicates a problem

® Relatedly - does slightly varying input parameters, result
in robust result, or do huge changes occur in relevant

metrics!
Sﬁﬁ\let

LLLLLLL

Validation: [esting
reality = numerics

e Can go wrong in
translation from
phenomenon to
mathematical model

ScChet

Validation: lesting
reality = numerics

e Can go wrong in
translation from
phenomenon to
mathematical model

e TJypically only
implementation of full
mathematical model you
have is the code

® Testing code against
reality

Validation: Code/
Experiment comparisons

® Only way to do va
to compare direct

idation is
y to

experimental resu

® Must be in regime

ts

you are

realistically interested in, but
still experimentally accessible

® Requires collaboration with

experimentalists.

® Proves that there’s a regime
in which your code
accurately reproduces reality.

ar Xiv:astro- ph/02062

S CHet

’ compuAt

ee calcul

NAD

Not a one-off

Even after an extensive V&V effort, code changes
Still giving right answer?

Unit tests, regular integrated tests crucial to
maintaining correctness

Who cares that your code once gave correct answer
once, some Thursday two years ago?

ScCiet

’ compute calcul

Regimes of Interest

Range of desired validity

Theory
@ (PDEs)
‘ R

ange of actual validity
Code design goal

ScCiNet

Floating Point
Mathematics

Like real numbers, but different.

Integer Math and
Computers

Infinite number of
Integers

Finite size of integer
representation

int: 32 bits = 4 bytes

Finite range. One bit
for sign; can go from
-23! to (almost) 23!

(—2,147,483,648 to
2,147,483,647)

Unsigned: 0..232- | <‘Sﬁﬁ\let

compute «calcul
CANADA

http://en.wikipedia.org/wiki/2147483647_%28number%29
http://en.wikipedia.org/wiki/2147483647_%28number%29
http://en.wikipedia.org/wiki/2147483647_%28number%29
http://en.wikipedia.org/wiki/2147483647_%28number%29

Integer Math and
Computers

® |ong long int:

® One bit for sign; can go
from -2-% to (almost)

2+63

(-9,223,372,036,854,775

808 to | o
9,223,372,036,854,775.8 long long int: 64 bits =

CY7) "'"'"|||||||||||||IIIIIIIII||||;§i|t2}<Ff?§i||||||||||||||||||

e Unsigned: 0..254-1

Sciet

compute «calcul
CANADA

Integer Math and
Computers

All integers within range are exactly representable.

Absolute spacing (1) constant across range; relative
spacing varies

All operations (+,-,*) between representable integers
represented unless overflow (with either sign)

Sciet

compute «calcul
CANADA

Fixed point numbers

® Could treat real numbers like integers - 0...INT_MAX,
with say the last two digits ‘behind decimal point’.

® Financial stuff often uses this; only ever need/want two
decimal points

® Horrifically bad for scientific computing - relative
precision varies with magnitude; cannot represent small
and large numbers at same time.

ScCiet

’ compute calcul

Floating Point Numbers

base

® Analog of numbers in /

scientific notation 1 34 — 7

—1.34 x 10—~
: —

® Inclusion of an exponent

means point is “floating” f

Ign : exponen
S8 mantissa P© C

® Again, one bit dedicated
to sign

Sciet

compute «calcul
CANADA

Floating Point Numbers

base

e Standard: |[EEE 754 /
—7
® Single precision real ;1-34 X 102
number (float): f \ \
sign antissa exponent
® | bit sign

® 8 bit exponent (-126..127)
® 23 bit mantissa

® double precision: |/11/52

ScChet

(, compute «calcul
CANADA

Floating Point Numbers

base

® To ensure uniqueness of /
represention (don’t -
waste patterns), first bit |:|1| -34, X 10—

\

exponent

of mantissa always |. f '\
8" antissa
® Since always |, don’t
need to store it

® Really 24 (53) bits of
mantissa

® Normalized numbers

Sciet

(’ compute «calcul
CANADA

Denormal numbers

® This actually leads to a
big jump between
smallest possible number 7. 5 3 N

P I T A O T O
and zero T

® Relative accurracy

doesn’t degrade }mm’mmhnnnhnnnl|||||||| NN
gracefully N | |

® So if exponent =
minimum, assume first
bit of mantissa = 0

Sciet

compute «calcul
CANADA

Special “Numbers”

There’s room in the format for the storing of a few
special numbers:

Signed infinities (+Inf, -Inf): result of overflow, or divide by
zero.

Signed zeros - signed underflow, or divide by +/-Inf
Not a Number - NaN. Sqgrt of a negative, 0/0, Inf/Inf, etc.

All of the events which lead to these are (usually) errors
and can be made to cause exceptions. |
<SEH\Iet

(’ compute «calcul
CANADA

Underflow: mostly
harmless?

Try the following:

Repeatedly take sqrts, then
square a number

Plot this from 0..2

What should you get? What
do you get!?

Loss of precision in early
stage of calcuation can cause
problem

In

In

In

In

[9]: def sqgrts(x):
. y = x
for 1 i1n xrange(128):
y = sqrt(y)
for i in xrange(128):
Y = Y*Y
return y

[10]: x = linspace(0.,2.,1000)
[11]: Yy = sgrts(Xx)
[12]: plot(x,y, o-")

Sciet

compute «calcul
CANADA

Floating Point
Exceptions

Let’s look at the
following Fortran code

Second division should
fail

If compile and run as is,
will just print NaN for C

Can have it stop at
error:

nantest
real :: a, b, ¢

a
b -
c a’/b

print *, c,a,b

a 0.
b 0.

C a’/b
print *, c,a,b

a 2.
b .

C a’/b
print *,c,a,b
nantest

Sciet

(’ compzuAt

e «calcul

N ADA

Floating Point
Exceptions

Compiling with gfortran,

$ gfortran -o nantest nantest.f90

can g|ve -ffpe-tl"ap Optlons -ffpe-trap=invalid, zero,overflow -g
$ gdb nantest
. [...]
will trap (throw (gdb) run
. Starting program: /scratch/ljdursi/Testing/fortran/na:
exception, StOP) for 0.50000000 1.0000000 2.0000000
|nva||d, lelde by ZeI‘O, Program received signal SIGFPE, Arithmetic exception.
0x0000000000400384 in nantest () at nantest.f90:13
overflow 13 c = a/b
Current language: auto; currently fortran

Could also do underflow

Debugger stops at line
that causes exception

(SEFN et

compute «calcul
CANADA

Floating Point
Exceptions

#¥include <stdio.h>
#¥include <fenv.h>

int main(int argc, char **argv) {
float a, b, c¢;

® C include fenV h and use feenableexcept (FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW
. A1,
feenableexcept (enable .
exceptions) TEE
printf("%f $£f $f\n", a, b, ¢c);
® constants defined e
c = a/b;

. rintf("%f %f£ %f\n", a, b, ;
® godb again works O TR, o

a=2,;
b= 1.3

c = a/b;
printf("%f %£f %f\n", a, b, c);

n 0;

LUlpuLcT = caicul
CANADA

Floating Point
Exceptions

® C:include fenv.h,and use
feenableexcept (enable
exceptions)

® constants defined

® gdb again works

$ gcc -o nantest nantest.c -1lm -g

$ gdb ./nantest

[oo.]

(gdb) run

Starting program: /scratch/s/scinet/ljdursi/Testing/
exception/nantest

1.000000 2.000000 0.500000

Program received signal SIGFPE, Arithmetic exception.
0x00000000004005d0 in main (argc=1l, argv=0x7fffffffed
nantest.c:17

17 c = a/b;

Sciet

compute «calcul
CANADA

Floating Point Math

® Fire up Python,and try
the following:

In [1]:

In [2]:

le-17

In [3]:

??

In [4]:

??

print

print

print

print

1

l.e-17

(1. + 1.e-17) - 1.
(1. - 1.) + 1.e-17

SCiet

, compute calcul

Floating Point Math

In [1]: print 1
1

In [2]: print l.e-17
® Fire up Python,and try le-17

the following:
5 In [3]: print (1. + l.e-17) - 1.

0.0

ScChet

(’ compute «calcul
CANADA

Errors in Floating Point
Math

® Assigning a real to a

flaottlng point V.EII’Iab|e r=1/5=0.210
involves truncation

= 0.001100110011 .. .5

® Error of 1/2 ulp (Unitin = 0.00115
Last Place) due to

rounding due to
assignment to finite
precision

® (single precision: | part
in 2-2* ~ 6e-8; double,

le-16) ScCiet

compute «calcul
CANADA

Rounding

® Rounding should not introduce any systematic biases
® |EEE 754 defines 4 rounding modes:

® to nearest (even in ties): default

® to 0 (truncate)

® to +Inf (round up)

® to -Inf (round down) —
(SEHVet
" compgte:gglcul

Don't test for equality!

® Because of this error in assighments, and other small
perturbations we’ll see, testing for floating point
equality is prone to failure.

® Generally don’t test for x== 0, or x==y

® abs(x) < tolerance, or abs(x-y) < tolerance

ScCiet

’ compute calcul

Rounding

® (Can set rounding mode
e C:#include <fenv.h>, fesetround()

e FE TONEAREST, FE_ UPWARD, FE DOWNWARD,
FE TOZERO

® Fortran: use,intrinsic IEEE ARITHMETIC
e call IEEE SET ROUNDING_MODE(),

e IEEE DOWN, IEEE UP IEEE TO ZERO,

IEEE NEAREST
- (SQH\l et
(, compgufs: S&::Icul

Machine Epsilon

® Let’s work in base 10,
with mantisa precision=3
and exponent
precision=2.

® (ignore denormal/
normalized for now;
weird with non-binary)

e | +0.00l

Sciet

compute «calcul
CANADA

Machine Epsilon

Let’s work in base |0,

with mantisa precision=3 1 + 10-°
and exponent
precision=2.

1.00 x 100
(ignore denormal/ + 1.00 x 10-3

normalized for now;
weird with non-binary)

1.00 x 10°
|+ 0.001 + 0.001 x 10°
There are numbers x @ 1.00 x 100
such that | + x = | even

though x isn’t 0! <SEH\Iet

(’ compute «calcul
CANADA

Machine Epsilon

Defined to be the smallest number s.t. | +x != |

(or sometimes, the largest number s.t. | +x = 1)
single |IEEE precision: ~1.19209e-07; double, ~2.22045e-16

By repeated halving, try to see if you can calculate machine
epsilon this way. What precision is default floating point
number in python!?

(ng et

" compute «calcul
CANADA

Machine Epsilon

In [4]: x = 1.

In [5]: while 1. + x > 1.:
print x, 1l.+x
x =x / 2.

[...]
2.22044604925e-16 1.0

ScChet

compute «calcul
CANADA

First lesson of floating
point numbers

® Be wary of adding numbers that are potentially of very
different magnitude

® Relative size ~ machine epsilon, regardless of absolute
magnitude (eg, 10 + 10emach ~ 10).

® What should we do when adding large series of
numbers, even if of roughly same magnitude!

Sciet

compute «calcul
CANADA

Subtraction:
cancellation

® The same effect in 1.23 x 100
opposite with - 1.22 x 100

subtraction
= 1.00 x 10-2

® Be wary subtracting very
similar numbers.

Sciet

compute «calcul
CANADA

Subtraction:
cancellation

The same effect in

opposite with 3 Sig ﬁg 3 Sig ﬁg
subtraction DN

1.23 x 10° /
Be wary subtracting very - 1.22 x 100

similar numbers.

 1.00 x 10-2

“catastrophic
cancellation” - lose
precision

| sig fig

Dangerous in

intermediate results (SQH\J et
" compute ¢ galcul

Things you do know

Subtraction: if x, y floating-point representable numbers
and x within a factor of 2 of y, then FP subtraction exact

r2<y<2=x0y=x—y

Rounding error when adding FP x and y is an FP number,
and can be computed:

r=x4+y—(rdy) =r=0S((adbd) ©a)
subtraction is addition of a negative

similar results exists for multiplication SCHlet
" compqte&qlcul

Things you do know

® Math libraries typically provide functions (sin, cos, sqrt, pow,
etc) results accurate to ~|-3 ulp, for given FP input

® For exact details, check manual

Sciet

compute «calcul
CANADA

Be cautious, but don’t
despair

FP errors are normally not a concern ~ | ulp

Shouldn’t normally be biased one way or another - error of
N calculations ~sqrt(N) ulp

(Note: iterate trillion computations in single precision -
likely have O(I) errors)

BUT need to be careful, especially of repeatedly iterated

calculations or of awkward things early in a long calculation
- if (eg) lose much precision early in a multi-stage
computation |
(SEHVet

" compute «calcul
CANADA

How do you know if
there’s a problem?

® (Can test:

® Change precision (single to or from double; fortran
allows quad). Does answer significantly change!?

® Perturb calculation at ulp level by changing rounding
behaviour. Does answer significantly change!?

® Perturb calculation by slightly changing inputs. Does
answer significantly change?

® [f you pass 3 tests, some evidence you're doing ok.

(’ compute «calcul
CANADA

Floating Point and
Compilers

You generally want to turn on heavy levels of
optimization when compiling (-O2, -O3); this can speed
up your code significantly

At -O3 levels (by convention), the compiler is allowed to
re-order mathematical operations in such a way that,
mathematically, give same answer

But numerically may not!

Overview of optimization flags for intel compilers: http://
wiki.scinethpc.ca/wiki/images/7/77/

Snug_techtalk_compiler.pdf (Sgﬁ\j et
" compzufs: S'czlcul

http://wiki.scinethpc.ca/wiki/images/7/77/Snug_techtalk_compiler.pdf
http://wiki.scinethpc.ca/wiki/images/7/77/Snug_techtalk_compiler.pdf
http://wiki.scinethpc.ca/wiki/images/7/77/Snug_techtalk_compiler.pdf
http://wiki.scinethpc.ca/wiki/images/7/77/Snug_techtalk_compiler.pdf
http://wiki.scinethpc.ca/wiki/images/7/77/Snug_techtalk_compiler.pdf
http://wiki.scinethpc.ca/wiki/images/7/77/Snug_techtalk_compiler.pdf

Floating Point and
Compilers

® If your code is already demonstrated to be numerically
stable, these perturbations shouldn’t be a big issue.

e BUT:

® Compiler may, by dumb luck, stumble on a reordering
which is numerically unstable. Test with different
optimization flags.

® |f your code includes something you've carefully
written for numerical stability that you don’t want
reordered, put it in a separate file and compile it with

-O2 or less (SEHVet

" compute «calcul
CANADA

Floating Point and
Compilers

® Other optimization flags include things like -ffast-math (or
-funsafe-optimizations) which do more agressive changes

e -ffast-math likely does things like replace divisions with
multiplication-by-reciprical, which is less accurate; may use
less accurate but faster math functions. Worth trying,
but be careful with this.

® -funsafe-math-optimizations: ditto.

(SQH\J et

compute «calcul
CANADA

Architecture and
Floating Point

In theory, all IEEE-754 compliant hardware should give same results.

Mostly true; some small non-compliances here and there. Not normally
a big worry (change in compilers more likely to cause numerical
changes)

Biggest difference: x86 does FP math on variables in registers in
“extended precision” - 80 bits vs. 64.

Higher precision, but depends on whether variables are in registers, etc.

Can cause difference between x86 and other achitectures.

Be aware of this. S,GHVEt

’ compute calcul

Easiest way to avoid
problem

® Don’t write numerical code when you don’t have to!

® |f there exist numerical libraries for things you want to do
(ODE, integration, FFTs, linear algebra, solvers), use them.

® Amongst other benefits, the numerical issues have been
worked out in most mature, highly-used code bases.

(SQE‘N et

(’ compute «calcul
CANADA

Things to avoid

® Subtractions of like-sized variables early in calcuation

® Sumations of large amounts of numbers, or numbers of
widely varying magnitudes

® Testing for exact floating-point equality

ScCiet

’ compute calcul

Things to do

Try to keep values normalized in some sense so that all the

values you're likely to deal with are of order unity (avoids
machine epsilon problems)

Try to use existing libraries when necessary

Routinely test your code

ScCiet

’ compute calcul

