Introduction to
Practical Parallel
Programming

Course Overview, and The ‘Big Picture’

Schet

Today’s Main Goal

* Students arriving with scientific computing
background should be able to leave and
immediately start parallelizing codes,
understand concepts involved

Schet

Schedule

9am-10:30 Basic Concepts
10:30-10:45 Break
10:45-12:45 Intro to OpenMP
12:45-1:45 Lunch
1:45-3:30 Intro to MPI
3:30-3:45 Break
3:45-5:00 Intro to MPI 2

Schet

VVhat will we be doing here

* This is a short course on parallel programming

* You will be doing a lot of typing and

programming to help build skills with
OpenMP, MPI.

Schet

Parallel Computing

l: Concurrency, Amdahl’s Law, and Locality

Schet

Why Parallel
Computing!?

Faster:

At any given time, there is a limit
as to how fast one computer
can compute.

S0 use more computers!

o N N _N_A_N HEgIme e w
b . A _B. A A A A B 2 .--‘

Why Parallel
Computing!?

Bigger:

At any given time, there is a limit
as to how much memory, disk
space, etc can be put on one

computer. 78+ .
So use more computers! W

Rl
.

Why Parallel
Computing!?

More:
You have a program that runs in
reasonable time one one
processor but you want to run it
thousands of times.

So use more computers!

Concurrency

* Must be something for the
‘more computers’ to do.

* Must be able to find
concurrency in your problems

* Many Tasks

* Order Unimportant

http://flickr.com/photos/splorp/

http://flickr.com/photos/splorp/
http://flickr.com/photos/splorp/

Data Dependancies Limit
Concurrency

Parameter Study:
ldeal case

* Want to know all results as
model parameter varies

e Can run serial code on up to
as many processors as
parameter sets

e ‘More’

Schet

Throughput =
Tasks/Time

How long it takes to process the
N tasks you want done

N

time
For completely independent
tasks, P processors can increase

throughput by factor P!

throughput =

VS

Sﬁﬁ\l et

Scaling with P

8
£
How a problem scales: how = 6
throughput behaves as S)
processor number increases]
In this case, the throughput 2 2
. . R
scales linearly with the number)
of processors P=| 2 3 4 5 & 7 8

This is the best case:
‘Perfect scaling’

ScCiet

Scaling with P

Another way to look at it: time
it takes to get some fixed
amount of work done

More usual (and more
important!)

Perfect scaling: time to
completion ~ |/P

P processors - P times faster

Time Per Task

Scaling with P

Another way to look at it: time
it takes to get some fixed
amount of work done

More usual (and more
important!)

Perfect scaling: time to
completion ~ |/P

P processors - P times faster

Time Per Task

|0

10

Schet

Parameter Study:

‘Embarrassingly
Parallel

e Scales perfectly up to P=N
e Speedup = P:’linear scaling’,
ideal case.

Schet

Problems Differ in
amount of
Concurrency

Integrate (or some other simple
processing) tabulated
experimental data

Integration of different regions
can be summed by each
processor

But first need to get data to
processor, then bring together
all the sums

Partition Data

Region

v)

Region

v)

Region

_ I J

v

Pfeductlon

)

Schet

Parallel Portion:
Perfectly Parallel (as
long as there is

enough work)
T~ 1/P

Partition Data

N

Region

v)

Region

v)

Region

_ I J

Pfeductlon

v

)

Schet

Serial Portion:
Sum has to be
done; if done on one
processor, just same
as serial:

T ~ const

Partition Data

Region

v)

Region

v)

Region

_ I J

Pfeductlon

v

)

Schet

Parallel Overhead:
Data has to be sent to
appropriate processor, a
cost of the parallel
implementation

T const (best case)
or increasing fn of P

Partition Data

Region

v)

Region

v)

Region

_ I J

Pfeductlon

v

)

Schet

Total Time: Serial

+ Parallel
lgnoring data-moving costs (for
now):
. N
tlme(Na P) — \‘FJ Twork + Treduction(P)

Typically linear in P (sum)
Eventually, as problem becomes
increasingly scaled up, serial
term dominates

Partition Data

v)

Region

v)

Region

_ I J

Pfeductlon

v

)

Schet

Timing of
simple case

lgnore data transfer costs; say:
100 s in integration work
5 s in assembling the parts
How does this behave on many
processors!?

Time (s)

120

100

80

60

40 |

\o

20

Time = (100 s)/P + 5
|deal

10 20 30 40 50 60 70 80 90 100

Number of Processors

ScCiet

More processors per o,
run don’t always help |

Time = (100 s)/P + 5
Ideal

100

Given timing data, how do we
choose P to run on if we have N
programs to run?

Time (s)

10 |

1 10 100

|deal case, timing goes down |/P - :
doesn’t matter

Number of Processors

Serial part (5%!) becomes a Note: ¢(50) = 7s
bottleneck t25) = Os

Can improve throughput by Can run 2 jobs on 25 procs each
running on fewer processors in about same time as one on 50!

Schet

Speedup: How

O T Sheedup S INPIAN) ——
|deal
much faster
with P procs? | «
An important concept is the
speedup of a given parallel
implementation 1 T
t(]\f7 P = 1) 1 10 100

speedup(P) =

Number of Processors

t(N, P)

ScCiet

Efficiency:
Speedup should

be ~P

Related concept: Parallel .
Efficiency (compared to serial S
code) :
t(N,P =1)
Effici P) = ’
ciency(P) PIN.P = 1)
- speedup(P)
B P

1.2

0.8 |-

0.6 -

0.4 |-

0.2 +

10 20 30 40 50 60 70 80 90 100

Number of Processors

ScCiet

Amdahl’s Law

Any serial part of
computation will
eventually dominate
If serial fraction is f, even if
parallel component goes to
zero, speedup can only be | /f

serial
fraction

time(/N, P)

Speedup

lim Speedup

P— o0

lim Efficiency

P— o0

(perfectly)
parallel fraction

(1
)
1
(/+)

1
?
0

Schet

100 [[[[[[[[[

90 - f=1% —— -
g0 L f=5% .
20 L f=10% — 1
f=25%
Amdahl’s Law | o “Z |
a— S a—W g 50 |- Ideal
n 40 -
e Any serial part of 30 | -
computation will 20 - -
eventually dominate > ———
* |f serial fraction is f, even if 0 20 30 40 50 60 70 80 90 100
parallel component goes to Number of Processors (P)

zero, speedup can only be |/f

ScCiet

Avoiding
Amdahl

In some cases, may not matter.
If will run in reasonable time on
some small number of
processor, asymptotic arguments
may not matter.

Partition Data

Region

v)

Region

v)

Region

_ I J

v

Pfeductlon

")

E

Schet

Partition Data
¢) f¢) f¢ N\ [/

N (0

<
J

Trying to Beat i |
Region| [Region| [Region| |Region
Amdahl, #1 {2 || 3 || 4

Rewrite serial portions to take
into account parallelism
eg, many reductions can be done
in parallel that will cost logz(P) N
(not |, but much better than)£
serial = P..)

-

Schet

)\I)\IJ\IJ

)
<

Big Lesson #1

Optimal Serial Algorithm for your problem

may not be the P— | limit of your optimal
Parallel algorithm

Schet

Trying to Beat Amdahl, #2 -
Upsize

Desktop problem isn’t a
supercomputer problem!

Reason to run on big machines is
size as well as speed

Amdahl’s law assumes constant size
problem

Latitude, degrees North

More work; f goes down.

Gustafson’s law: any sufficiently
large problem can be efficiently
parallelized.

120 90 60
Longitude, degrees West

ScCiet

Weak Scaling

How does problem behave if .

you expand problem size as 140 | e egmond
number of processors!?

120 |-

Strong Scaling - on how many

100

Time (s)

processors can you efficiently
run given problem 0

60 +

Weak Scaling - how large a e

PrOblem can you efﬁCientI)’ run 10 20 30 40 50 60 70 80 90

Number of Processors (P)

ScCiet

More on
Concurrency

Most problems are not pure
concurrency

Some level of synchronization,
exchange of information needed
between tasks

This needs to be minimized

Increases Amdahl’s ‘f’

Are themselves costly

-

J

-

J

-

J

-

—__J) y
¥ v . V_. v
(7 Synchronization =)
)) [N\)
- J N J N J

(Synchronization

4 ¢ N\ ¢ N ¢ N\ ¢

(¢ Syn%hronizgtion ¢)

Schet

Concurrency

Synchronization

N/ \/

Makes possible lots of wasted
time (‘load balancing’, about
which more later)

N/ \(

Synchronization

(¥ Synthronizition ¥)

Sﬁﬁ\l et

Locality

Information needed by the task
should be as local as possible.

When tasks do need to interact,
best that those interactions be as
local as possible, and with as few
others as possible

Communications cost lower
Fewer processes have are locked up

during the necessary
synchronization

—
)

— G P—
)))
— U UN~—_J U

Schet

Big Lesson #2

Parallel algorithm design is about finding as
much concurrency as possible, and arranging
it in 2 way that maximizes locality.

Schet

1N

N

Fi
Concurrency

|dentify tasks that can be done

independently, order doesn’t

matter

N

parts of domai

PDEs

: particles (or
interactions)

N-body

Maintaining
Locality

Now have to lump the
concurrent bits into tasks
Choosing that re-aggregation
can greatly effect locality.

: L :
.l perimeter
‘I =9L

: perimeter
‘ = 4L

Sﬁﬁ\l et

Example: | d
Integration
Integrate a |d function with 7Z B
(say) Simpson’s rule, with N o
points. il J_

Concurrency: can do each of the
points independently, then sum.

Locality: have each do a chunk CpUy G Q

CPU2

Example: | d

integration
Each processor gets N/P points
to do
Total compute time for one
process:
N
Tcomp — (F) NSRCcomp

Now how to do sums!?

Example: | d
Integration

Each processor sends partial
sums to others, then all can do +
total
Each processor sends its result
(P-1) times and receives (P-1)
results

Tcomm — 2(P —]-)Ccomm

CPUI CPU2 CPU3
sum | ~>

& S

e

total

total

+ | sum3

total

Schet

Integ ratlon :ZZZ] | | | ITcolmp +chorInm l l
®

with parallel ; = -
é 25000 | -

COsts: 2 w0

= 15000 |

Can actually get worse with P! 10000 -

Communication cost increases . —

Wlth P 10 20 30 40 50 60 70 80 90 100

Number of processors

N = 10000, Ny.=4,
Ccomm/Ccomp = |00

ScCiet

Integration
with parallel
Costs:

Can actually get worse with P!
Communication cost increases

with P

Speedup

| | | | | | | | |

10 20 30 40 50 60 70 80 90 100

Number of processors

N = 10000, Ny.=4,
Ccomm/Ccomp = |00

ScCiet

I nteg ratl O n 0.; : | 1 | | Parallel Efficiency =

® 0.8

with parallel -

:é 0.5

COSts: o
Can actually get worse with P! -
Communication cost increases 0

. 10 20 30 40 50 60 70 80 90 100
with P el

N = 10000, Ny.=4,
Ccomm/Ccomp = |00

ScCiet

Tcomm 2(P o 1)Ccomm
Tcomp % NSR Ccomp
2P(P—1) 1 Ceomm

Communication = N Nem Coon
-LO- ~ P2
Computation ratio
We want this to be (ideally) If Nsr ~ 4, Ccomm ~ 1000 Ccomp,
constant in P, or at least grow N = 10000, then
slowly; otherwise as we scale Teomm/ Teomp ~ 1.2 for P=16

up, we spend more time sending
messages than computing.

(Advanced: this even matters for serial computation, due to memory
bandwidth limitations. “Arithmetic Intensity”) S
Gi Net

Better CPUI CPU2 CPU3 CPUA4

Summing _G—© G

sum| sum?2 sum3 sum4
Pairs of processors; send partial

sum |+ sum3+
SUMms sum?2 sum4

Max messages recieved log(P) >
sum |+
Can repeat to send total back sum?2-+
sum3+
sum4=
Tcomm = 2 logQ(P)Ccomm tota

Reduction; works for
a variety of operators
(+,*,min,max...)

Schet

Speedup with

reduction

Very good! Efficiency still falling
off past 20 or so processors
(But integrating 10,000
numbers...)

Speedup

35

| | | | | | | | |

10 20 30 40 50 60 70 80 90 10C

Number of processors

ScCiet

100

Speedup with =

reduction o
with 1,000,000 numbers...

60
50
40
30
20
10

0 | | | | | | | | |
10 20 30 40 50 60 70 80 90 10C

Speedup

Number of processors

ScCiet

Tcomm 2 1Og2 (P) CQ:omm

Tcomp % NSR C1(:0mp
. . - 2Plogy,(P) 1 Ceomm
Communication - N Nsg Coomn
-tO- ~ Plogy(P)
Computation ratio
Much better! If Nsr ~ 4, Ccomm ~ 100 Ceomp, N
As number of processors goes = 10000, then
up, relative cost of Teomm/ Tcomp ~ 0.08 for P=16

communications goes up only
logarithmically.

Schet

Parallel Computing

|l: Parallel Computers

Schet

®

000

PROJECT LISTS

Home * Lists * June 2009

R and R
peak

max

Power data in KW for entire system

1 DOE/NNSA/LANL
Umtc\. btatz,
2 UaK riage iNauonal Labc
United States
p rect inaszentrum lnahicrh =7
3 ' | . . ’

Germany

STATISTICS

IBM

ZCCB
Cray Inc.

2009
IBM

RESOURCES

values are in TFlops. For more details about other fields, check the TOP500 description.

Mfm m%erwt’a: W&

Hse Top500.org:

= ,,;/,tt++

NEWS

List updated every
6 months of the
worlds 500 largest
- Supercomputers.

Info about
architecture, ...

| Petaflop (10> flop/s);
126,600 cores

SEH\I et

128600 1105.00 1456.70 248347

150152 00 138140 ©6950.60

294912 82550 1002.70 2

Computer
Architectures

How the computers work shape
how best to progam them

Shared Memory vs Distributed

Memory.

Vector computers...

/
y 2.
-~y

: -J _/II' / JI_JI._H_JI LR T L RTINS

4 H

w N

- .-J': -,’

fH

A A A A A

http://flickr.com/photos/eurleif/

Distributed
Memory:
Clusters

Simplest type of parallel
computer to build

* Take existing powerful
standalone computers

¢ And network them

http://flickr.com/photos/eurleif/
http://flickr.com/photos/eurleif/

Each Node is
Independent

Parallel code consists of
programs running on separate
computers, communicating with
each other
Could be entirely different
programs

CPU
U2
(3dpru3
W
CPU4

Schet

Each node has
independent
memory

Locally stores its own portion of
problem
Whenever it needs information
from another region, requests it
from appropriate CPU
Usual model:‘message passing’

Memory
CPU

CPU4

SEH\| et

Clusters
+Message

Passing

HWV: Easy to build (harder to
build well)

HW: Can build larger and larger
clusters relatively easily
SW: Every communication has
to be hand coded -- hard to
program

Memory
CPU

CPU4

SGm et

Latency Bandwidth

i ~10 ps | Gb/s
GIgE (10,000 ns) (~60 ns/double)
Infiniband ~2 ps 2-10 Gb/s

(2,000 ns) (~10 ns/double)

Processor speed: | FLOP ~ few ns or less

Schet

Corel

Shared Memory

One large bank of memory,
different computing cores acting

on it. All ‘'see’ same data

Core2
Any coordination done through <
memory.

Could do like before, but why?

Each core is assigned a thread of
execution of a single program that
acts on the data v

Thread Vs. Threads:

Process

Processes: Independent tasks
with their own memory,
resources

Threads: Threads of execution
within one process, ‘seeing’ the
same memory, etc.

|'v;— Ijdursi@gpe
File Edit View Terminal Tabs Help

top - 17:27:34 up 2 days, 1:40, 1 user, load average: 1.81, 0.56, 0.20
Tasks: 142 total, 3 running, 139 sleeping, 0 stopped, 0 zombie
Cpu(s): 95.9%us, 3.0%sy, ©0.0%ni, 0.0%id, 0.0%wa, 0.1%hi, 1.0%si, 0.6%

Mem: 16411872k total, 2778368k used, 13633504K free, 256K buffers
Swap: Ok total, Ok used, Ok free, 2265652k cached
I

USER NI VIRT S % SMEM TIME+ COMMAND
18121 1jdursi 25 0 89536 1076 B840 R 779.0 0.0 0:29.01 diffusion-omp
17193 root 15 0 35300 2580 60 S 15.0 0.0 0:01.57 pbs_mom
17102 rant 15 0 35300 3216 696 R 6.0 0.0 ©0:00.48 pbs_mom

15 0 10344 740 612 S 0.0 0.0 0:01.45 init

O M P T -5 0 0 s 0.0 0.0 0:00.00 migration/0
34 19 0 0 ©S 0.0 0.0 0:00.00 ksoftirqd/0

5 0 0 6S 0.0 0.6 0:00.00 watchdog/0@

e 0 S 0.0 0.0 0:00.01 migration/1
19 0 0 S 0.0 0.0 0:00.01 ksoftirqd/1

-5 0 0 6S 0.0 0.6 0:00.00 watchdog/1
root -5 e 0 S 0.0 0.0 0:00.00 migration/2
9 root 34 19 0 0 ©6S 0.0 0.0 0:00.00 ksoftirqd/2
10 root RT -5 0 0 s 0.0 0.0 0:00.00 watchdog/2
11 root RT -5 ¢ 0 0SS 0.0 0.0 0:00.00 migration/3

Fle Edit View Terminal Tabs Help

top - 17:33:58 up 2 days, 1:47, 1 user, 1load average: 0.80, 06.31, 0.17
Tasks: 150 total, 9 running, 141 sleeping, 0 stopped, 0 zombie
Cnulfc):10Aa ARug 0.0%sy, 0.0%n1, 0.0%1id, 0.0%wa, 0.0%hi, 0.0%si, 0.€

¢ total, 2801172k used, 13610700k free, 256Kk buffers
M PI ¢ total, Ok used, Ok free, 2268568k cached
S %CPU %MEM TIME+ COMMAND
25 © 187m 5504 3484 R 100.2 0.0 9:05.45 diffusion-mpi
PrOCS 25 © 187m 5512 3492 R 100.2 0.0 0:05.46 diffusion-mpi
1 25 © 187m 55608 3488 R 100.2 0.0 0:05.46 diffusion-mpi
18392 1jdursi 25 © 187m 5580 3556 R 99.9 0.0 0:05.40 diffusion-mpi
18394 1jdursi 25 © 187m 5504 3488 R 99.9 0.0 0:05.45 diffusion-mpl
18396 1jdursi 25 © 187m 5512 3492 R 99.9 0.0 0:05.45 diffusion-mpi
18398 1ljdursi 25 © 187m 5500 3480 R 99.9 0.0 0:05.43 diffusion-mpil
18399 1jdursi 25 © 187m 5512 3492 R 99.9 0.0 0:05.46 diffusion-mpi
1 root 15 O 10344 740 612 S 0.0 0.0 0:01.45 1init
2 root RT -5 0 0 S 0.0 0.0 0:00.00 migration/0
3 root 34 19 0 0 S 0.0 0.0 0:00.00 ksoftirqd/0
4 root RT -5 0 0 ©S 0.0 0.0 0:00.00 watchdog/0
5 root RT -5 0 0 S 0.0 0.0 9:00.01 migration/1
6 root 34 19 0 0 S 0.0 0.0 0:0 1 ksoftirqd/1

CJJ{INEI

Shared
Memory:NUMA

Complicating things: each core
typically has some of its own
memory
Non-Uniform Memory Access
Locality still matters
Cores have cache, too.
Keeping this memory coherent is
extremely challenging

Coherency

The different levels of memory
imply multiple copies of some
regions
Multiple cores mean can update
unpredictably
Very expensive hardware
Hard to scale up to lots of
processors, very $$$
Very simple to program!!

x[20] = 3

Latency Bandwidth

. ~10 ps | Gb/s
Gigk (10,000 ns) | (~60 ns/double)
| 2 us 2-10 Gb/s
Infiniband (2,000 ns) | (~10 ns/double)
NUMA ~0.1 ps 10-20 Gb/s

Shared Mem (|OO ns) (~4 ns/double)

Processor speed: | FLOP ~ ns or less

Schet

Big Lesson #3

The best approach to parallelizing your
problem will depend on both details of your
problem and of the hardware available.

Schet

Rybrid
Architectures

Almost all of the biggest computers
are now clusters of shared memory
nodes
Generally just use message passing
across all cores, but as P(1 node)
goes up, hybrid approaches start to
make sense.

ScCiet

® cp -R ~ljdursi/intro-ppp ~/
® source ~/intro-ppp/setup

ecd ~/intro-ppp/
gettingstarted/

BefOI"e WE Stal"t ® make omp hello world
With OpenMP: e ./omp hello world

¢ make mpi hello world

® mpirun -np 8
./mpi hello world

* gsub -l -X into your reserved node as
per instruction sheet and ensure this

works
Schet

An introduction to
OpenMP

OpenMP

For Shared Memory
systems

Add Parallelism to
functioning serial code

Add compiler directives
to code

http://openmp.org -
tonnes of useful info

SNO , —
W OpenWiP.org

& 9 C ff O hp//openmp.org

OpenMP

Tue OrenMP API SPECIFICATION FOR PARALLEL PROGRAMMING

A OpenMP News

| Subscribe to the News Feed
| »IWOMP 2011 - Call For Papers
Call for Papers 7th international Workshop on nMP IWOMP 2011

»» OpenMP Specifications P June 13 - 18,2011 Chigaco SS\

»About OpenMP http Awww lwomp org’
]
: »Complers The 2011 Intermational Workshop on OpenMP (IWOMP 2011) wil be hedd In Chicago, IL. Ris he
| *Roscurces premier forum 10 present and discuss Issues, Tends, recent research ideas and resuls refated 1o
| »Discussion Forum paraliel pro- gramming with OpenMP. The inernatonal workshop afiords an opportuniy for
| OpenMP users as well as developers 1 come 1ogether or discussions and sharing new ideas and
| pformation on this topic. WONP 2011 will be a three-day event. The first day will consist of tutorials
; Events focusing on topics of inlerest 1o cument and prospective OpenMP develcpers, suitable for both
| »WOMP 2011 Call For Papers beginners as well as hose ineresied in leaming of recent developments in the evolving OpenM™
| (pe) - Tth imternational standard. The second and thied days will consist of lechnical papers and panel session(s) during
| Werkshop on OpenMP, June which research ideas and resuls will be presented and discussed. (more...)
| 13-18,2011, Chicago USA 3 ; R
| POSIag On Sepwmber 2. 2010
1
| Input Register »IWOMP 2010 Material Avallable

Aert the OpenMP org IWOMP 2010, the annual International workshop on OpenMP, was
| webmasir about new held in Tsukuba, Jagan In June
| products, events, or updaies
| and well post it heve. 4 The papers DasSenad at Tw workshop are now avallabie as a book
| wwebmasirfiopenmp.og } puiished by Sprnger Verlag: Beyond Loop Lavel Paralielism In
: OpenMP; Accalarators, Tasking and More
: Search OpenMPorg The OpenMP Tutorisl is also available in POF
| a o Weicome (paf)
| L Search + Basic Concepts in Paraliefization (pdf)
| + An Overview of OpenMP (po)
| Archives « Getting OpenMP Up To Speed (pdf)
| o Septmber2010
: o July2010 Posted on July 13, 2010
\ o May 2010

The OpenMf
SUPDONS mul-plats
memary paraliel pe
In CICe+ a3 Forrs
Is 8 poriable, scals!
with & simple and §
Imectaca for develo
parsiiel appiicason
platiorms from the ¢
the supercompuier.
» Read about Open

Get
»OpenMP specs

Use
»OpenMP Compile

Learn

OpenMP

® Compiler, run-time

environment does a lot

of work for us
® Divides up work

® But we have to tell it
how to use variables,

where to run in parallel

el e
W OpenWiP.org

€ 5 C fi O hup//openmp.org/

MP

Tue OrenMP API SPECIFICATION FOR PARALLEL PROGRAMMING

Open

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t
|
|
|
|
|
|
|
:
|
|
|
|
|
|
|
|

N

Subscribe to the News Feed

»» OpenMP Specifications
»About OpenMP
»Complers

»Roscurces

»Discussion Forum

Events

»IWOMP 2011 Call For Papers
(pei) - Tth imternational
Workshop on OpenMP, June
13-15,2011, Chicago USA

Input Register

Aert the OpenMP org
webmasier about new
products, events, or updaies
and well post it here.
»webmastierfiopenmp.ong

Search OpenMP org

{ Search)

Archives
o September 2010
o July 2010
o May 2010

OpenMP News

»IWOMP 2011 - Call For Papers

Call for Papers 7th imternational Workshop on OpenMP IWOMP 2011
June 13~ 15,2011 Chigaco, USA
http-Awww womp org/

The 2011 Intermational Workshop on OpenMP (IWOMP 2011) will be heid in Chicago, IL. Ris he
pramier forum 10 prosent and discuss issues, fends, rocent research ideas and resuls refated o
paralied pro- gramming with OpenMP. The imernatonal workshop afiords an opportunity for
OpenMP users as well as developers 1 come 1ogether or discussions and sharing new ideas and
pformation on this opic. WONP 2011 will be a three-cay event. The first day will consist of tutorials
focusing on topics of interest 1o curent and prospective OpenMP developers, sultable for both
beginners as well as hose ineresied in leaming of recent developments in the evolving OpenM™
standard. The second and thied days will consist of iechnical papers and panel session(s) during
which research ideas and resuis will be presenied and discussed. (more...)

Posied on Sepwmber 2. 2010

»IWOMP 2010 Material Avalable

&

IWOMP 2010, the annual international workshop on OpenMP, was
heid In Tsukus, Jagan In June

The papers DasSenad at Tw workshop are now avallabie as a book
putilaned by Sprnger Verag: Beyond Loop Lavel Parallelism in
OpenMP: Accelerators, Tasking and More

The OpenMP Tutorial is also avallable in POF

Weicome (p2)

Basic Concepts in Paraliefization (pdf)
An Overview of OpenMP (po)

Getting OpenMP Up To Speed (paf)

Oratad A v 11 2010
Posied on Juty 13,2010

The OpenMf
SUPDONS mul-plats
memaory parallel pe
In CICe+ a3 Forrs
Is 8 poriable, scals!
with & simple and §
Imectaca for develo
parsiiel appiicason
platiorms from the ¢
the supercompuler.
»Read about Open

Get
*»OpenMP specs

Use
»OpenMP Compile

Learn

OpenMP

® Mark off parallel regions

- in those regions, all
available threads do
same work

Markup designed to be

invisible to non-OpenMP

compilers; should result
in working serial code

SNO

'annw.o:g

& 9 C ff O hp//openmp.org

MP

Tue OrenMP API SPECIFICATION FOR PARALLEL PROGRAMMING

Open

N

Subscribe to the News Feed

»» OpenMP Specifications
»About OpenMP
»Complers

»Roscurces

»Discussion Forum

Events

»IWOMP 2011 Call For Papers
(peX) - Tth inmternational
Workshop on OpenMP, June
13-185,2011, Chicago USA

Input Register

Aert the OpenMP org
webmasisr about new
products, events, or updaies
and well post It here.
»webmastierffopen™p.ong

Search

Archives

o Septamber 2010
o July 2010

o May 2010

OpenMP News

»IWOMP 2011 - Call For Papers

Call for Papers 7th international Workshop on OpenMP IWOMP 2011
June 13 - 15,2011 Chigaco, USA
http A www womp.org'

The 2011 Intermational Workshop on OpenMP (IWOMP 2011) will be heid in Chicago, IL. Ris he
promier forum 10 prosent and discuss Issues, rends, roecent research ideas and resuls refated o
paralied pro- gramming with OpenMP. The imernatonal workshop afiords an opportunity for
OpenMP users as well as developers 1 come 1ogether or discussions and sharing new ideas and
pformation on this topic. WONP 2011 will be a three-day event. The first day will consist of tutorials
focusing on topics of interest 1o curent and prospective OpenMP developers, sultable for both
beginners as well as hose ineresied in leaming of recent developments in the evolving OpenM™
standard. The second and thied days will consist of lechnical papers and panel session(s) during
which research ideas and resuis will be presenied and discussed. (more...)

POSIag Oon Sepwmber 2. 20N

»IWOMP 2010 Material Avalable

&

IWOMP 2010, the annual international workshop on OpenMP, was
hedd in Tsukua, Jagan In June

THe DACErs DESHNSd 3L T WoOrkahoD are now avalabie as 8 book
pubilaned by Sprnger Verag: Beyond Loop Lavel Parallelism In
OpenMP: Accelerators, Tasking and More

The OpenMP Tutorial is also available in POF

Weicome (pa)

Basic Concepts in Paralielzation (pdf)
An Overview of OpenMP (po)

Getting OpenMP Up To Speed (paf)

Posied on Juy 13,2010

The OpenMf
SUPDONs mul-plat
memary paraliel pe
In CICe+ a3 Forrs
Is 8 poriable, scals!
with & simple and §
Inerfaca for develo
parallel applicason
platiorms from the ¢
the supercompuier.
» Read about Open

Get
»OpenMP specs

Use
»OpenMP Compile

Learn

C: omp-hello-world.c

gcc -fopenmp -o omp-hello-world omp-hello-world.c -lgomp

#include <stdio.h>
#include <omp.h>

int main(int argc, char **argv) {

printf("At start of program\n");
#pragma omp parallel

{
printf("Hello world from thread %d!\n",

omp get thread num());

}

return 0;

}
F90: omp-hello-world.f90

gfortran -fopenmp -o omp-hello-world omp-hello-world.f90 -Igomp

program omp hello world
use omp 1lib
implicit none

print *, 'At start of program'
!Somp parallel
print *, 'Hello world from thread ', &

omp get thread num(), '!'
ISomp end parallel .' S}Gﬁ\]et

end program omp hello world

W Uy o
°

W Uy o
°

gcc -o omp-hello-world omp-hello-world.c -fopenmp -lgomp
or
gfortran -o omp-hello-world omp-hello-world.f90 -fopenmp -lgomp

export OMP NUM THREADS=8
. /omp-hello-world

export OMP NUM THREADS=1
. /omp-hello-world

export OMP NUM THREADS=32
. /omp-hello-world

ScCiet

gpc-£102n084-S gcc -o omp-hello-world omp-hello-world.c -fopenmp -lgomp
gpc-£f102n084-$ export OMP NUM THREADS=8
. /omp-hello-world

gpc-£102n084-$
At start of program

Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,
Hello,

world,
world,
world,
world,
world,
world,
world,
world,

from
from
from
from
from
from
from
from

thread
thread
thread
thread
thread
thread
thread
thread

0!
6!
5!
4
2!
1!
7!
3!

gpc-£f102n084-$ export OMP_ NUM THREADS=1
. /omp-hello-world

gpc-£102n084-$
At start of program

Hello,

gpc-£102n084-$
At start of program

world,

from thread 0!
gpc-£102n084-$ export OMP NUM THREADS=32
. /omp-hello-world

Hello, world, from thread 11!
Hello, world, from thread 1!
from thread 16!

Hello,

world,

Schet

What did happen?

OMP_NUM_THREADS
threads launched

Each print “Hello
world...”

In seemingly random
order

Only one ‘At start of
program’

gpc-£102n084-$ gcc -o omp-hello-world omp-hello-world.c
—-fopenmp -lgomp

gpc-£102n084-$ export OMP_ NUM THREADS=8
gpc-£f102n084-$./omp-hello-world
At start of program

Hello, world,
Hello, world,
Hello, world,
Hello, world,
Hello, world,
Hello, world,
Hello, world,
Hello, world,

gpc-£102n084-$ export OMP_ NUM THREADS=1
gpc-£102n084-$./omp-hello-world
At start of program

from
from
from
from
from
from
from
from

thread
thread
thread
thread
thread
thread
thread
thread

0!
6!
5!
41
2!
1!
7!
3!

Hello, world, from thread 0!
gpc-£102n084-$ export OMP_NUM THREADS=32

gpc-£f102n084-$./omp-hello-world

At start of program

Hello, world, from thread 11!

Hello, world,

Hello, world, from thread 16!

from thread 1!

Schet

#include <stdio.h>
#include <omp.h>

int main(int arge, char **argv) { Include definitions

printf("At start of program\n"); for' OpenMP
#pragma omp parallel

{ supporting library

printf("Hello world from threac

omp get thread num()); (O m p_get_th I‘ead_n um ())

}
return O0;
}
program omp h rld

use omp lib
implicit none

print *, 'At start of program'
!Somp parallel
print *, 'Hello world from thread ', &
omp get thread num(), '!'
!Somp end parallel

end program omp hello world

<Sﬁﬁ\| et

#include <stdio.h>
#include <omp.h>

int main(int argc, char **argv) {

printf("At stad
#pragma omp parallel

{

of program\n");

printf("Hello worl

}

return O0;

program omp hello world
use omp lib
implicit none

print *, 'At start of program'
!Somp parallel
print *, 'Hello world from thread

omp get thread num(),
!Somp end parallel

end program omp hello world

1
’

rom thread %d!\n",

&

Program starts normally
(Single thread of
execution)

<S£ﬁ\l et

#include <stdio.h>
#include <omp.h>

int main(int argc, char **argv) {

printf("At start of program\n");
#pragma omp parallel

{
printf("Hello d from thread
omp ot | At start of parallel
} section,
return 0;

OMP NUM THREADS
threads are launched,
each execute same code.

program omp hello world
use omp lib
implicit none

print *, 'At start of prog
!Somp parallel

print *, 'Hello world fr

omp get thre

!Somp end parallel

&
_num(), '!'

end program omp hello world

ScCiet

#include <stdio.h>
#include <omp.h>

int main(int argc, char **argv) {

printf("At start of program\n");
#pragma omp parallel

{

printf("Hello d from thread %d!\n",.

omp_gy*- ' At end of parallel
section, the threads join

}

return O0;

back up and back to serial
execution

program omp hello world
use omp lib
implicit none

print *, 'At start of prog
!Somp parallel

print *, 'Hello world fr

omp get thre

!Somp end parallel

’ &
_num(), '!'

end program omp hello world

<SEH\| et

#include <stdio.h>
#include <omp.h>

int main(int argc, char **argv) {

printf("At start of program\n");
#pragma omp parallel

{

printf("Hello world from thread %d!\n",

} omp_get_thread nun()); Specja] OMP function
return O called to find the thread

number of current thread
program omp hello world
use omp 1lib (ﬁ rSt — O)

implicit none

print *, 'At start of program'
!Somp parallel
print *, 'Hello world from thread ', &
omp get thread num(), '!’
!Somp end parallel

end program omp hello world

<S£ﬁ\l et

Turn OpenMP on in compiler (default
off; incantation varies from compiler
to compiler. Intel: -openmp).
Always needed for OpenMP code.

S gcc -o omp-hello-world omp-hello-world.c -fopenmp -lgomp
or
S gfortran -o omp-hello-world omp-hello-world.f90 -fopenmp -lgomp

ScCiet

Link in OpenMP libraries;
normally only needed if
you use functions like
omp_get num_threads().
Only at link time.

S gcc -o omp-hello-world omp-hello-world.c -fopenmp -lgomp
or
S gfortran -o omp-hello-world omp-hello-world.f90 -fopenmp -lgomp

ScCiet

#include <stdio.h>
#include <omp.h>

int main(int argc, char **argv) {

printf("At start of program\n");
#pragma omp parallel

{
printf("Hello world from thread %d of %d!\n",
omp get thread num(),
omp get num_ threads());
}

return 0;

(Advanced: can set num_threads (but not thread num), too.) nget

#include <stdio.h>
#include <omp.h>

int main(int argc, char **argv) {

printf ("At start of program\n");
#pragma omp parallel
{
printf("Hello world from thread %d!\n",
omp get thread num());

}
printf (“There were %d threads.\n”,

omp _get num threads());
return 0;

ScCiet

Variables in OpenMP

#include <stdio.h>
#include <omp.h>

® Need to Put a variable in int main(int argc, char **argv) {

the parallel section to printf("At start of program\n");
store the value #Pra?ma omp parallel

printf("Hello world from thread %d!\n",
omp get thread num());

® But variables in parallel)
sections are a little printf (“There ::were %:hthr:ads.\r.l",
- I) omp_get_num_threads());
tricky. return 0;
y }

Schet

C: omp-vars.c
gcc -fopenmp -o omp-vars omp-vars.c -lgomp

#include <stdio.h>
#include <omp.h>

int main(int argc, char **argv) {
int mythread, nthreads;
#pragma omp parallel default(none), shared(nthreads), private(mythread)

{
mythread = omp get thread num();
if (mythread == 0)
nthreads = omp get num threads();
}

printf ("Number of threads was %d.\n",nthreads);
return O0;

ScCiet

FORTRAN: omp-vars.f90
gfortran -fopenmp -0 omp-vars omp-vars.f90 -lgomp

program omp vars
use omp 1lib

implicit none

integer :: mythread, nthreads

mythread = omp get thread num()
if (mythread == 0) then

nthreads = omp get num threads()
endif

!Somp end parallel

print *, 'Number of threads was ', nthreads, '.'

end program omp vars

!Somp parallel default(none), private(mythread), shared(nthreads)

ScCiet

Variable definitions, and
how the are used in the parallel block.

program omp vars
use omp 1lib

implicit none
integer :: mythread, nthreads

!Somp parallel default(none), private(mythread), shared(nthreads)
mythread = omp get thread num()

if (mythread == 0) then
nthreads = omp get num threads()
endif

!Somp end parallel

print *, 'Number of threads was ', nthreads, '.'

end program omp vars

SEH\| et

Strongly, strongly, strongly recommended.
Inconvenient!?

30 seconds of extra typing can save you hours of
debugging

program omp vars
use omp 1lib
implicit none

integer :: mythread threads

!Somp parallel default(none), private(mythread), shared(nthreads)

mythread = omp get thread num()

if (mythread == 0) then
nthreads = omp get num threads()
endif

!Somp end parallel
print *, 'Number of threads was ', nthreads, '.'

end program omp vars

ScCiet

Each thread gets its own private copy of mythread to
do with as it pleases. No other thread can see, modify.

program omp vars
use omp 1lib
implicit none

integer :: mythread, nthreads

!Somp parallel default(none), private(mythread), shared(nthreads)
mythread = omp get thread num()

if (mythread == 0) then
nthreads = omp get num threads()
endif

!Somp end parallel

print *, 'Number of threads was ', nthreads, '.'

end program omp vars

Sﬁﬁ\l et

A thread-private variable has undefined value inside a
parallel block.

program omp vars
use omp 1lib
implicit none

integer :: mythread, nthreads

!Somp parallel default(none), private(mythread), shared(nthreads)
mythread = omp get thread num()

if (mythread == 0) then
nthreads = omp get num threads()
endif

!Somp end parallel

print *, 'Number of threads was ', nthreads, '.'

end program omp vars

(Advanced: firstprivate, lastprivate - copy in/out.) Sgi?\] et

Everyone can see (ok), modify (danger! danger!) a

shared variable. Keeps its value between serial/parallel
sections

program omp vars
use omp 1lib

implicit none
integer :: mythread, nthreads

!Somp parallel default(none), private(mythread), shared(nthreads)
mythread = omp get thread num()

if (mythread == 0) then
nthreads = omp get num threads()
endif

!Somp end parallel

print *, 'Number of threads was ', nthreads, '.'

end program omp vars

SEH\I et

Variables in OpenMP

Program runs, launches
threads.

Each thread gets its own
copy of mythread

Only thread 0 writes to
nthreads

Outputs number of
threads

What would mythread
be if we printed it?

program omp_ vars
use omp_ lib
implicit none

integer :: mythread, nthreads
!Somp parallel default(none), private(mythread), shared

(nthreads)
mythread = omp get thread num()

if (mythread == 0) then
nthreads = omp get num threads()
endif

!Somp end parallel
print *, 'Number of threads was ', nthreads, '.'

end program omp_ vars

Schet

For C folks:

#include <stdio.h>
#include <omp.h>

int main(int argc, char **argv) {
int nthreads;
#pragma omp parallel default(none), shared(nthreads)

{
int mythread;
mythread = omp get thread num();
if (mythread == 0)
nthreads = omp get num threads();
}

printf ("Number of threads was %d.\n",nthreads);
return O0;

Local definitions are powerful, and avoid lots of bugs!
Variables defined in a parallel block are automatically

thread private.
P Schlet

Single Execution in
OpenMP

program omp_ vars

® Do we care that it’s use amp1ib
thread O in particular
that updates nthreads!?

integer :: mythread, nthreads

!Somp parallel default(none), private(mythread), shared

(nthreads)
mythread = omp get thread num()
. . if (mythread == 0) then
® Why dld we PlCI(O? ntireads = omp get num threads()
endif
!Somp end parallel
® Often we just Want the print *, 'Number of threads was ', nthreads, '.'
first thread through to end progran onp_vers
do something, don’t care
who.

Schet

#include <stdio.h>
#include <omp.h>

int main(int argc, char **argv) {
int nthreads;
#pragma omp parallel default(none), shared(nthreads)
#pragma omp single
nthreads = omp get num threads();
printf ("Number of threads was %d.\n",nthreads);
return 0;

program omp vars
use omp lib
implicit none

integer :: nthreads

!Somp parallel default(none), shared(nthreads)
!Somp single
nthreads = omp get num threads()
!Somp end single
!Somp end parallel

print *, 'Number of threads was ', nthreads,

end program omp vars

ScCiet

Loops in OpenMP

® Now let’s try something
a little more interesting

® copy one of your omp
programs to omp_loop.c
(or omp_loop.f90) and
let’s put a loop in the
parallel section

Schet

#include <stdio.h>
#include <omp.h>

int main(int argc, char **argv) {
int 1, mythread;
#pragma omp parallel default(none) XXXX(1i) XXXX(mythread)

{
mythread = omp get thread num();
for (1=0; i<16;i++) {
printf ("Thread %d gets i=%d\n",mythread,i);
}
}

return 0;

}

program omp loop
use omp 1lib
implicit none

integer :: i, mythread

!Somp parallel default(none) XXXX(i) XXXX(mythread)
mythread = omp get thread num()
do i=1,16
print *, 'thread ', mythread, ' gets i=', 1
enddo
!Somp end parallel

end program omp loop

ScCiet

Worksharing
constructs in OpenMP

® We don’t generally want tasks
to do exactly the same thing

program omp loop

® Want to partition a problem | st

implicit none

into pieces, each thread integer :: i, mythread
WOI’I(S On a Piece !Somp parallel default(none) XXXX(i) XXXX(mythread)
mythread = omp get thread num()
do i=1,16
. . . print *, 'thread ', mythread, ' gets i=', 1
® Most scientific programming enddo

!Somp end parallel

full of work-heavy loops

end program omp_ loop

® OpenMP has a worksharing

construct: omp for (or omp
do)

(Advanced: Can combine parallel and for into one omp line.) SGI?\I et

#include <stAdlio.hnh=>
#include <omp.h>

int main(int argc, char **argv) {
int i, mythread;

#pragma omp parallel default(none) XXXX(i) XXXX(mythread)
{

mythread = omp get thread num();
#pragma omp for
for (i=0; i<16;i++) {
printf("Thread %d gets i=%d\n",mythread,i);
}
}

return O0;

}

program omp loop
use omp 1lib
implicit none

integer :: i, mythread

!Somp parallel default(none) XXXX(1i) XXXX(mythread)
mythread = omp get thread num()

!Somp do
do i=1,16

print *, 'thread

enddo

!Somp end parallel

, mythread, gets 1i=', 1

end program omp loop

ScCiet

Worksharing
constructs in OpenMP

$./omp loop
® omp for / omp do construct thread s gets i- :
. . threa gets 1=
breaks up the iterations by thread ¢ gets i- 9
thread 4 gets i= 10
thread, thread 5 gets i= 11
thread 5 gets i= 12
thread 6 gets i= 13
, .. thread 6 gets i= 14
® |f doesn’t divide evenly, does thread 1 gets i= 3
. thread 1 gets 1= 4
the best it can. thread 0 gets i= 1
thread 0 gets 1= 2
thread 2 gets i= 5
thread 2 gets i= 6
I thread 7 gets i= 15
® Allows easy breaking up of thread 7 gets i- 15
work! :

(Advanced: can break up work of arbitrary blocks of code
with “omp task” construct.) SQH\' et

DAXPY

multiply a vector by a scalar,
add a vector.

(a X plus Y, in double
precision)

N>
|
-
=>
|
Nagh

Implement this, first serially,
then with OpenMP

daxpy.c or daxpy.f90

make daxpy or
make fdaxpy

Schet

make

Make builds an executable from a
list of source code files and rules

Many files to do, of which order

doesn’t matter for most S make
Parallelism! S make -j 2
S make -j

make -j N - launches N
processes to do it

make -j 2 often shows speed
increase even on single processor
systems

Overlapping
Computation with I/O

P=1 [Get filel .c Write filel.o J[ﬁleZ.cJ{ﬁleZ.oJ

(o o e
nac)om) (e

#include <stdio.h>
#include "pca utils.h"

volid daxpy(int n, NType
{

for (int i=0; i<n;
X[1] = (NType)i*(NTy

NType *x, NType *y, NType *2z)

y[1] = ((NType)i+l.)* ¥ NType)i-1l.);

}

for (int 1i=0; i<n; i++)
z[1] += a * x[1] + y[1];

}

int main(int argc, char *argv[])
int n=1le7;
NType *x = vector(n);
NType *y = vector(n);
NType *z = vector(n);
NType a = 5./3.;

pca_time tt;
tick(&tt);
daxpy(n,a,Xx,v,2);
tock(&tt);

free(z);
free(y);
free(x):

or double precision

{

Utilities for this course; NType is a
numerical type which can be set to sir

SEFN et

#include <stdio.h>
#include "pca utils.h"

volid daxpy(int n, NType a, NType *x, NType *y, NType *z)

{
for (int i=0; i<n; i++) Fill arrays with
x[1] = (NType)i*(NType)i; < lcul yd |
y[i] = ((NType)i+l.)*((NType)i-1.); Ccalcuiated values
}
for (int i=0; i<n; i++)
z[1] += a * x[1] + y[i];
}
int main(int argc, char *argv[]) {
int n=le7;
NType *x = vector(n);
NType *y = vector(n);
NType *z = vector(n);
NType a = 5./3.;

pca_time tt;
tick(&tt);
daxpy(n,a,Xx,v,2);
tock(&tt);

free(z

) 7

free(y);
free(x):

Schet

#include <stdio.h>
#include "pca utils.h"

volid daxpy(int n, NType a, NType *x, NType *y, NType *z)

{
for (int i=0; i<n; i++) {
X[1] = (NType)i*(NType)ij;
y[1i] = ((NType)i+l.)*((NType)i-1.);
}
for (int 1i1=0; i<n; 1i++)
z[1] += a * x[1] + y[i]; == Do calculation
}
int main(int argc, char *argv[]) {
int n=1le7;
NType *x = vector(n);
NType *y = vector(n);
NType *z = vector(n);
NType a = 5./3.;

pca_time tt;
tick(&tt);
daxpy(n,a,Xx,v,2);
tock(&tt);

free(z

) 7

free(y);
free(x):

Schet

#include <stdio.h>
#include "pca utils.h"

volid daxpy(int n, NType a, NType *x, NType *y, NType *z)

{
for (int i=0; i<n; i++) {
X[1] = (NType)i*(NType)i;
y[1i] = ((NType)i+l.)*((NType)i-1.);
}
for (int i=0; i<n; i++)
z[1] += a * x[1] + y[1i];
}
int main(int argc, char *argv[]) {

int n=le7;

NType *x = vector(n); . .
NType *y = vector(n): Driver - do timings,
NType *z = vector(n); @ etc. (nothing needs

NType a = 5./3.; to be changed in
pca time tt; here)'
tick(&tt);

daxpy(n,a,Xx,v,2);

tock(&tt);

free(z);
free(x):

OpenMPing DAXPY

#include <stdio.h>
#include "pca utils.h"

void daxpy(int n, NType a, NType *x, NType *y, NType *z)

{
for (int i=0; i<n; i++) {
x[1] = (NType)i*(NType)i;
y[i] = ((NType)i+l.)*((NType)i-1l.);
}
for (int i=0; i<n; i++)
z[i] += a * x[1] + y[i];
}

® HOW dO we OpenMP thlS? int main(int argc, char *argv[]) {

int n=1le7;
NType *xX = vector(n);
NType *y vector(n);

o Tr')l |t (~5- I O m|n) NType *z vector(n);

NType a = 5./3.;

pca time tt;
tick(&tt);
daxpy(n,a,X,y,2);
tock(&tt);

free(z);
free(y);
free(x);
return 0;

ScCiet

void daxpy(int n, NType a, NType *x, NType *y, NType *z)
{
#pragma omp parallel default(none) shared(n,x,y,a,z) private(i)
{
#pragma omp for
for (int i=0; i<n; i++) {
x[1] = (NType)i*(NType)i;
y[i] = ((NType)i+l.)*((NType)i-1l.);
}

$pragma omp for
for (int i=0; i<n; 1i++)
z[1] += a * x[1] + y[1];

!Somp parallel default(none) private(i) shared(a,x,b,y,2z)
!Somp do

do i=1,n
X(1) = (1)*(1)
y(1i) = (1+1l.)*(i-1.)
enddo
!Somp do
do i=1,n
z(1) = a*x(1) + y(1)
enddo

!Somp end parallel

ScCiet

$./daxpy
Tock registers

[..add OpenMP..]

S make daxpy

gcc -std=c99 -g -DPGPLOT -I/home/ljdursi/intro-ppp//util/ -I/scinet/gpc/
Libraries/pgplot/5.2.2-gcc -fopenmp -c daxpy.c -o daxpy.o

gcc -std=c99 -g -DPGPLOT -I/home/ljdursi/intro-ppp//util/ -I/scinet/gpc/
Libraries/pgplot/5.2.2-gcc -fopenmp daxpy.o

ppp//util//pca utils.o -1lm

$ export OMP NUM THREADS=8
$./daxpy
Tock registers

$ export OMP NUM THREADS=4
$./daxpy
Tock registers

$ export OMP NUM THREADS=2
$./daxpy
Tock registers

2.5538e-01 seconds.

6.9107e-02 seconds.

1.0347e-01 seconds.

1.8619e-01 seconds.

-0 daxpy /home/ljdursi/intro-

ScCiet

$./daxpy
Tock registers

[..add OpenMP...]

S make daxpy

$ export OMP NUM THREADS=8

$./daxpy
Tock registers

$ export OMP_NUM THREADS=4

$./daxpy
Tock registers

$ export OMP_NUM THREADS=2

$./daxpy
Tock registers

2.5538e-01 seconds.

6.9107e-02 seconds.

1.0347e-01 seconds.

1.8619e-01 seconds.

3.69x speedup, 46% efficiency
2.44x speedup, 6 1% efficiency

| .86x speedup, 93% efficiency

ScCiet

void daxpy(int n, NType a, NType *x, NType *y, NType *z)

{
#pragma
{
#pragma
for
}
#pragma
for
}
}

omp parallel default(none) shared(n,x,y,a,z) private(i)

omp for

(int i=0; i<n; i++) {

x[1] = (NType)i*(NType)1i;

y[i] = ((NType)i+l.)*((NType)i-1.);
omp for

(int i=0; i<n; i++)

2[1] *+=a * x[1] + y[il; Why is this safe!?
Everyone’s modifying x,y,z

!Somp parallel default(none) private(i) shared(a,x,b,y,2z)

!Somp do
do i=1,n
X(1) = (1)*(1)
y(1i) = (1+1l.)*(i-1.)
enddo
!Somp do
do i=1,n
z(1) = a*x(1) + y(1)
enddo

!Somp end parallel

SEH\I et

Dot Product

Dot product of two vectors

e e

n = Xy
Implement this, first serially,
then with OpenMP — E :xzyz

)
ndot.c or ndot.f90
$./ndot

make ndot or Dot product is 3.3333e+20
make ndotf (vs 3.3333e+20) for n=10000000.

Took 5.3578e-02 seconds.

Tells time, answer, correct
answer.

Schet

...Main program...

print *, 'Dot product is ', res, '(vs ', ans,') for n
Took ', time, 'sec.'

deallocate(x,V)

contains

double precision function calc ndot(n, X, y)
implicit none

integer, intent(in) :: n
double precision, dimension(n) :: X
double precision, dimension(n) :: y
double precision :: ndot
integer :: 1
ndot = 0.
do i=1,n
ndot = ndot + x(i)*y(1i)
enddo

calc ndot = ndot
end function calc ndot

How to OpenMP this?

ScCiet

double precision function calc ndot(n, x, Vy) fomp_ndot_l"ace.f9(

implicit none

integer, intent(in) :: n Omp ndOt race.c
double precision, dimension(n) :: X — —
double precision, dimension(n) :: y
double precision :: ndot
integer :: 1

!Somp parallel default(none) shared(ndot,x,y,n) private(i)
ndot = 0.
do i=1,n

ndot = ndot + x(i)*y(1i)

enddo

!Somp end parallel
calc ndot = ndot

end function calc ndot

ScCiet

double precision function calc ndot(n, x, Vy) meP_ndOt_race-f9(

implicit none

integer, intent(in) :: n Omp ndOt race.c
double precision, dimension(n) :: X — —
double precision, dimension(n) :: y
double precision :: ndot
integer :: 1

!Somp parallel default(none) shared(ndot,x,y,n) private(i)
ndot = 0.
do i=1,n

ndot = ndot + x(i)*y(1i)

enddo

!Somp end parallel
calc ndot = ndot

end function calc ndot

S ./ndotf
Dot product 1is 3.33333283333717098E+020 (vs 3.33333363469873840E+020)

for n = 10000000 . Took 5.00000007E-02 sec.
$ export OMP NUM THREADS=8

$./fomp ndot race
Dot product is 6.06898061003712922E+019 (vs 3.33333363469873840E+020)

for n = 10000000 . Took 0.16300000 sec.

Wrong answer - and slower! SGi’f\let

Race Condition - why
it's wrong

Classic parallel bug ndot = 0.
Thread 0: Thread |I:
Multiple writers to some add | add 2

shared resource
read ndot (=0)

Into register

Can be very subtle, and only
appear intermittently read ndot (=0)

reg = reg + | . .
& & into register

Your program can have a

. store reg (=1)
bug but not display any

reg = reg + 2

into ndot
symptoms for small runs!
store reg (=2)
Primarily a problem with into ndot
shared memory ndot =2

Schet

Memory contention -
why it’'s slow

® Multiple cores repeatedly
trying to read, access, store
same variable in memory

® Not (such) a problem for
constants (read only); but a
big problem for writing.

® Sections of arrays -- better.

OpenMP critical
construct

® Defines a “critical region”

® Only one thread can be operating
within this region at a time

® Keeps modifications to shared
resources safe

® #pragma omp critical or
|Somp critical /
!Somp end critical

NType ndot critical(int n, NType *x, NT
{
NType tot=0;
#pragma omp parallel for shared(x,y,n,t
for (int 1=0; i<n; i++)
#pragma omp critical
tot += xX[1] * y[1];
return tot;

ndot = 0.
!Somp parallel default(none) shared(ndo
!Somp do

do i=1,n
!Somp critical

ndot = ndot + x(1)*y(1)

!Somp end critical

enddo
!Somp end parallel

calc ndot = ndot

end function calc_ndotss iF

OpenMP atomic
construct

Most hardware has support for
atomic (indivisible - eg, can’t get
interrupted) instructions

$./ndot
Dot product 1is 3.3333e+20
Small subset, but load/add/store (vs 3.3333e+20) for n=10000000.
USU&”)’ one Took 5.3570e-02 seconds.
N | tical $./omp ndot atomic
ot as general as critica Dot product is 3.3333e+20
(vs 3.3333e+20) for n=10000000.
Much lower overhead Took 9.7981e-01 seconds.

Better -- ‘only’ 18x slower than
serial! Still some overhead, still
memory contention.

Schet

How should we fix
this?

S
[l

X -1
Zﬂi‘iyi
i

Schet

How should we fix
this?

Local sums
Each processor sums its no-= -y
local value (107/P additions)

(— E LY

And then sums to ntot (only
P additions) with critical, or

atomic.. — Z szyz

Try this (5-10 min)

cp one of the omp_ndot.c’s
or fomp_ndot.c’s to
omp_ndot_local.c (or

fomp_ndot_local.f90) S QH\I et

|l ocal variables:

#pragma omp parallel shared(x,y,n,tot)
private (mytot)

{
mytot = 0;
#pragma omp for
for (int i1i=0; i<n; 1i++)
mytot += x[i] * y[i];
#pragma omp atomic
tot += mytot;
}
ndot = 0.

!Somp parallel default(none)
shared(ndot,n,x,y) private(i,mytot)
mytot = 0.

!Somp do

do i=1,n
mytot = mytot + x(1)*y(1)
enddo

!Somp atomic

ndot = ndot + mytot
!Somp end parallel
calc ndot = ndot

$./ndot

Dot product is 3.3333e+20
(Vs 3.3333e+20) for n=10000000.
Took 5.3570e-02 seconds.

$ export OMP_ NUM THREADS=8

$./omp ndot local

Dot product is 3.3333e+20
(Vs 3.3333e+20) for n=10000000.
Took 1.8334e-02 seconds.

Schet

OpenMP Reduction
Operations

CPUI CPU2 CPU3 CPU4

This is such a common g) @ Q @
sum

operation, there is sum?2 sum3 sum4

something built into

OpenMP to handle it S:ur:; S:un;?:

—

“reduction” variables - like sum|+

shared or private sum2+
sum3+
sum4=

Can support several types total

of operations - +, *...
Reduction; works for

omp_ndot_reduction.c, a variety of operators

fomp_ndot_reduction.f90 (+ * min.max
SCikie.

OpenMP Reduction
Operations

NType ndot atomic(int n, NType *x, NType *y)
{
NType tot=0;
#pragma omp parallel shared(x,y,n), reduction(+:tot)

{

#pragma omp for
for (int 1i=0; i<n; i++)
tot += x[1] * y[1i];

return tot;

Schet

OpenMP Reduction
Operations

double precision function calc ndot(n, x, Vy)
implicit none

integer, intent(in) :: n
double precision, dimension(n) :: X
double precision, dimension(n) :: y
double precision :: ndot
integer :: 1i
ndot = 0.
!Somp parallel default(none) shared(n,x,y) reduction(+:ndot) private(1i)
!Somp do

do i=1,n

ndot = ndot + x(i)*y(1i)
enddo

!Somp end parallel
calc ndot = ndot

end function calc ndot

Schet

Load-Balancing

Lots of work

So far, every iteration of
the loop has had the
same amount of work:

Not always the case
make mandel; ./mandel

Plots a function at every
pixel with different
amount of work - in
fact, amount of work is
basically the plotted
color.

Little work

ScCiet

Load-Balancing

O I 2 3 4 5 6 7

® Default work sharing
breaks N iterations into
~N/nthreads contiguous
chunks and assigns them
to threads

® But now threads 7,6, 5
will be done and sitting
idle while threads 3,4

work alone...

® |nefficient use of

resources -
SCHlet

Load-Balancing

O I 2 3 4 5 6 7

Serial 0.63s

Nthreads=8 0.29s

Speedup 2.2x

Efficiency 27%

800x800 pix; N/nthreads ~ 100x800

ScCiet

Load-Balancing

O I'2 3 456 7 0 1 2 3 456 7

® Can change the chunk
size’ from ~N/nthreads
to arbitrary number

® |n this case, more
columns - work
distributed a bit better

® Now, for instance, chunk
size ~ 50, and thread 7
gets both a big work
chunk and a little work

chunk.

ScCiet

Load-Balancing

O I'2 3 456 7 0 1 2 3 456 7

#pragma omp for schedule(static,chunksize)

or

!Somp do schedule(static,chunksize)

Here, chunksize = 50.

Static scheduling

ScCiet

schedule(static,50)

O I'2 3 456 7 0 1 2 3 456 7

Serial 0.63s
Nthreads=8 0.15s
Speedup 4.2x
Efficiency 52%

ScCiet

schedule(dynamic)

Still another choice is to
break it up into many
pieces and hand them to
threads when they are
ready

dynamic scheduling

Has increased overhead,
but can do a very good
job

can also choose
chunksize for dynamic

ScCiet

schedule(dynamic)

Serial 0.63s
Nthreads=8 0.10
Speedup 6.3x
Efficiency 79%

ScCiet

Tuning

O I'2 3 456 7 0 1 2 3 456 7

® schedule(static) (default)
or schedule(dynamic)
are good starting places

® To get best performance
in badly imbalanced
problems, may have to
play with chunk sizes -
will depend on your
problem, and hardware.

ScCiet

Tuning

O I'2 3 456 7 0 1 2 3 456 7

(static,4) [(dynamic,|6)
0.084s 0.099s
7.6x 6.4x
95% 80%

ScCiet

Iwo-level loops

® |n scientific code, we #pragma omp for schedule(static,4)

usually have nested for (int i=0;i<npix;i++)
loops where all the for (int j=0;J<npix;J++) {

. double x=((double)i)/((double)ng
work is. double y=((double)3j)/((double)n;

double complex a=x+I*y;
mymap[1i][J]=how many iter real(:

® Almost without
exception, want the loop
on the outside-most loop. mandel.c
Why?

Schet

Summary

omp parallel

omp single
shared/private/reduction variables
omp atomic, omp critical

omp for

ScCiet

