Numerical Tools for Physical Scientists

Feb/Mar 2013

The Course

- We've covered some basics of programming for scientists in the last class:
- C/C++
- git for version control
- unit tests
- Here we're going to focus on specifics of numerical computing for physical scientists.

Course Outline

- Today: Intro, Numerics
- Feb I4: Random Numbers
- Feb 26: Integration, ODE solvers
- Feb 28: Molecular Dynamics
- Mar 5: Numerical Linear Algebra I
- Mar 7: Numerical Linear Algebra II, PDEs
- Mar I2: Fast Fourier Transforms I
- Mar 14: Fast Fourier Transforms II

Today

- What numerical computing is, and how to think about it
- Modelling vs reality;Validation \& Verification
- Real arithmetic on computers - floating point math
- Random Number Generators
- compute \bullet calcul

Computational Science

- "Third Leg" of Science?
- Different than theoretical science or experimental science; requires skills of each
- "Experimental theory" - exploring complex regions of theory
- Requires note-taking, methodical approach of experimentalists; mathematical chops of theorists; and other knowledge too.

Computational Science

- Often done incredibly badly
- If experimentalists work was of quality of much computational work, we still would be arguing over the charge on an electron
- Experimentalists, theoreticians have had centuries to determine best practices for their disciplines
- Computationalists starting to develop ours eg this course.

Computational Science

- Computational science, like experimental or theoretical science, is a modelling endevor
- Creating simplified picture of reality that includes (only) bits you want to study.

Conceptual/
 Numerical
 Phenomenon
 Mathematical Model
 Computation

$$
\begin{array}{r}
\ddot{z}=m(t)(F-g) \\
\dot{m}_{f} \propto F
\end{array}
$$

Wouble dfdt(double time, double mass, double fuelmass,
double vel, double force, double z, double dt
Gouble dfdt(double time, double mass, double fuelmass,
double vel, double force, double \mathbf{z}, double dt, double *df) \{
double $g=$ Mearth*newton $G /\left(z^{*} z\right)$;
$d f[0]=$ (mass + fuelmass)*(alpha*burnrate-g);
$\mathrm{df}[1]=\mathrm{vel}$;
df[2] - burnrate;

1,1
All

Phenomenon

©

Can go wrong at each

 stepAre we solving the right equations?

Can go wrong at each step

Are we solving the equations right?

Verification:Testing math \Rightarrow numerics

- Can go wrong in translation from mathematical model to computational model
- Discretization error, Truncation error, roundoff, ... or just plain bug.
- Process of testing this:

Verification

Discretization error

- Error caused by going from continuum to discrete domain
- Eg: grid in space; discrete timesteps; etc.
- Should decrease as you increase resolution.

Truncation Error

- Typically occurs when an
$e^{x} \approx 1+x+\frac{x^{2}}{2}$ expansion is truncated
(- compute \bullet calcul

Roundoff

- Floating point mathematics can go

$$
(a+b)+c \neq a+(b+c)
$$ wrong (more on this later)

- compute \bullet calcul

CANADA

Just plain bugs

- Scientific software can get large, complex
- Bugs creep in
- Unit testing, version control can greatly help

- Still happens
©

Verification: Analytics, Bechmarks, Comparisons

- Trying to make sure we are correctly solving the intended equations in the regime of interest.
- Comparison to known analytic solutions:
- Easy to do
- Solutions tend to be of very simple situations - not hard tests of the computation, particularly integrated.
- But very useful for unit tests.
(1) compute \rightarrow calcul

Verification: Analytics, Bechmarks, Convergence

- Trying to make sure we are correctly solving the intended equations in the regime of interest.
- Benchmarking a complex solution from your code to that of another code (could be: same code last year, saved results)
- CAN NOT show that either solution is correct
- CAN show that at least one code/version has a problem, or that something has caused changes.

Verification: Analytics, Bechmarks, Convergence

- Trying to make sure we are correctly solving the intended equations in the regime of interest.
- Convergence testing: compare solutions at higher and higher resolution (or terms in expansion, or...)
- Again, doesn't mean converges to correct result, but lack of convergence indicates a problem
- Relatedly - does slightly varying input parameters, result in robust result, or do huge changes occur in relevant metrics?
(1) compute •calcul

Validation:Testing

 reality \Rightarrow numerics- Can go wrong in translation from phenomenon to mathematical model

Validation:Testing

reality \Rightarrow numerics

- Can go wrong in translation from phenomenon to mathematical model
- Typically only implementation of full mathematical model you have is the code
- Testing code against reality

Validation: Code/

Experiment comparisons

- Only way to do validation is to compare directly to experimental results
- Must be in regime you are realistically interested in, but still experimentally accessible
- Requires collaboration with experimentalists.
- Proves that there's a regime in which your code accurately reproduces reality.

arXiv:astro-ph/020625 I

Not a one-off

- Even after an extensiveV\&V effort, code changes
- Still giving right answer?
- Unit tests, regular integrated tests crucial to maintaining correctness
- Who cares that your code once gave correct answer once, some Thursday two years ago?
compue sacu

Regimes of Interest

Floating Point Mathematics
 Like real numbers, but different.

(compute \bullet calcul

Integer Math and Computers

- Infinite number of integers
- Finite size of integer representation
int: 32 bits $=4$ bytes

- Finite range. One bit for sign; can go from
-2^{31} to (almost) 2^{+31}
($-2,147,483,648$ to
$2,147,483,647)$
- Unsigned: $0 . .2^{32-1}$
© compute- calcu

Integer Math and Computers

- long long int:
- One bit for sign; can go from -2^{-63} to (almost)
2^{+63}
(-9,223,372,036,854,775 ,808 to
9,223,372,036,854,775,8 07)
long long int: 64 bits =
8 bytes
- Unsigned: $0 . .2^{64}-1$

Integer Math and Computers

- All integers within range are exactly representable.
- Absolute spacing (I) constant across range; relative spacing varies
- All operations (+,-,*) between representable integers represented unless overflow (with either sign)
C)

Fixed point numbers

- Could treat real numbers like integers - 0...INT_MAX, with say the last two digits 'behind decimal point'.
- Financial stuff often uses this; only ever need/want two decimal points
- Horrifically bad for scientific computing - relative precision varies with magnitude; cannot represent small and large numbers at same time.
compute •calcu
CANADA

Floating Point Numbers

- Analog of numbers in scientific notation
- Inclusion of an exponent means point is "floating"
base

- Again, one bit dedicated to sign

Floating Point Numbers

- Standard: IEEE 754
- Single precision real number (float):

- I bit sign
- 8 bit exponent (-I26..I27)
- 23 bit mantissa
- double precision: I/I I/52
(- compute \bullet calcul

Floating Point Numbers

- To ensure uniqueness of represention (don't waste patterns), first bit of mantissa always I.

- Since always I, don't need to store it
- Really 24 (53) bits of mantissa
- Normalized numbers
- compute •calcul

CANADA

Denormal numbers

- This actually leads to a big jump between smallest possible number and zero

- Relative accurracy doesn't degrade gracefully

- So if exponent = minimum, assume first bit of mantissa $=0$

Special "Numbers"

- There's room in the format for the storing of a few special numbers:
- Signed infinities (+Inf, -lnf): result of overflow, or divide by zero.
- Signed zeros - signed underflow, or divide by +/-Inf
- Not a Number - NaN. Sqrt of a negative, 0/0, Inf/lnf, etc.
- All of the events which lead to these are (usually) errors and can be made to cause exceptions.
©

Underflow: mostly harmless?

- Try the following:
- Repeatedly take sqrts, then square a number
- Plot this from $0 . .2$
- What should you get? What do you get?
- Loss of precision in early stage of calcuation can cause problem

```
In [9]: def sqrts(x):
    ...: y = x
    ...: for i in xrange(128):
    ...: y = sqrt(y)
    ...: for i in xrange(128):
    y = y*y
    return y
```

In [10]: x = linspace(0.,2.,1000)
In [11]: $\mathrm{y}=$ sqrts(x)
In [12]: plot(x,y,'o-')

Floating Point Exceptions

- Let's look at the following Fortran code
- Second division should fail
- If compile and run as is, will just print NaN for C
- Can have it stop at error:
program nantest
real : : a, b, c
$a=1$.
$b=2$.
$c=a / b$
print *, c, a, b
$a=0$.
$\mathrm{b}=0$.
$c=a / b$
print *, c, a, b
$a=2$.
$b=1$.
$c=a / b$
print *, c, a,b
end program nantest
(-) compute •calcul

Floating Point Exceptions

- Compiling with gfortran, can give -ffpe-trap options
- will trap (throw exception, stop) for invalid, divide by zero, overflow
- Could also do underflow
- Debugger stops at line that causes exception

```
$ gfortran -o nantest nantest.f90
    -ffpe-trap=invalid,zero,overflow -g
$ gdb nantest
[...]
(gdb) run
Starting program: /scratch/ljdursi/Testing/fortran/na
    0.50000000 1.0000000 2.0000000
Program received signal SIGFPE, Arithmetic exception.
0x0000000000400384 in nantest () at nantest.f90:13
13
Current language: auto; currently fortran
```


Floating Point Exceptions

- C: include fenv.h, and use feenableexcept (enable exceptions)
- constants defined
- gdb again works

```
#include <stdio.h>
#include <fenv.h>
int main(int argc, char **argv) {
    float a, b, c;
    feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW
    a=1.;
    b = 2.;
    c=a/b;
    printf("%f %f %f\n", a, b, c);
    a=0.;
    b}=0.
    c = a/b;
    printf("%f %f %f\n", a, b, c);
    a=2.;
    b=1.;
    c = a/b;
    printf("%f %f %f\n", a, b, c);
    return 0;
```


Floating Point Exceptions

- C: include fenv.h, and use feenableexcept (enable exceptions)
- constants defined
- gdb again works

```
$ gcc -o nantest nantest.c -lm -g
$ gdb ./nantest
[...]
(gdb) run
Starting program: /scratch/s/scinet/ljdursi/Testing/
exception/nantest
1.000000 2.000000 0.500000
Program received signal SIGFPE, Arithmetic exception.
0x00000000004005d0 in main (argc=1, argv=0x7fffffffe4
nantest.c:17
17 c = a/b;
```

- compute \bullet calcu

CANADA

Floating Point Math

$$
\begin{aligned}
& \text { In [1]: print } 1 \\
& 1 \\
& \text { In [2]: print 1.e-17 } \\
& \text { 1e-17 }
\end{aligned}
$$

- Fire up Python, and try In [3]: print (1. + 1.e-17) - 1 . the following:??
In
$? ?$

Floating Point Math

```
In [1]: print 1
1
```

In [2]: print 1.e-17

- Fire up Python, and try $1 \mathrm{e}-17$ the following:

$$
\begin{aligned}
& \operatorname{In}[3]: \operatorname{print}(1 .+1 . e-17)-1 . \\
& 0.0
\end{aligned}
$$

Errors in Floating Point Math

- Assigning a real to a flaotting point variable involves truncation

$$
\begin{aligned}
x & =1 / 5=0.2_{10} \\
& =0.001100110011 \cdots 2 \\
& \geqslant 0.0011_{2}
\end{aligned}
$$

- Error of I/2 ulp (Unit in Last Place) due to rounding due to assignment to finite precision
- (single precision: I part in $2^{-24} \sim 6 \mathrm{e}-8$; double, le-16)

Rounding

- Rounding should not introduce any systematic biases
- IEEE 754 defines 4 rounding modes:
- to nearest (even in ties): default
- to 0 (truncate)
- to $+\operatorname{lnf}($ round up)
- to - Inf (round down)

Compue sata

Don't test for equality!

- Because of this error in assignments, and other small perturbations we'll see, testing for floating point equality is prone to failure.
- Generally don't test for $x==0$, or $x==y$
- $\operatorname{abs}(x)$ < tolerance, or abs $(x-y)$ < tolerance
C)

Rounding

- Can set rounding mode
- C: \#include <fenv.h>, fesetround()
- FE_TONEAREST, FE_UPWARD, FE_DOWNWARD, FE_TOZERO
- Fortran: use,intrinsic IEEE_ARITHMETIC
- call IEEE_SET_ROUNDING_MODE(),
- IEEE_DOWN, IEEE_UP, IEEE_TO_ZERO, IEEE_NEAREST
C)

Machine Epsilon

- Let's work in base I0, with mantisa precision=3
and exponent precision=2.
- (ignore denormal/ normalized for now; weird with non-binary)
- I + 0.00I
(1) compute •calcul

Machine Epsilon

- Let's work in base I0, with mantisa precision=3 and exponent precision=2.
- (ignore denormal/ normalized for now; weird with non-binary)

$$
\begin{array}{r}
1.00 \times 10^{0} \\
+1.00 \times 10^{-3}
\end{array}
$$

Machine Epsilon

- Defined to be the smallest number s.t. I+x != I
- (or sometimes, the largest number s.t. I+x = I)
- single IEEE precision:~I.I9209e-07; double, ~2.22045e-I6
- By repeated halving, try to see if you can calculate machine epsilon this way. What precision is default floating point number in python?
C)

Machine Epsilon

```
In [4]: x = 1.
In [5]: while 1. + x > 1.:
    ...: print x, 1.+x
    ...: x = x / 2.
[...]
2.22044604925e-16 1.0
```

- compute \bullet calcu

First lesson of floating point numbers

- Be wary of adding numbers that are potentially of very different magnitude
- Relative size ~ machine epsilon, regardless of absolute magnitude (eg, $10+10 \mathrm{e}_{\text {mach }} \sim 10$).
- What should we do when adding large series of numbers, even if of roughly same magnitude?
(1)compute •calcu

Subtraction: cancellation

- The same effect in opposite with subtraction

- Be wary subtracting very similar numbers.
© ${ }^{\text {compure sicu }}$
CANADA

Subtraction: cancellation

- The same effect in opposite with subtraction

3 sig fig

- Be wary subtracting very similar numbers.

$$
\frac{-1.22 \times 10^{0}}{\ni 1.00 \times 10^{-2}}
$$

- "catastrophic cancellation" - lose precision

1
I sig fig

- Dangerous in intermediate results

Things you do know

- Subtraction: if x, y floating-point representable numbers and x within a factor of 2 of y, then FP subtraction exact

$$
x / 2<y<2 \Rightarrow x \ominus y=x-y
$$

- Rounding error when adding FP x and y is an FP number, and can be computed:

$$
r=x+y-(x \oplus y) \Rightarrow r=b \ominus((a \oplus b) \ominus a)
$$

- subtraction is addition of a negative
- similar results exists for multiplication

Things you do know

- Math libraries typically provide functions (sin, cos, sqrt, pow, etc) results accurate to $\sim I-3$ ulp, for given FP input
- For exact details, check manual
(1) compute•calcul

Be cautious, but don't despair

- FP errors are normally not a concern \sim I ulp
- Shouldn't normally be biased one way or another - error of N calculations $\sim \operatorname{sqrt}(\mathrm{N})$ ulp
- (Note: iterate trillion computations in single precision likely have $\mathrm{O}(\mathrm{I})$ errors)
- BUT need to be careful, especially of repeatedly iterated calculations or of awkward things early in a long calculation
- if (eg) lose much precision early in a multi-stage computation
C)

How do you know if there's a problem?

- Can test:
- Change precision (single to or from double; fortran allows quad). Does answer significantly change?
- Perturb calculation at ulp level by changing rounding behaviour. Does answer significantly change?
- Perturb calculation by slightly changing inputs. Does answer significantly change?
- If you pass 3 tests, some evidence you're doing ok.

Floating Point and Compilers

- You generally want to turn on heavy levels of optimization when compiling (-O2, -O3); this can speed up your code significantly
- At -O3 levels (by convention), the compiler is allowed to re-order mathematical operations in such a way that, mathematically, give same answer
- But numerically may not!
- Overview of optimization flags for intel compilers: http:// wiki.scinethpc.ca/wiki/images/7/77/ Snug_techtalk_compiler.pdf

Floating Point and Compilers

- If your code is already demonstrated to be numerically stable, these perturbations shouldn't be a big issue.
- BUT:
- Compiler may, by dumb luck, stumble on a reordering which is numerically unstable. Test with different optimization flags.
- If your code includes something you've carefully written for numerical stability that you don't want reordered, put it in a separate file and compile it with -O2 or less

Floating Point and Compilers

- Other optimization flags include things like -ffast-math (or -funsafe-optimizations) which do more agressive changes
- -ffast-math likely does things like replace divisions with multiplication-by-reciprical, which is less accurate; may use less accurate but faster math functions. Worth trying, but be careful with this.
- -funsafe-math-optimizations: ditto.
C) $\begin{gathered}\text { compute : calcul } \\ \text { cn }\end{gathered}$

Architecture and Floating Point

- In theory, all IEEE-754 compliant hardware should give same results.
- Mostly true; some small non-compliances here and there. Not normally a big worry (change in compilers more likely to cause numerical changes)
- Biggest difference: $x 86$ does FP math on variables in registers in "extended precision" - 80 bits vs. 64.
- Higher precision, but depends on whether variables are in registers, etc.
- Can cause difference between $\times 86$ and other achitectures.
- Be aware of this.
(-) compute •calcu
CANADA

Easiest way to avoid problem

- Don't write numerical code when you don't have to!
- If there exist numerical libraries for things you want to do (ODE, integration, FFTs, linear algebra, solvers), use them.
- Amongst other benefits, the numerical issues have been worked out in most mature, highly-used code bases.
©

Things to avoid

- Subtractions of like-sized variables early in calcuation
- Sumations of large amounts of numbers, or numbers of widely varying magnitudes
- Testing for exact floating-point equality
(1) compute \rightarrow calcul

Things to do

- Try to keep values normalized in some sense so that all the values you're likely to deal with are of order unity (avoids machine epsilon problems)
- Try to use existing libraries when necessary
- Routinely test your code
C)

