

Sébastien Boisvert
PhD student, Laval University
CIHR doctoral scholar

Length: 1 hour

Granularities and messages: from design to
abstraction to implementation to virtualization

Élénie Godzaridis
Strategic Technology Projects
Bentley Systems, Inc.

Meta-data

● Invited by Daniel Gruner (SciNet, Compute Canada)
● https://support.scinet.utoronto.ca/courses/?q=node/95
● Start: 2012-11-26 14:00 End: 2012-11-26 16:00
● Seminar by Élénie Godzaridis, Sébastien Boisvert ,

developers of the parallel genome assembler "Ray".
● Location: SciNet offices at 256 McCaul Street,

Toronto, 2nd Floor.

https://support.scinet.utoronto.ca/courses/?q=node/95

Introductions

● Who are we ?
● Sébastien: message passing, software

development, biological systems, repeats in
genomes, usability, scalability, correctness,
open innovation, Linux

● Élénie: software engineering, blueprints,
designs, books, biochemistry, life, rendering
engines, geometry, web technologies, cloud,
complex systems

Approximative contents

● Message passing
● Granularity
● Importance of having a framework
● How to achieve useful modularity at running time / compile time ?
● Important design patterns
● Distributed storage engines with MyHashTable
● Handle types: slave mode, master mode, message tag
● Handlers
● RayPlatform modular plugin architecture
● Pure MPI apps are not good enough, need threads too
● Mini-ranks
● Buffer management in RayPlatform
● Non-blocking shared message queue in RayPlatform

● Problem definition

Why bother with DNA ?

License: AttributionNoncommercialShare Alike Some rights reserved by e acharya

de novo genome assembly

License: AttributionNoncommercialNo Derivative Works Some rights reserved by jugbo

Why is it hard to parallelize ?

● Each piece is important for the big picture
● Not embarrassingly parallel
● Approach: have an army of actors working

together by sending messages
● Each actor owns a subset of the pieces

 9

de Bruijn graphs in
bioinformatics

● Alphabet: {A,T,C,G}, word length: k
● Vertices V = {A,T,C,G}^k
● Edges are a subset of V x V
● (u,v) is an edge if the last k-1 symbols of u are the first k-1

symbols of v
● Exemple: ATCGA -> TCGAT
● In genomics, we use a de Bruijn subgraph using k-mers for

vertices and (k+1)-mers for edges
● k-mers and (k+1)-mers are sampled from data
● Idury & Waterman 1995 Journal of Computational Biology

 10

Why is assembly hard ?

● Arrival rate of reads is not perfect
● DNA sequencing theory
● Lander & Waterman (1988) Genomics 2 (3):

231–239.

Professor E. Lander
(Photo: Wikipedia)

Professor M. Waterman
(Photo: Wikipedia)

● Granular run-time profiles on Blue Gene/Q

 12

Latency matters

● To build the graph for the dataset SRA000271
(human genome, 4 * 10^9 reads), with 512
processes
– 159 min when average latency is 65 us (Colosse)

– 342 min when average latency is 260 us
(Mammouth)

● 4096 processing elements, Cray XE6, round-
trip latency in application -> 20-30
microseconds (Carlos Sosa, Cray Inc.)

 13

Building the distributed de Bruijn
graph

● metagenome
● sample SRS011098
● 202 * 10^6 reads

 14

Overall (SRS011098)

● Message passing

 Olga the crab (Uca pugilator)
Photo: Sébastien Boisvert, License: Attribution 2.0 Generic (CC BY 2.0)

Message passing for the layman

 17

Message passing with MPI

● MPI 3.0 contains a lot of things
● Point-to-point communication (two-sided)
● RDMA (one-sided communication)
● Collectives
● MPI I/O
● Custom communicators
● Many other features

 18

MPI provides a flat world

Figure 1: The MPI programming model. +--------------------+
 | MPI_COMM_WORLD | MPI communicator

 +---------+----------+
 | +------+------+---+--+------+------+

 | | | | | |

 +---+ +---+ +---+ +---+ +---+ +---+

 | 0 | | 1 | | 2 | | 3 | | 4 | | 5 | MPI ranks

 +---+ +---+ +---+ +---+ +---+ +---+

 19

Point-to-point versus collectives

● With point-to-point, the dialogue is local
between two folks

● Collectives are like meetings – not productive
when too many of them

● Collectives are not scalable
● Point-to-point is scalable

● Granularity

 21

Granularity

● Standard sum from 1 to 1000
● Granular version: sum 1 to 10 on the first call,

11 to 20 on the second, and so on
● Many calls are required to complete

 22

● From programming models to frameworks

 23

Parallel programming models

● 1 process with many kernel threads on 1
machine

● Many processes with IPC (interprocess
communication)

● Many processes with MPI (message passing
interface)

 24

MPI is low level

● Message passing does not structure a
program

● Needs a framework
● Should be modular
● Should be easy to extend
● Should be easy to learn and understand

 25

● How to achieve useful modularity at running

time / compile time ?

 26

Model #1 for message passing

● 2 kernel threads per process (1 for busy
waiting for communication and 1 for
processing)

● Cons:
– not lock-free

– prone to programming errors

– Half of the cores busy wait (unless they sleep)

 27

Model #2 for message passing

● 1 single kernel thread per process
● Comm. and processing interleaved
● Con:

– Needs granular code everywhere !

● Pros
– Efficient

– Lock-free (less bugs)

 28

Models for task splitting

● Model 1: separated duties
● Some processes are data stores (80%)
● Some processes are algorithm runners (20%)
● Con:

– Data store processes do nothing when nobody
speak to them

– Possibly unbalanced

 29

Models for task splitting

● Model 2: everybody is the same
● Every process has the same job to do
● But with different data
● One of the processes is also a manager (usually

0)
● Pros

– Balanced

– All the cores work equally

 30

Memory models

● 1. Standard: 1 local virtual address space per
process

● 2. Global arrays (distributed address space)
– Pointer dereference can generate a payload on the

network

● 3. Data ownership
– Message passing

– DHTs (distributed hash tables)

– DHTs are nice because the distribution is uniform

 31

● RayPlatform modular plugin architecture

 32

RayPlatform

● Each process has: inbox, outbox
● Only point-to-point
● Modular plugin architecture
● Each process is a state machine
● The core allocates:

– Message tag handles

– Slave mode handles

– Master mode handles

● Associate behaviour to these handles
● GNU Lesser General Public License, version 3
● https://github.com/sebhtml/RayPlatform

https://github.com/sebhtml/RayPlatform

 33

 34

● Important design patterns

 35

● State
● Strategy
● Adapter
● Facade

 36

● Handlers

 37

Definitions

● Handle: opaque label
● Handler: behaviour associated to an event
● Plugin: orthogonal module of the software
● Adapter: binds two things that can not know

each other
● Core: the kernel
● Handler table: tells which handler to use with any

handle
● Handler table is like interruption table

 38

● Handle types: slave mode, master mode,

message tag

 39

State machine

● A machine with states
● Behaviour guided by its states
● Each process is a state machine

 40

Main loop

● while(isAlive()){

 receiveMessages();
 processMessages();

 processData();
 sendMessages();

}

 41

Virtual processor (VP)

● Problem: kernel threads have a overhead, but
● Solution: thread pools retain the benefits of

fast task-switching
– each process has many user space threads

(workers) that push messages

● The operating system is not aware of workers
(user space threads)

 42

Virtual communicator (VC)

● Problem: sending many small messages is
costly

● Solution: aggregate them transparently
● Workers push messages on the VC
● The VC pushes bigger messages in the outbox
● Workers are user space threads
● States: Runnable, Waiting, Completed

 43

Regular complete graph and
routes

Image by: Alain Matthes — al.ma@mac.com

Complete graph for MPI communication is a
bad idea !

 44

Virtual message router

● Problem: any-to-any communication pattern
can be bad

● Solution: fit the pattern on a better graph
● 5184 processes -> 26873856 comm. edges !

(diameter: 1)
● With surface of regular convex polytope: 5184

vertices, 736128 edges, degree: 142,
diameter: 2

 45

Profiling is understanding

● RayPlatform has its own real-time profiler
● Reports messages sent/received, current

slave mode at every 100 ms quantum

 46

Example

● Rank 0: RAY_SLAVE_MODE_ADD_VERTICES Time= 4.38 s
Speed= 74882 Sent= 51 (processMessages: 28, processData:
23) Received= 52 Balance= -1

Rank 0 received in receiveMessages:

Rank 0 RAY_MPI_TAG_VERTICES_DATA 28

Rank 0 RAY_MPI_TAG_VERTICES_DATA_REPLY 24

Rank 0 sent in processMessages:

Rank 0 RAY_MPI_TAG_VERTICES_DATA_REPLY 28

Rank 0 sent in processData:

Rank 0 RAY_MPI_TAG_VERTICES_DATA 23

 47

● Pure MPI apps are not good enough, need

threads too

 48

Routing with regular polytopes

● Polytopes are still bad
● all MPI processes on a

machine talk to the
Host Communication
Adapter

● Threads ?

Image: Wikipedia

 49

● Mini-ranks

 50

Roadblocks with MPI processes

● The IBM PowerPC A2 may be*** better at
scheduling 16 processes with 4 threads each
than scheduling 64 processes

*** Hypothesis

 51

Hierarchical message distribution systems

Li
c e

ns
e :

 A
t t

ri b
u t

i o
n N

o n
c o

m
m

e r
c i

a l

S
o m

e
r ig

ht
s

re
se

rv
e d

 b
y

C
a y

us
a

(f
lic

k r
.c

o m
)

 52

Mini-ranks hybrid programming
model

Figure 2: The MPI programming model, with mini ranks.

 +--------------------+
 | MPI_COMM_WORLD | MPI communicator
 +---------+----------+
 |
 +------+------+---+--+------+------+
 | | | | | |
 +---+ +---+ +---+ +---+ +---+ +---+
 | 0 | | 1 | | 2 | | 3 | | 4 | | 5 | MPI ranks (1 RankProcess.cpp instance per rank)
 +---+ +---+ +---+ +---+ +---+ +---+ with the thread from main() for MPI calls
 | | | | | | | | | | | |
 | 0 | | 4 | | 8 | |12 | |16 | |20 | |
 | 1 | | 5 | | 9 | |13 | |17 | |21 | | => mini-ranks, in pthreads
 | 2 | | 6 | |10 | |14 | |18 | |22 | |
 | 3 | | 7 | |11 | |15 | |19 | |23 | | (1 MiniRank.cpp instance per minirank,
 | | | | | | | | | | | | | 1 Application running with its RayPlatform
 ComputeCore.cpp)

This hybrid model was devised by Sébastien Boisvert, Fangfang Xia and Rick
Stevens.
It is implemented in RayPlatform and a manuscript is in preparation

 53

-mini-ranks-per-rank

● In pure MPI mode:
mpiexec -n 2400 \
MyApplication ... => 2400 MPI processes

● In mini-ranks mode:
mpiexec -n 100 -bynode \
MyApplication -mini-ranks-per-rank 23 ...

 => 100 MPI processes, 23 threads per MPI process for mini-
 ranks, the control thread of main() does MPI calls

● RayPlatform runtime engine will pick up “-mini-ranks-per-rank”
and do its magic

 54

● Buffer management in RayPlatform

 55

●Amortized buffer management

● Needs to know when space in the ring buffer
given to MPI_Isend can be reused

● Amortized management of dirty buffers
● Buffers are either BUFFER_STATE_DIRTY or

 BUFFER_STATE_AVAILABLE
● You just don't know how many buffers you

need before running a job

 56

● Non-blocking shared message queue in

RayPlatform

 57

Best way to synchronize mini-
rank threads

● The best way is to do nothing at all !
● Non-blocking circular message queue
● Allows 1 consumer and 1 producer simultaneously
● Algorithms and concepts described by Kjell Hedström

http://www.codeproject.com/Articles/43510/Lock-Free-Single-Producer-Single-Consumer-Circular
● Source code for MessageQueue written from scratch

in RayPlatform (license: LGPL3)

http://www.codeproject.com/Articles/43510/Lock-Free-Single-Producer-Single-Consumer-Circular

 58

● Distributed storage engines

 59

Hash tables in RayPlatform

● Custom code: MyHashTable.h, MyHashTableGroup.h
● C++ template
● Sparse (Knuth model, 64 buckets / group)
● Distributed (DHT)
● Open addressing (double hashing)
● Double hashing has no clustering
● But is bad with CPU cache
● Incremental resizing

 60

Distributed storage engine

● Reads are distributed uniformily
● K-mers are distributed uniformily
● Only 1 of any 2 reverse complement k-mers

stored
● Annotations on objects (be it reads or k-mers)
● Virtual coloring of k-mers
● Compact edge representation (Simpson et al.

2009 Genome Research)

 61

Sequencing errors

● Bloom filter, 2 operations: hasItem?,
insertItem!

● No false negatives, few false positives
● In bioinformatics (Pell et al. PNAS 2012)
● Each Ray process has a Bloom filter
● Weeds out most of the k-mers occurring once

 62

Data structures

● “Bad programmers worry about the

code. Good programmers worry about

data structures and their relationships.”

-- Linus Torvalds

https://plus.google.com/u/0/+LinusTorvalds/posts

 63

Some results with Ray Meta

● All these results are on Colosse
● Round-trip in-application point-to-point latency

> 100 microseconds for 512-process jobs
● 3 000 000 000 reads from a 1000-bacterium

metagenome, 15 hours on 1024 cores
● 400 000 000 reads from 100-bacterium

metagenome, 14 hours, 128 cores
● Includes also k-mer based profiling (genome

abundance, taxonomy, gene ontology)

 64

Acknowledgements / Invitation

● Daniel Gruner (invitation and arrangements)
● Ramses van Zon (reviewed slides)

 65

Acknowledgements / Funding

● SB: Doctoral award, Canadian Institutes for Health
Research, September 2010 – August 2013

● Jacques Corbeil: Canada Research Chair in
Medical Genomics

● Discovery Grants Program (Individual, Team and
Subatomic Physics Project) from the Natural
Sciences and Engineering Research Council of
Canada (grant 262067 to François Laviolette)

 66

Acknowledgements / Product
team

● Sébastien Boisvert (designer, developer, release technician,
community manager)

● Élénie Godzaridis (parallel designs, works in the industry)
● Prof. François Laviolette (graph specialist)
● Prof. Jacques Corbeil (genomician)
● Maxime Boisvert (design tricks, consultant in the industry)
● Dr. Frédéric Raymond (end user / stakeholder)
● Pier-Luc Plante (intern)

 67

Acknowledgements / CPU time

● 2011: 50 core-years on Colosse
● 2012: 250 core-years on Colosse
● Compute Canada (Colosse, Mammouth Parallèle II,

Guillimin)
● Calcul Québec, CLUMEQ, RQCHP
● Canadian Foundation for innovation for the 32-core

128-GB SMP machine
● Collaboration with Cray Inc. for the Cray XE6 (with

Carlos Sosa)

 68

Questions and answers

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

