
Introduction to
Practical Parallel

Programming
Course Overview, and The ‘Big Picture’

Today’s Main Goal

• Students arriving with scientific computing
background should be able to leave and
immediately start parallelizing codes,
understand concepts involved

Schedule

9am-10:30 Basic Concepts

10:30-10:45 Break

10:45-12:45 Intro to OpenMP

12:45-1:45 Lunch

1:45-3:30 Intro to MPI

3:30-3:45 Break

3:45-5:00 Intro to MPI 2

What will we be doing here

• This is a short course on parallel programming
• You will be doing a lot of typing and

programming to help build skills with
OpenMP, MPI.

Parallel Computing
I: Concurrency, Amdahl’s Law, and Locality

Why Parallel
Computing?

Faster:
At any given time, there is a limit
as to how fast one computer
can compute.
So use more computers!

Why Parallel
Computing?

Bigger:
At any given time, there is a limit
as to how much memory, disk
space, etc can be put on one
computer.
So use more computers!

Why Parallel
Computing?

More:
You have a program that runs in
reasonable time one one
processor but you want to run it
thousands of times.

So use more computers!

Concurrency
• Must be something for the

‘more computers’ to do.

• Must be able to find
concurrency in your problems

• Many Tasks

• Order Unimportant

http://flickr.com/photos/splorp/

http://flickr.com/photos/splorp/
http://flickr.com/photos/splorp/

Data Dependancies Limit
Concurrency

Parameter Study:
Ideal case

• Want to know all results as
model parameter varies

• Can run serial code on up to
as many processors as
parameter sets

• ‘More’

µ = 1 µ = 2 µ = 3 µ = 4

Answer Answer Answer Answer

Throughput =
Tasks/Time

How long it takes to process the
N tasks you want done

For completely independent
tasks, P processors can increase

throughput by factor P!

vs

throughput =
N

time

Scaling with P
How a problem scales: how
throughput behaves as
processor number increases
In this case, the throughput
scales linearly with the number
of processors

This is the best case:
‘Perfect scaling’

0

2

4

6

8

P=1 2 3 4 5 6 7 8

Ta
sk

s
pe

r
U

ni
t T

im
e

Scaling with P
Another way to look at it: time
it takes to get some fixed
amount of work done

More usual (and more
important!)

Perfect scaling: time to
completion ~ 1/P

P processors - P times faster

0

2

4

6

8

0 2 4 6 8
T

im
e

Pe
r T

as
k

Scaling with P
Another way to look at it: time
it takes to get some fixed
amount of work done

More usual (and more
important!)

Perfect scaling: time to
completion ~ 1/P

P processors - P times faster

1

10

1 10
T

im
e

Pe
r T

as
k

Parameter Study:
‘Embarrassingly

Parallel’
• Scales perfectly up to P=N
• Speedup = P: ‘linear scaling’,

ideal case.

µ = 1 µ = 2 µ = 3 µ = 4

Answer Answer Answer Answer

Problems Differ in
amount of

Concurrency
Integrate (or some other simple
processing) tabulated
experimental data

Integration of different regions
can be summed by each
processor

But first need to get data to
processor, then bring together
all the sums

Region
1

Region
2

Region
3

Region
4

Reduction

Answer

Partition Data

Region
1

Region
2

Region
3

Region
4

Reduction

Answer

Partition Data

Parallel Portion:
Perfectly Parallel (as

long as there is
enough work)

T ~ 1/P

Region
1

Region
2

Region
3

Region
4

Reduction

Answer

Partition Data

Serial Portion:
Sum has to be

done; if done on one
processor, just same

as serial:
T ~ const

Answer

Region
1

Region
2

Region
3

Region
4

Reduction

Partition Data

Parallel Overhead:
Data has to be sent to

appropriate processor, a
cost of the parallel

implementation

T const (best case)
or increasing fn of P

Total Time: Serial
+ Parallel

Ignoring data-moving costs (for
now):

Typically linear in P (sum)
Eventually, as problem becomes

increasingly scaled up, serial
term dominates

Answer

Region
1

Region
2

Region
3

Region
4

Reduction

Partition Data

time(N, P) =
�

N

P

�
Twork + Treduction(P)

Timing of
simple case

Ignore data transfer costs; say:
100 s in integration work
5 s in assembling the parts

How does this behave on many
processors?

More processors per
run don’t always help

Given timing data, how do we
choose P to run on if we have N
programs to run?

Ideal case, timing goes down 1/P -
doesn’t matter

Serial part (5%!) becomes a
bottleneck

Can improve throughput by
running on fewer processors

Note: t(50) = 7s
t(25) = 9s

Can run 2 jobs on 25 procs each
in about same time as one on 50!

Speedup: How
much faster

with P procs?
An important concept is the
speedup of a given parallel

implementation

speedup(P) =
t(N, P = 1)

t(N, P)

Efficiency:
Speedup should

be ~ P
Related concept: Parallel
Efficiency (compared to serial
code)

Efficiency(P) =
t(N, P = 1)

Pt(N, P = 1)

=
speedup(P)

P

Amdahl’s Law
Any serial part of
computation will

eventually dominate
If serial fraction is f, even if
parallel component goes to

zero, speedup can only be 1/f

time(N, P) ∼
�

f +
1− f

P

�

Speedup =
1�

f + 1−f
P

�

lim
P→∞

Speedup =
1
f

lim
P→∞

Efficiency = 0

(perfectly)
parallel fraction

serial
fraction

Amdahl’s Law
• Any serial part of

computation will
eventually dominate

• If serial fraction is f, even if
parallel component goes to
zero, speedup can only be 1/f

Avoiding
Amdahl

In some cases, may not matter.
If will run in reasonable time on

some small number of
processor, asymptotic arguments

may not matter.

Answer

Region
1

Region
2

Region
3

Region
4

Reduction

Partition Data

Trying to Beat
Amdahl, #1

Rewrite serial portions to take
into account parallelism

eg, many reductions can be done
in parallel that will cost log2(P)
(not 1, but much better than

serial = P...)

Answer

Region
1

Region
2

Region
3

Region
4

Partition Data

Big Lesson #1

Optimal Serial Algorithm for your problem
may not be the P→1 limit of your optimal

Parallel algorithm

Trying to Beat Amdahl, #2 -
Upsize

Desktop problem isn’t a
supercomputer problem!

Reason to run on big machines is
size as well as speed

Amdahl’s law assumes constant size
problem

More work; f goes down.

Gustafson’s law: any sufficiently
large problem can be efficiently
parallelized.

Weak Scaling
How does problem behave if
you expand problem size as
number of processors?

Strong Scaling - on how many
processors can you efficiently
run given problem

Weak Scaling - how large a
problem can you efficiently run

More on
Concurrency

Most problems are not pure
concurrency

Some level of synchronization,
exchange of information needed
between tasks

This needs to be minimized

Increases Amdahl’s ‘f ’

Are themselves costly

µ = 1 µ = 2 µ = 3 µ = 4

Synchronization

Synchronization

Synchronization

Concurrency
Makes possible lots of wasted
time (‘load balancing’, about

which more later)
µ = 1 µ = 2 µ = 3 µ = 4

Synchronization

Synchronization

Synchronization

Locality
Information needed by the task
should be as local as possible.

When tasks do need to interact,
best that those interactions be as
local as possible, and with as few
others as possible

Communications cost lower

Fewer processes have are locked up
during the necessary
synchronization

µ = 1

Big Lesson #2

Parallel algorithm design is about finding as
much concurrency as possible, and arranging

it in a way that maximizes locality.

Finding
Concurrency

Identify tasks that can be done
independently, order doesn’t

matter

PDEs: parts of domain

N-body: particles (or
interactions)

Maintaining
Locality

Now have to lump the
concurrent bits into tasks

Choosing that re-aggregation
can greatly effect locality.

perimeter
= 9L

L

perimeter
= 4L

Example: 1d
integration

Integrate a 1d function with
(say) Simpson’s rule, with N

points.
Concurrency: can do each of the
points independently, then sum.
Locality: have each do a chunk CPU1

CPU2
CPU3

Example: 1d
integration

Each processor gets N/P points
to do

Total compute time for one
process:

Now how to do sums?
CPU1

CPU2
CPU3

Tcomp =
�

N

P

�
NSRCcomp

Example: 1d
integration

Each processor sends partial
sums to others, then all can do

total
Each processor sends its result
(P-1) times and receives (P-1)

results

sum1
sum2
sum3

sum1
sum2
sum3

sum1
sum2
sum3

CPU1 CPU2 CPU3

total total total

+ + +

Tcomm = 2(P − 1)Ccomm

Integration
with parallel

costs:

N = 10000, Nsr=4,
Ccomm/Ccomp = 100

Can actually get worse with P!
Communication cost increases

with P

Integration
with parallel

costs:

N = 10000, Nsr=4,
Ccomm/Ccomp = 100

Can actually get worse with P!
Communication cost increases

with P

Integration
with parallel

costs:

N = 10000, Nsr=4,
Ccomm/Ccomp = 100

Can actually get worse with P!
Communication cost increases

with P

Communication
-to-

Computation ratio
We want this to be (ideally)

constant in P, or at least grow
slowly; otherwise as we scale

up, we spend more time sending
messages than computing.

If NSR ~ 4, Ccomm ~ 1000 Ccomp,
N = 10000, then

Tcomm/Tcomp ~ 1.2 for P=16

Tcomm

Tcomp
=

2(P − 1)Ccomm
N
P NSRCcomp

=
2P (P − 1)

N

1
NSR

Ccomm

Ccomp

∼ P 2

(Advanced: this even matters for serial computation, due to memory
bandwidth limitations. “Arithmetic Intensity”)

Better
Summing

Pairs of processors; send partial
sums

Max messages recieved log2(P)
Can repeat to send total back

sum1

CPU1 CPU2 CPU3

sum2

sum1+
sum2

sum3

CPU4

sum4

sum3+
sum4

sum1+
sum2+
sum3+
sum4=
total

Reduction; works for
a variety of operators

(+,*,min,max...)

Tcomm = 2 log2(P)Ccomm

Speedup with
reduction

Very good! Efficiency still falling
off past 20 or so processors

(But integrating 10,000
numbers...)

Speedup with
reduction

with 1,000,000 numbers...

Communication
-to-

Computation ratio
Much better!

As number of processors goes
up, relative cost of

communications goes up only
logarithmically.

If NSR ~ 4, Ccomm ~ 100 Ccomp, N
= 10000, then

Tcomm/Tcomp ~ 0.08 for P=16

Tcomm

Tcomp
=

2 log2(P)Ccomm
N
P NSRCcomp

=
2P log2(P)

N

1
NSR

Ccomm

Ccomp

∼ P log2(P)

Parallel Computing
II: Parallel Computers

Top500.org:

List updated every
6 months of the
worlds 500 largest
supercomputers.

Info about
architecture, ...

1 Petaflop (1015 flop/s);
126,600 cores

Computer
Architectures

How the computers work shape
how best to progam them

Shared Memory vs Distributed
Memory.
Vector computers...

Distributed
Memory:
Clusters

Simplest type of parallel
computer to build

http://flickr.com/photos/eurleif/

• Take existing powerful
standalone computers

• And network them

+

http://flickr.com/photos/eurleif/
http://flickr.com/photos/eurleif/

Each Node is
Independent
Parallel code consists of

programs running on separate
computers, communicating with

each other
Could be entirely different

programs

CPU1

CPU2

CPU3

CPU4

Each node has
independent

memory
Locally stores its own portion of

problem
Whenever it needs information
from another region, requests it

from appropriate CPU
Usual model: ‘message passing’

CPU1

CPU2

CPU3

CPU4

Memory

Clusters
+Message
Passing

HW: Easy to build (harder to
build well)

HW: Can build larger and larger
clusters relatively easily

SW: Every communication has
to be hand coded -- hard to

program

CPU1

CPU2

CPU3

CPU4

Memory

Latency Bandwidth

GigE

Infiniband

~10 µs
(10,000 ns)

1 Gb/s
(~60 ns/double)

~2 µs
(2,000 ns)

2-10 Gb/s
(~10 ns/double)

Processor speed: 1 FLOP ~ few ns or less

Shared Memory
One large bank of memory,
different computing cores acting
on it. All ‘see’ same data

Any coordination done through
memory.

Could do like before, but why?
Each core is assigned a thread of
execution of a single program that
acts on the data

Core1

Core2

Core3

Memory

Thread Vs.
Process

Processes: Independent tasks
with their own memory,
resources

Threads: Threads of execution
within one process, ‘seeing’ the
same memory, etc.

MPI
Procs

OMP
Threads

Shared
Memory:NUMA
Complicating things: each core
typically has some of its own

memory
Non-Uniform Memory Access

Locality still matters
Cores have cache, too.

Keeping this memory coherent is
extremely challenging

Memory

Coherency
The different levels of memory
imply multiple copies of some

regions
Multiple cores mean can update

unpredictably
Very expensive hardware
Hard to scale up to lots of

processors, very $$$
Very simple to program!!

x[20] = 3

x[20] = ?

Latency Bandwidth

GigE

Infiniband

NUMA
Shared Mem

~10 µs
(10,000 ns)

1 Gb/s
(~60 ns/double)

~2 µs
(2,000 ns)

2-10 Gb/s
(~10 ns/double)

~0.1 µs
(100 ns)

10-20 Gb/s
(~4 ns/double)

Processor speed: 1 FLOP ~ ns or less

Big Lesson #3

The best approach to parallelizing your
problem will depend on both details of your

problem and of the hardware available.

Hybrid
Architectures

Almost all of the biggest computers
are now clusters of shared memory

nodes
Generally just use message passing
across all cores, but as P(1 node)

goes up, hybrid approaches start to
make sense.

Before we start
with OpenMP:

• cp -R ~ljdursi/intro-ppp ~/

• source ~/intro-ppp/setup

• cd ~/intro-ppp/
gettingstarted/

• make omp_hello_world

• ./omp_hello_world

• make mpi_hello_world

• mpirun -np 8
./mpi_hello_world

• qsub -I -X into your reserved node as
per instruction sheet and ensure this
works

An introduction to
OpenMP

OpenMP

• For Shared Memory
systems

• Add Parallelism to
functioning serial code

• Add compiler directives
to code

• http://openmp.org -
tonnes of useful info

OpenMP

• Compiler, run-time
environment does a lot
of work for us

• Divides up work

• But we have to tell it
how to use variables,
where to run in parallel

OpenMP

• Mark off parallel regions
- in those regions, all
available threads do
same work

• Markup designed to be
invisible to non-OpenMP
compilers; should result
in working serial code

#include <stdio.h>
#include <omp.h>

int main(int argc, char **argv) {

 printf("At start of program\n");
#pragma omp parallel
 {
 printf("Hello world from thread %d!\n",
 omp_get_thread_num());
 }
 return 0;
}

C: omp-hello-world.c
gcc -fopenmp -o omp-hello-world omp-hello-world.c -lgomp

program omp_hello_world
use omp_lib
implicit none

print *, 'At start of program'
!$omp parallel
 print *, 'Hello world from thread ', &
 omp_get_thread_num(), '!'
!$omp end parallel
end program omp_hello_world

F90: omp-hello-world.f90
gfortran -fopenmp -o omp-hello-world omp-hello-world.f90 -lgomp

$ gcc -o omp-hello-world omp-hello-world.c -fopenmp -lgomp
 or
$ gfortran -o omp-hello-world omp-hello-world.f90 -fopenmp -lgomp

$ export OMP_NUM_THREADS=8
$./omp-hello-world
...
$ export OMP_NUM_THREADS=1
$./omp-hello-world
...
$ export OMP_NUM_THREADS=32
$./omp-hello-world
...

gpc-f102n084-$ gcc -o omp-hello-world omp-hello-world.c -fopenmp -lgomp
gpc-f102n084-$ export OMP_NUM_THREADS=8
gpc-f102n084-$./omp-hello-world
At start of program
Hello, world, from thread 0!
Hello, world, from thread 6!
Hello, world, from thread 5!
Hello, world, from thread 4!
Hello, world, from thread 2!
Hello, world, from thread 1!
Hello, world, from thread 7!
Hello, world, from thread 3!
gpc-f102n084-$ export OMP_NUM_THREADS=1
gpc-f102n084-$./omp-hello-world
At start of program
Hello, world, from thread 0!
gpc-f102n084-$ export OMP_NUM_THREADS=32
gpc-f102n084-$./omp-hello-world
At start of program
Hello, world, from thread 11!
Hello, world, from thread 1!
Hello, world, from thread 16!
...

What did happen?

• OMP_NUM_THREADS
threads launched

• Each print “Hello
world...”

• In seemingly random
order

• Only one ‘At start of
program’

gpc-f102n084-$ gcc -o omp-hello-world omp-hello-world.c
-fopenmp -lgomp
gpc-f102n084-$ export OMP_NUM_THREADS=8
gpc-f102n084-$./omp-hello-world
At start of program
Hello, world, from thread 0!
Hello, world, from thread 6!
Hello, world, from thread 5!
Hello, world, from thread 4!
Hello, world, from thread 2!
Hello, world, from thread 1!
Hello, world, from thread 7!
Hello, world, from thread 3!
gpc-f102n084-$ export OMP_NUM_THREADS=1
gpc-f102n084-$./omp-hello-world
At start of program
Hello, world, from thread 0!
gpc-f102n084-$ export OMP_NUM_THREADS=32
gpc-f102n084-$./omp-hello-world
At start of program
Hello, world, from thread 11!
Hello, world, from thread 1!
Hello, world, from thread 16!
...

#include <stdio.h>
#include <omp.h>

int main(int argc, char **argv) {

 printf("At start of program\n");
#pragma omp parallel
 {
 printf("Hello world from thread %d!\n",
 omp_get_thread_num());
 }
 return 0;
}

program omp_hello_world
use omp_lib
implicit none

print *, 'At start of program'
!$omp parallel
 print *, 'Hello world from thread ', &
 omp_get_thread_num(), '!'
!$omp end parallel

end program omp_hello_world

Include definitions
for OpenMP

supporting library
(omp_get_thread_num())

#include <stdio.h>
#include <omp.h>

int main(int argc, char **argv) {

 printf("At start of program\n");
#pragma omp parallel
 {
 printf("Hello world from thread %d!\n",
 omp_get_thread_num());
 }
 return 0;
}

program omp_hello_world
use omp_lib
implicit none

print *, 'At start of program'
!$omp parallel
 print *, 'Hello world from thread ', &
 omp_get_thread_num(), '!'
!$omp end parallel

end program omp_hello_world

Program starts normally
(Single thread of

execution)

#include <stdio.h>
#include <omp.h>

int main(int argc, char **argv) {

 printf("At start of program\n");
#pragma omp parallel
 {
 printf("Hello world from thread %d!\n",
 omp_get_thread_num());
 }
 return 0;
}

program omp_hello_world
use omp_lib
implicit none

print *, 'At start of program'
!$omp parallel
 print *, 'Hello world from thread ', &
 omp_get_thread_num(), '!'
!$omp end parallel

end program omp_hello_world

At start of parallel
section,

OMP_NUM_THREADS
threads are launched,

each execute same code.

}

}

#include <stdio.h>
#include <omp.h>

int main(int argc, char **argv) {

 printf("At start of program\n");
#pragma omp parallel
 {
 printf("Hello world from thread %d!\n",
 omp_get_thread_num());
 }
 return 0;
}

program omp_hello_world
use omp_lib
implicit none

print *, 'At start of program'
!$omp parallel
 print *, 'Hello world from thread ', &
 omp_get_thread_num(), '!'
!$omp end parallel

end program omp_hello_world

At end of parallel
section, the threads join

back up and back to serial
execution

}

}

#include <stdio.h>
#include <omp.h>

int main(int argc, char **argv) {

 printf("At start of program\n");
#pragma omp parallel
 {
 printf("Hello world from thread %d!\n",
 omp_get_thread_num());
 }
 return 0;
}

program omp_hello_world
use omp_lib
implicit none

print *, 'At start of program'
!$omp parallel
 print *, 'Hello world from thread ', &
 omp_get_thread_num(), '!'
!$omp end parallel

end program omp_hello_world

Special OMP function
called to find the thread

number of current thread
(first = 0)

$ gcc -o omp-hello-world omp-hello-world.c -fopenmp -lgomp
 or
$ gfortran -o omp-hello-world omp-hello-world.f90 -fopenmp -lgomp

Turn OpenMP on in compiler (default
off; incantation varies from compiler

to compiler. Intel: -openmp).
 Always needed for OpenMP code.

$ gcc -o omp-hello-world omp-hello-world.c -fopenmp -lgomp
 or
$ gfortran -o omp-hello-world omp-hello-world.f90 -fopenmp -lgomp

Link in OpenMP libraries;
normally only needed if
you use functions like

omp_get_num_threads().
Only at link time.

#include <stdio.h>
#include <omp.h>

int main(int argc, char **argv) {

 printf("At start of program\n");
#pragma omp parallel
 {
 printf("Hello world from thread %d of %d!\n",
 omp_get_thread_num(),
 omp_get_num_threads());
 }
 return 0;
}

(Advanced: can set num_threads (but not thread_num), too.)

#include <stdio.h>
#include <omp.h>

int main(int argc, char **argv) {

 printf("At start of program\n");
#pragma omp parallel
 {
 printf("Hello world from thread %d!\n",
 omp_get_thread_num());
 }

 printf(“There were %d threads.\n”,
 omp_get_num_threads());

 return 0;
}

Variables in OpenMP

• Need to put a variable in
the parallel section to
store the value

• But variables in parallel
sections are a little
tricky.

#include <stdio.h>
#include <omp.h>

int main(int argc, char **argv) {

 printf("At start of program\n");
#pragma omp parallel
 {
 printf("Hello world from thread %d!\n",
 omp_get_thread_num());
 }

 printf(“There were %d threads.\n”,
 omp_get_num_threads());

 return 0;
}

#include <stdio.h>
#include <omp.h>

int main(int argc, char **argv) {
 int mythread, nthreads;
#pragma omp parallel default(none), shared(nthreads), private(mythread)
 {
 mythread = omp_get_thread_num();
 if (mythread == 0)
 nthreads = omp_get_num_threads();
 }
 printf("Number of threads was %d.\n",nthreads);
 return 0;
}

C: omp-vars.c
gcc -fopenmp -o omp-vars omp-vars.c -lgomp

program omp_vars
use omp_lib
implicit none

integer :: mythread, nthreads

!$omp parallel default(none), private(mythread), shared(nthreads)
 mythread = omp_get_thread_num()
 if (mythread == 0) then
 nthreads = omp_get_num_threads()
 endif
!$omp end parallel

print *,'Number of threads was ', nthreads, '.'

end program omp_vars

FORTRAN: omp-vars.f90
gfortran -fopenmp -o omp-vars omp-vars.f90 -lgomp

program omp_vars
use omp_lib
implicit none

integer :: mythread, nthreads

!$omp parallel default(none), private(mythread), shared(nthreads)
 mythread = omp_get_thread_num()
 if (mythread == 0) then
 nthreads = omp_get_num_threads()
 endif
!$omp end parallel

print *,'Number of threads was ', nthreads, '.'

end program omp_vars

Variable definitions, and
how the are used in the parallel block.

program omp_vars
use omp_lib
implicit none

integer :: mythread, nthreads

!$omp parallel default(none), private(mythread), shared(nthreads)
 mythread = omp_get_thread_num()
 if (mythread == 0) then
 nthreads = omp_get_num_threads()
 endif
!$omp end parallel

print *,'Number of threads was ', nthreads, '.'

end program omp_vars

Strongly, strongly, strongly recommended.
Inconvenient?
30 seconds of extra typing can save you hours of
debugging

program omp_vars
use omp_lib
implicit none

integer :: mythread, nthreads

!$omp parallel default(none), private(mythread), shared(nthreads)
 mythread = omp_get_thread_num()
 if (mythread == 0) then
 nthreads = omp_get_num_threads()
 endif
!$omp end parallel

print *,'Number of threads was ', nthreads, '.'

end program omp_vars

Each thread gets its own private copy of mythread to
do with as it pleases. No other thread can see, modify.

program omp_vars
use omp_lib
implicit none

integer :: mythread, nthreads

!$omp parallel default(none), private(mythread), shared(nthreads)
 mythread = omp_get_thread_num()
 if (mythread == 0) then
 nthreads = omp_get_num_threads()
 endif
!$omp end parallel

print *,'Number of threads was ', nthreads, '.'

end program omp_vars

A thread-private variable has undefined value inside a
parallel block.

(Advanced: firstprivate, lastprivate - copy in/out.)

program omp_vars
use omp_lib
implicit none

integer :: mythread, nthreads

!$omp parallel default(none), private(mythread), shared(nthreads)
 mythread = omp_get_thread_num()
 if (mythread == 0) then
 nthreads = omp_get_num_threads()
 endif
!$omp end parallel

print *,'Number of threads was ', nthreads, '.'

end program omp_vars

Everyone can see (ok), modify (danger! danger!) a
shared variable. Keeps its value between serial/parallel
sections

Variables in OpenMP
• Program runs, launches

threads.

• Each thread gets its own
copy of mythread

• Only thread 0 writes to
nthreads

• Outputs number of
threads

• What would mythread
be if we printed it?

program omp_vars
use omp_lib
implicit none

integer :: mythread, nthreads

!$omp parallel default(none), private(mythread), shared
(nthreads)
 mythread = omp_get_thread_num()
 if (mythread == 0) then
 nthreads = omp_get_num_threads()
 endif
!$omp end parallel

print *,'Number of threads was ', nthreads, '.'

end program omp_vars

For C folks:
#include <stdio.h>
#include <omp.h>

int main(int argc, char **argv) {
 int nthreads;
#pragma omp parallel default(none), shared(nthreads)
 {
 int mythread;
 mythread = omp_get_thread_num();
 if (mythread == 0)
 nthreads = omp_get_num_threads();
 }
 printf("Number of threads was %d.\n",nthreads);
 return 0;
}

Local definitions are powerful, and avoid lots of bugs!
Variables defined in a parallel block are automatically

thread private.

Single Execution in
OpenMP

• Do we care that it’s
thread 0 in particular
that updates nthreads?

• Why did we pick 0?

• Often we just want the
first thread through to
do something, don’t care
who.

program omp_vars
use omp_lib
implicit none

integer :: mythread, nthreads

!$omp parallel default(none), private(mythread), shared
(nthreads)
 mythread = omp_get_thread_num()
 if (mythread == 0) then
 nthreads = omp_get_num_threads()
 endif
!$omp end parallel

print *,'Number of threads was ', nthreads, '.'

end program omp_vars

program omp_vars
use omp_lib
implicit none

integer :: nthreads

!$omp parallel default(none), shared(nthreads)
!$omp single
 nthreads = omp_get_num_threads()
!$omp end single
!$omp end parallel

print *,'Number of threads was ', nthreads, '.'

end program omp_vars

#include <stdio.h>
#include <omp.h>

int main(int argc, char **argv) {
 int nthreads;
#pragma omp parallel default(none), shared(nthreads)
#pragma omp single
 nthreads = omp_get_num_threads();
 printf("Number of threads was %d.\n",nthreads);
 return 0;
}

Loops in OpenMP

• Now let’s try something
a little more interesting

• copy one of your omp
programs to omp_loop.c
(or omp_loop.f90) and
let’s put a loop in the
parallel section

program omp_loop
use omp_lib
implicit none

integer :: i, mythread

!$omp parallel default(none) XXXX(i) XXXX(mythread)
 mythread = omp_get_thread_num()
 do i=1,16
 print *, 'thread ', mythread, ' gets i=', i
 enddo
!$omp end parallel

end program omp_loop

#include <stdio.h>
#include <omp.h>

int main(int argc, char **argv) {
 int i, mythread;
#pragma omp parallel default(none) XXXX(i) XXXX(mythread)
 {
 mythread = omp_get_thread_num();
 for (i=0; i<16;i++) {
 printf("Thread %d gets i=%d\n",mythread,i);
 }
 }
 return 0;
}

Worksharing
constructs in OpenMP

• We don’t generally want tasks
to do exactly the same thing

• Want to partition a problem
into pieces, each thread
works on a piece

• Most scientific programming
full of work-heavy loops

• OpenMP has a worksharing
construct: omp for (or omp
do)

program omp_loop
use omp_lib
implicit none

integer :: i, mythread

!$omp parallel default(none) XXXX(i) XXXX(mythread)
 mythread = omp_get_thread_num()
 do i=1,16
 print *, 'thread ', mythread, ' gets i=', i
 enddo
!$omp end parallel

end program omp_loop

(Advanced: Can combine parallel and for into one omp line.)

program omp_loop
use omp_lib
implicit none

integer :: i, mythread
!$omp parallel default(none) XXXX(i) XXXX(mythread)
 mythread = omp_get_thread_num()
!$omp do
 do i=1,16
 print *, 'thread ', mythread, ' gets i=', i
 enddo
!$omp end parallel

end program omp_loop

#include <stdio.h>
#include <omp.h>

int main(int argc, char **argv) {
 int i, mythread;
#pragma omp parallel default(none) XXXX(i) XXXX(mythread)
 {
 mythread = omp_get_thread_num();
#pragma omp for
 for (i=0; i<16;i++) {
 printf("Thread %d gets i=%d\n",mythread,i);
 }
 }
 return 0;
}

Worksharing
constructs in OpenMP

• omp for / omp do construct
breaks up the iterations by
thread.

• If doesn’t divide evenly, does
the best it can.

• Allows easy breaking up of
work!

$./omp_loop
 thread 3 gets i= 7
 thread 3 gets i= 8
 thread 4 gets i= 9
 thread 4 gets i= 10
 thread 5 gets i= 11
 thread 5 gets i= 12
 thread 6 gets i= 13
 thread 6 gets i= 14
 thread 1 gets i= 3
 thread 1 gets i= 4
 thread 0 gets i= 1
 thread 0 gets i= 2
 thread 2 gets i= 5
 thread 2 gets i= 6
 thread 7 gets i= 15
 thread 7 gets i= 16
$

(Advanced: can break up work of arbitrary blocks of code
with “omp task” construct.)

DAXPY
• multiply a vector by a scalar,

add a vector.

• (a X plus Y, in double
precision)

• Implement this, first serially,
then with OpenMP

• daxpy.c or daxpy.f90

• make daxpy or
make fdaxpy

ẑ = ax̂ + ŷ

make
• Make builds an executable from a

list of source code files and rules

• Many files to do, of which order
doesn’t matter for most

• Parallelism!

• make -j N - launches N
processes to do it

• make -j 2 often shows speed
increase even on single processor
systems

$ make
$ make -j 2
$ make -j

Overlapping
Computation with I/O

P=1 Get file1.c Write file1.o file2.c file2.oCompile Compile

P=2
Get file1.c Write file1.oCompile

file2.c file2.oCompile

#include <stdio.h>
#include "pca_utils.h"

void daxpy(int n, NType a, NType *x, NType *y, NType *z)
{
 for (int i=0; i<n; i++) {
 x[i] = (NType)i*(NType)i;
 y[i] = ((NType)i+1.)*((NType)i-1.);
 }

 for (int i=0; i<n; i++)
 z[i] += a * x[i] + y[i];
}

int main(int argc, char *argv[]) {
 int n=1e7;
 NType *x = vector(n);
 NType *y = vector(n);
 NType *z = vector(n);
 NType a = 5./3.;

 pca_time tt;
 tick(&tt);
 daxpy(n,a,x,y,z);
 tock(&tt);

 free(z);
 free(y);
 free(x);
 return 0;
}

Utilities for this course; NType is a
numerical type which can be set to single
or double precision

#include <stdio.h>
#include "pca_utils.h"

void daxpy(int n, NType a, NType *x, NType *y, NType *z)
{
 for (int i=0; i<n; i++) {
 x[i] = (NType)i*(NType)i;
 y[i] = ((NType)i+1.)*((NType)i-1.);
 }

 for (int i=0; i<n; i++)
 z[i] += a * x[i] + y[i];
}

int main(int argc, char *argv[]) {
 int n=1e7;
 NType *x = vector(n);
 NType *y = vector(n);
 NType *z = vector(n);
 NType a = 5./3.;

 pca_time tt;
 tick(&tt);
 daxpy(n,a,x,y,z);
 tock(&tt);

 free(z);
 free(y);
 free(x);
 return 0;
}

Fill arrays with
calculated values

#include <stdio.h>
#include "pca_utils.h"

void daxpy(int n, NType a, NType *x, NType *y, NType *z)
{
 for (int i=0; i<n; i++) {
 x[i] = (NType)i*(NType)i;
 y[i] = ((NType)i+1.)*((NType)i-1.);
 }

 for (int i=0; i<n; i++)
 z[i] += a * x[i] + y[i];
}

int main(int argc, char *argv[]) {
 int n=1e7;
 NType *x = vector(n);
 NType *y = vector(n);
 NType *z = vector(n);
 NType a = 5./3.;

 pca_time tt;
 tick(&tt);
 daxpy(n,a,x,y,z);
 tock(&tt);

 free(z);
 free(y);
 free(x);
 return 0;
}

Do calculation

#include <stdio.h>
#include "pca_utils.h"

void daxpy(int n, NType a, NType *x, NType *y, NType *z)
{
 for (int i=0; i<n; i++) {
 x[i] = (NType)i*(NType)i;
 y[i] = ((NType)i+1.)*((NType)i-1.);
 }

 for (int i=0; i<n; i++)
 z[i] += a * x[i] + y[i];
}

int main(int argc, char *argv[]) {
 int n=1e7;
 NType *x = vector(n);
 NType *y = vector(n);
 NType *z = vector(n);
 NType a = 5./3.;

 pca_time tt;
 tick(&tt);
 daxpy(n,a,x,y,z);
 tock(&tt);

 free(z);
 free(y);
 free(x);
 return 0;
}

Driver - do timings,
etc. (nothing needs
to be changed in
here).

OpenMPing DAXPY

• How do we OpenMP this?

• Try it (~5-10 min)

#include <stdio.h>
#include "pca_utils.h"

void daxpy(int n, NType a, NType *x, NType *y, NType *z)
{
 for (int i=0; i<n; i++) {
 x[i] = (NType)i*(NType)i;
 y[i] = ((NType)i+1.)*((NType)i-1.);
 }

 for (int i=0; i<n; i++)
 z[i] += a * x[i] + y[i];
}

int main(int argc, char *argv[]) {
 int n=1e7;
 NType *x = vector(n);
 NType *y = vector(n);
 NType *z = vector(n);
 NType a = 5./3.;

 pca_time tt;
 tick(&tt);
 daxpy(n,a,x,y,z);
 tock(&tt);

 free(z);
 free(y);
 free(x);
 return 0;
}

!$omp parallel default(none) private(i) shared(a,x,b,y,z)
!$omp do
 do i=1,n
 x(i) = (i)*(i)
 y(i) = (i+1.)*(i-1.)
 enddo
!$omp do
 do i=1,n
 z(i) = a*x(i) + y(i)
 enddo
!$omp end parallel

void daxpy(int n, NType a, NType *x, NType *y, NType *z)
{
#pragma omp parallel default(none) shared(n,x,y,a,z) private(i)
{
#pragma omp for
 for (int i=0; i<n; i++) {
 x[i] = (NType)i*(NType)i;
 y[i] = ((NType)i+1.)*((NType)i-1.);
 }

#pragma omp for
 for (int i=0; i<n; i++)
 z[i] += a * x[i] + y[i];
}
}

$./daxpy
Tock registers 2.5538e-01 seconds.

[..add OpenMP...]

$ make daxpy
gcc -std=c99 -g -DPGPLOT -I/home/ljdursi/intro-ppp//util/ -I/scinet/gpc/
Libraries/pgplot/5.2.2-gcc -fopenmp -c daxpy.c -o daxpy.o
gcc -std=c99 -g -DPGPLOT -I/home/ljdursi/intro-ppp//util/ -I/scinet/gpc/
Libraries/pgplot/5.2.2-gcc -fopenmp daxpy.o -o daxpy /home/ljdursi/intro-
ppp//util//pca_utils.o -lm

$ export OMP_NUM_THREADS=8
$./daxpy
Tock registers 6.9107e-02 seconds.

$ export OMP_NUM_THREADS=4
$./daxpy
Tock registers 1.0347e-01 seconds.

$ export OMP_NUM_THREADS=2
$./daxpy
Tock registers 1.8619e-01 seconds.

$./daxpy
Tock registers 2.5538e-01 seconds.

[..add OpenMP...]

$ make daxpy
gcc -std=c99 -g -DPGPLOT -I/home/ljdursi/intro-ppp//util/ -I/scinet/gpc/
Libraries/pgplot/5.2.2-gcc -fopenmp -c daxpy.c -o daxpy.o
gcc -std=c99 -g -DPGPLOT -I/home/ljdursi/intro-ppp//util/ -I/scinet/gpc/
Libraries/pgplot/5.2.2-gcc -fopenmp daxpy.o -o daxpy /home/ljdursi/intro-
ppp//util//pca_utils.o -lm

$ export OMP_NUM_THREADS=8
$./daxpy
Tock registers 6.9107e-02 seconds.

$ export OMP_NUM_THREADS=4
$./daxpy
Tock registers 1.0347e-01 seconds.

$ export OMP_NUM_THREADS=2
$./daxpy
Tock registers 1.8619e-01 seconds.

3.69x speedup, 46% efficiency

2.44x speedup, 61% efficiency

1.86x speedup, 93% efficiency

!$omp parallel default(none) private(i) shared(a,x,b,y,z)
!$omp do
 do i=1,n
 x(i) = (i)*(i)
 y(i) = (i+1.)*(i-1.)
 enddo
!$omp do
 do i=1,n
 z(i) = a*x(i) + y(i)
 enddo
!$omp end parallel

void daxpy(int n, NType a, NType *x, NType *y, NType *z)
{
#pragma omp parallel default(none) shared(n,x,y,a,z) private(i)
{
#pragma omp for
 for (int i=0; i<n; i++) {
 x[i] = (NType)i*(NType)i;
 y[i] = ((NType)i+1.)*((NType)i-1.);
 }

#pragma omp for
 for (int i=0; i<n; i++)
 z[i] += a * x[i] + y[i];
}
}

Why is this safe?
Everyone’s modifying x,y,z

Dot Product

• Dot product of two vectors

• Implement this, first serially,
then with OpenMP

• ndot.c or ndot.f90

• make ndot or
make ndotf

• Tells time, answer, correct
answer.

n = x̂ · ŷ

=
�

i

xiyi

$./ndot
Dot product is 3.3333e+20
(vs 3.3333e+20) for n=10000000.
Took 5.3578e-02 seconds.

 ...main program...
 print *, 'Dot product is ', res, '(vs ', ans,') for n = ',n,'.
Took ', time, 'sec.'

 deallocate(x,y)

 contains

 double precision function calc_ndot(n, x, y)
 implicit none
 integer, intent(in) :: n
 double precision, dimension(n) :: x
 double precision, dimension(n) :: y
 double precision :: ndot
 integer :: i

 ndot = 0.
 do i=1,n
 ndot = ndot + x(i)*y(i)
 enddo
 calc_ndot = ndot
 end function calc_ndot

How to OpenMP this?

 double precision function calc_ndot(n, x, y)
 implicit none
 integer, intent(in) :: n
 double precision, dimension(n) :: x
 double precision, dimension(n) :: y
 double precision :: ndot
 integer :: i
!$omp parallel default(none) shared(ndot,x,y,n) private(i)
 ndot = 0.
 do i=1,n
 ndot = ndot + x(i)*y(i)
 enddo
!$omp end parallel
 calc_ndot = ndot
 end function calc_ndot

fomp_ndot_race.f90
omp_ndot_race.c

 double precision function calc_ndot(n, x, y)
 implicit none
 integer, intent(in) :: n
 double precision, dimension(n) :: x
 double precision, dimension(n) :: y
 double precision :: ndot
 integer :: i
!$omp parallel default(none) shared(ndot,x,y,n) private(i)
 ndot = 0.
 do i=1,n
 ndot = ndot + x(i)*y(i)
 enddo
!$omp end parallel
 calc_ndot = ndot
 end function calc_ndot

$./ndotf
 Dot product is 3.33333283333717098E+020 (vs 3.33333363469873840E+020)
for n = 10000000 . Took 5.00000007E-02 sec.
$ export OMP_NUM_THREADS=8
$./fomp_ndot_race
 Dot product is 6.06898061003712922E+019 (vs 3.33333363469873840E+020)
for n = 10000000 . Took 0.16300000 sec.

fomp_ndot_race.f90
omp_ndot_race.c

Wrong answer - and slower!

Race Condition - why
it’s wrong

• Classic parallel bug

• Multiple writers to some
shared resource

• Can be very subtle, and only
appear intermittently

• Your program can have a
bug but not display any
symptoms for small runs!

• Primarily a problem with
shared memory

Thread 0:
 add 1

Thread 1:
add 2

read ndot (=0)
into register

reg = reg + 1
read ndot (=0)
into register

store reg (=1)
into ndot reg = reg + 2

store reg (=2)
into ndot

ndot = 0.

ndot =2

Memory contention -
why it’s slow

• Multiple cores repeatedly
trying to read, access, store
same variable in memory

• Not (such) a problem for
constants (read only); but a
big problem for writing.

• Sections of arrays -- better.

ndot

OpenMP critical
construct

• Defines a “critical region”

• Only one thread can be operating
within this region at a time

• Keeps modifications to shared
resources safe

• #pragma omp critical or
!$omp critical /
!$omp end critical

NType ndot_critical(int n, NType *x, NType *y)
{
 NType tot=0;
#pragma omp parallel for shared(x,y,n,tot)
 for (int i=0; i<n; i++)
#pragma omp critical
 tot += x[i] * y[i];
 return tot;
}

 ndot = 0.
!$omp parallel default(none) shared(ndot,n,x,y) private(i)
!$omp do
 do i=1,n
!$omp critical
 ndot = ndot + x(i)*y(i)
!$omp end critical
 enddo
!$omp end parallel
 calc_ndot = ndot
 end function calc_ndot

OpenMP atomic
construct

• Most hardware has support for
atomic (indivisible - eg, can’t get
interrupted) instructions

• Small subset, but load/add/store
usually one

• Not as general as critical

• Much lower overhead

• Better -- ‘only’ 18x slower than
serial! Still some overhead, still
memory contention.

$./ndot
Dot product is 3.3333e+20
(vs 3.3333e+20) for n=10000000.
Took 5.3570e-02 seconds.

$./omp_ndot_atomic
Dot product is 3.3333e+20
(vs 3.3333e+20) for n=10000000.
Took 9.7981e-01 seconds.

How should we fix
this?

n = x̂ · ŷ

=
�

i

xiyi

How should we fix
this?

• Local sums

• Each processor sums its
local value (107/P additions)

• And then sums to ntot (only
P additions) with critical, or
atomic..

• Try this (5-10 min)

• cp one of the omp_ndot.c’s
or fomp_ndot.c’s to
omp_ndot_local.c (or
fomp_ndot_local.f90)

n = x̂ · ŷ

=
�

i

xiyi

=
�

p

�
�

i

xiyi

�

Local variables:

$./ndot
Dot product is 3.3333e+20
(vs 3.3333e+20) for n=10000000.
Took 5.3570e-02 seconds.

$ export OMP_NUM_THREADS=8
$./omp_ndot_local
Dot product is 3.3333e+20
(vs 3.3333e+20) for n=10000000.
Took 1.8334e-02 seconds.

#pragma omp parallel shared(x,y,n,tot)
 private(mytot)
{
 mytot = 0;
 #pragma omp for
 for (int i=0; i<n; i++)
 mytot += x[i] * y[i];

 #pragma omp atomic
 tot += mytot;
}

ndot = 0.
!$omp parallel default(none)
 shared(ndot,n,x,y) private(i,mytot)
 mytot = 0.
!$omp do
 do i=1,n
 mytot = mytot + x(i)*y(i)
 enddo
!$omp atomic
 ndot = ndot + mytot
!$omp end parallel
calc_ndot = ndot

OpenMP Reduction
Operations

• This is such a common
operation, there is
something built into
OpenMP to handle it

• “reduction” variables - like
shared or private

• Can support several types
of operations - +, *...

• omp_ndot_reduction.c,
fomp_ndot_reduction.f90

sum1

CPU1 CPU2 CPU3

sum2

sum1+
sum2

sum3

CPU4

sum4

sum3+
sum4

sum1+
sum2+
sum3+
sum4=
total

Reduction; works for
a variety of operators

(+,*,min,max...)

OpenMP Reduction
Operations

NType ndot_atomic(int n, NType *x, NType *y)
{
 NType tot=0;
#pragma omp parallel shared(x,y,n), reduction(+:tot)
{
 #pragma omp for
 for (int i=0; i<n; i++)
 tot += x[i] * y[i];
}
 return tot;
}

OpenMP Reduction
Operations

double precision function calc_ndot(n, x, y)
implicit none
integer, intent(in) :: n
double precision, dimension(n) :: x
double precision, dimension(n) :: y
double precision :: ndot
integer :: i

ndot = 0.
!$omp parallel default(none) shared(n,x,y) reduction(+:ndot) private(i)
!$omp do
 do i=1,n
 ndot = ndot + x(i)*y(i)
 enddo
!$omp end parallel
calc_ndot = ndot

end function calc_ndot

Load-Balancing
• So far, every iteration of

the loop has had the
same amount of work:

• Not always the case

• make mandel; ./mandel

• Plots a function at every
pixel with different
amount of work - in
fact, amount of work is
basically the plotted
color.

Lots of work

Little work

Load-Balancing

• Default work sharing
breaks N iterations into
~N/nthreads contiguous
chunks and assigns them
to threads

• But now threads 7, 6, 5
will be done and sitting
idle while threads 3,4
work alone...

• Inefficient use of
resources

 0 1 2 3 4 5 6 7

Load-Balancing
 0 1 2 3 4 5 6 7

Serial 0.63s

Nthreads=8 0.29s

Speedup 2.2x

Efficiency 27%

800x800 pix; N/nthreads ~ 100x800

Load-Balancing
• Can change the `chunk

size’ from ~N/nthreads
to arbitrary number

• In this case, more
columns - work
distributed a bit better

• Now, for instance, chunk
size ~ 50, and thread 7
gets both a big work
chunk and a little work
chunk.

 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Load-Balancing
 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

#pragma omp for schedule(static,chunksize)

or

!$omp do schedule(static,chunksize)

Here, chunksize = 50.

Static scheduling

schedule(static,50)

Serial 0.63s

Nthreads=8 0.15s

Speedup 4.2x

Efficiency 52%

 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

schedule(dynamic)
• Still another choice is to

break it up into many
pieces and hand them to
threads when they are
ready

• dynamic scheduling

• Has increased overhead,
but can do a very good
job

• can also choose
chunksize for dynamic

schedule(dynamic)

Serial 0.63s

Nthreads=8 0.10

Speedup 6.3x

Efficiency 79%

Tuning

• schedule(static) (default)
or schedule(dynamic)
are good starting places

• To get best performance
in badly imbalanced
problems, may have to
play with chunk sizes -
will depend on your
problem, and hardware.

 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Tuning
 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

(static,4) (dynamic,16)

0.084s 0.099s

7.6x 6.4x

95% 80%

Two-level loops

• In scientific code, we
usually have nested
loops where all the
work is.

• Almost without
exception, want the loop
on the outside-most loop.
Why?

#pragma omp for schedule(static,4)
 for (int i=0;i<npix;i++)
 for (int j=0;j<npix;j++) {
 double x=((double)i)/((double)npix)*(xmax-xmin)+xmin;
 double y=((double)j)/((double)npix)*(ymax-ymin)+ymin;
 double complex a=x+I*y;
 mymap[i][j]=how_many_iter_real(a,maxiter);
 }

mandel.c

Summary

• omp parallel

• omp single

• shared/private/reduction variables

• omp atomic, omp critical

• omp for

