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Meta-data

● Invited by Daniel Gruner (SciNet, Compute Canada)
● https://support.scinet.utoronto.ca/courses/?q=node/95
● Start: 2012-11-26 14:00 End: 2012-11-26 16:00
● Seminar by Élénie Godzaridis, Sébastien Boisvert , 

developers of the parallel genome assembler "Ray".
● Location: SciNet offices at 256 McCaul Street, 

Toronto, 2nd Floor.

https://support.scinet.utoronto.ca/courses/?q=node/95


  

Introductions

● Who are we ?
● Sébastien: message passing, software 

development, biological systems, repeats in 
genomes, usability, scalability, correctness, 
open innovation, Linux

● Élénie: software engineering, blueprints, 
designs, books, biochemistry, life, rendering 
engines, geometry, web technologies, cloud, 
complex systems



  

Approximative contents

● Message passing
● Granularity
● Importance of having a framework
● How to achieve useful modularity at running time / compile time ?
● Important design patterns
● Distributed storage engines with MyHashTable
● Handle types: slave mode, master mode, message tag
● Handlers
● RayPlatform modular plugin architecture
● Pure MPI apps are not good enough, need threads too
● Mini-ranks
● Buffer management in RayPlatform
● Non-blocking shared message queue in RayPlatform



  

● Problem definition



  

Why bother with DNA ?

License: AttributionNoncommercialShare Alike Some rights reserved by e acharya 



  

de novo genome assembly

License:    AttributionNoncommercialNo Derivative Works Some rights reserved by jugbo 



  

Why is it hard to parallelize ?

● Each piece is important for the big picture
● Not embarrassingly parallel
● Approach: have an army of actors working 

together by sending messages
● Each actor owns a subset of the pieces
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de Bruijn graphs in 
bioinformatics

● Alphabet: {A,T,C,G}, word length: k
● Vertices V = {A,T,C,G}^k
● Edges are a subset of V x V
● (u,v) is an edge if the last k-1 symbols of u are the first k-1 

symbols of v
● Exemple: ATCGA -> TCGAT
● In genomics, we use a de Bruijn subgraph using k-mers for 

vertices and (k+1)-mers for edges
● k-mers and (k+1)-mers are sampled from data
● Idury & Waterman 1995 Journal of Computational Biology
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Why is assembly hard ?

● Arrival rate of reads is not perfect
● DNA sequencing theory
● Lander & Waterman (1988) Genomics 2 (3): 

231–239. 

Professor E. Lander 
(Photo: Wikipedia)

Professor M. Waterman 
(Photo: Wikipedia)



  

● Granular run-time profiles on Blue Gene/Q
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Latency matters

● To build the graph for the dataset SRA000271 
(human genome, 4 * 10^9 reads), with 512 
processes
– 159 min when average latency is 65 us (Colosse)

– 342 min when average latency is 260 us 
(Mammouth)

● 4096 processing elements, Cray XE6, round-
trip latency in application -> 20-30 
microseconds (Carlos Sosa, Cray Inc.)
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Building the distributed de Bruijn 
graph

● metagenome
● sample SRS011098
● 202 * 10^6 reads
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Overall (SRS011098)



  

● Message passing



  Olga the crab (Uca pugilator)
Photo: Sébastien Boisvert, License: Attribution 2.0 Generic (CC BY 2.0) 

Message passing for the layman
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Message passing with MPI

● MPI 3.0 contains a lot of things
● Point-to-point communication (two-sided)
● RDMA (one-sided communication)
● Collectives
● MPI I/O
● Custom communicators
● Many other features
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MPI provides a flat world

Figure 1: The MPI programming model.            +--------------------+
            |   MPI_COMM_WORLD   |           MPI communicator

            +---------+----------+
                      |    +------+------+---+--+------+------+

    |      |      |      |      |      |

  +---+  +---+  +---+  +---+  +---+  +---+ 

  | 0 |  | 1 |  | 2 |  | 3 |  | 4 |  | 5 |    MPI ranks

  +---+  +---+  +---+  +---+  +---+  +---+
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Point-to-point versus collectives

● With point-to-point, the dialogue is local 
between two folks

● Collectives are like meetings – not productive 
when too many of them

● Collectives are not scalable
● Point-to-point is scalable



  

● Granularity
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Granularity

● Standard sum from 1 to 1000
● Granular version: sum 1 to 10 on the first call, 

11 to 20 on the second, and so on
● Many calls are required to complete
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● From programming models to frameworks
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Parallel programming models

● 1 process with many kernel threads on 1 
machine

● Many processes with IPC (interprocess 
communication)

● Many processes with MPI (message passing 
interface)
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MPI is low level

● Message passing does not structure a 
program

● Needs a framework
● Should be modular
● Should be easy to extend
● Should be easy to learn and understand
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● How to achieve useful modularity at running 

time / compile time ?
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Model #1 for message passing

● 2 kernel threads per process (1 for busy 
waiting for communication and 1 for 
processing)

● Cons: 
– not lock-free

– prone to programming errors

– Half of the cores busy wait (unless they sleep)
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Model #2 for message passing

● 1 single kernel thread per process
● Comm. and processing interleaved
● Con:

– Needs granular code everywhere !

● Pros
– Efficient

– Lock-free (less bugs)
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Models for task splitting

● Model 1: separated duties
● Some processes are data stores (80%)
● Some processes are algorithm runners (20%)
● Con:

– Data store processes do nothing when nobody 
speak to them

– Possibly unbalanced
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Models for task splitting

● Model 2: everybody is the same
● Every process has the same job to do
● But with different data
● One of the processes is also a manager (usually 

# 0)
● Pros

– Balanced

– All the cores work equally
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Memory models

● 1. Standard: 1 local virtual address space per 
process

● 2. Global arrays (distributed address space)
– Pointer dereference can generate a payload on the 

network

● 3. Data ownership
– Message passing

– DHTs (distributed hash tables)

– DHTs are nice because the distribution is uniform
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● RayPlatform modular plugin architecture
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RayPlatform

● Each process has: inbox, outbox
● Only point-to-point
● Modular plugin architecture
● Each process is a state machine
● The core allocates: 

– Message tag handles

– Slave mode handles

– Master mode handles

● Associate behaviour to these handles
● GNU Lesser General Public License, version 3
● https://github.com/sebhtml/RayPlatform

https://github.com/sebhtml/RayPlatform
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● Important design patterns
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● State
● Strategy
● Adapter
● Facade
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● Handlers
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Definitions

● Handle: opaque label
● Handler: behaviour associated to an event
● Plugin: orthogonal module of the software
● Adapter: binds two things that can not know 

each other
● Core: the kernel
● Handler table: tells which handler to use with any 

handle
● Handler table is like interruption table
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● Handle types: slave mode, master mode, 

message tag
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State machine

● A machine with states
● Behaviour guided by its states
● Each process is a state machine
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Main loop

● while(isAlive()){

    receiveMessages();
    processMessages();

    processData();
    sendMessages();

}
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Virtual processor (VP)

● Problem: kernel threads have a overhead, but 
● Solution: thread pools retain the benefits of 

fast task-switching
– each process has many user space threads 

(workers) that push messages

● The operating system is not aware of workers 
(user space threads)
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Virtual communicator (VC)

● Problem: sending many small messages is 
costly

● Solution: aggregate them transparently
● Workers push messages on the VC
● The VC pushes bigger messages in the outbox
● Workers are user space threads
● States: Runnable, Waiting, Completed 
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Regular complete graph and 
routes

Image by: Alain Matthes — al.ma@mac.com

Complete graph for MPI communication is a 
bad idea !
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Virtual message router

● Problem: any-to-any communication pattern 
can be bad

● Solution: fit the pattern on a better graph
● 5184 processes -> 26873856 comm. edges ! 

(diameter: 1)
● With surface of regular convex polytope: 5184 

vertices, 736128 edges, degree: 142, 
diameter: 2
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Profiling is understanding

● RayPlatform has its own real-time profiler
● Reports messages sent/received, current 

slave mode at every 100 ms quantum
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Example

● Rank 0: RAY_SLAVE_MODE_ADD_VERTICES Time= 4.38 s 
Speed= 74882 Sent= 51 (processMessages: 28, processData: 
23) Received= 52 Balance= -1

Rank 0 received in receiveMessages:

Rank 0        RAY_MPI_TAG_VERTICES_DATA 28

Rank 0        RAY_MPI_TAG_VERTICES_DATA_REPLY   24

Rank 0 sent in processMessages:

Rank 0        RAY_MPI_TAG_VERTICES_DATA_REPLY   28

Rank 0 sent in processData:

Rank 0        RAY_MPI_TAG_VERTICES_DATA 23
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● Pure MPI apps are not good enough, need 

threads too
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Routing with regular polytopes

● Polytopes are still bad
● all MPI processes on a 

machine talk to the 
Host Communication 
Adapter

● Threads ?

Image: Wikipedia
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● Mini-ranks
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Roadblocks with MPI processes

● The IBM PowerPC A2 may be*** better at 
scheduling 16 processes with 4 threads each 
than scheduling 64 processes

*** Hypothesis
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Hierarchical message distribution systems
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Mini-ranks hybrid programming 
model

Figure 2: The MPI programming model, with mini ranks.

            +--------------------+
            |   MPI_COMM_WORLD   |           MPI communicator
            +---------+----------+
                      |
    +------+------+---+--+------+------+
    |      |      |      |      |      |
  +---+  +---+  +---+  +---+  +---+  +---+ 
  | 0 |  | 1 |  | 2 |  | 3 |  | 4 |  | 5 |  MPI ranks (1 RankProcess.cpp instance per rank)
  +---+  +---+  +---+  +---+  +---+  +---+     with the thread from main() for  MPI calls
  |   |  |   |  |   |  |   |  |   |  |   |
  | 0 |  | 4 |  | 8 |  |12 |  |16 |  |20 |  |                
  | 1 |  | 5 |  | 9 |  |13 |  |17 |  |21 |  | => mini-ranks, in pthreads
  | 2 |  | 6 |  |10 |  |14 |  |18 |  |22 |  |
  | 3 |  | 7 |  |11 |  |15 |  |19 |  |23 |  |  (1 MiniRank.cpp instance per minirank, 
  |   |  |   |  |   |  |   |  |   |  |   |  |   1 Application running with its RayPlatform 
                                                                      ComputeCore.cpp)

This hybrid model was devised by Sébastien Boisvert, Fangfang Xia and Rick 
Stevens.
It is implemented in RayPlatform and a manuscript is in preparation
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-mini-ranks-per-rank

● In pure MPI mode:
mpiexec -n 2400 \
MyApplication ...             => 2400 MPI processes

● In mini-ranks mode:
mpiexec -n 100 -bynode \
MyApplication -mini-ranks-per-rank 23 ...

     => 100 MPI processes, 23 threads per MPI process for mini-   
          ranks, the control thread of main() does MPI calls

● RayPlatform runtime engine will pick up “-mini-ranks-per-rank” 
and do its magic
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● Buffer management in RayPlatform
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●Amortized buffer management 

● Needs to know when space in the ring buffer 
given to MPI_Isend can be reused

● Amortized management of dirty buffers
● Buffers are either BUFFER_STATE_DIRTY or 

 BUFFER_STATE_AVAILABLE
● You just don't know how many buffers you 

need before running a job
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● Non-blocking shared message queue in 

RayPlatform
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Best way to synchronize mini-
rank threads

● The best way is to do nothing at all !
● Non-blocking circular message queue
● Allows 1 consumer and 1 producer simultaneously
● Algorithms and concepts described by Kjell Hedström

http://www.codeproject.com/Articles/43510/Lock-Free-Single-Producer-Single-Consumer-Circular
● Source code for MessageQueue written from scratch 

in RayPlatform (license: LGPL3)

http://www.codeproject.com/Articles/43510/Lock-Free-Single-Producer-Single-Consumer-Circular
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● Distributed storage engines
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Hash tables in RayPlatform

● Custom code: MyHashTable.h, MyHashTableGroup.h
● C++ template
● Sparse (Knuth model, 64 buckets / group)
● Distributed (DHT)
● Open addressing (double hashing)
● Double hashing has no clustering 
● But is bad with CPU cache
● Incremental resizing
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Distributed storage engine

● Reads are distributed uniformily
● K-mers are distributed uniformily
● Only 1 of any 2 reverse complement k-mers 

stored
● Annotations on objects (be it reads or k-mers)
● Virtual coloring of k-mers
● Compact edge representation (Simpson et al. 

2009 Genome Research)
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Sequencing errors

● Bloom filter, 2 operations: hasItem?, 
insertItem!

● No false negatives, few false positives
● In bioinformatics (Pell et al. PNAS 2012)
● Each Ray process has a Bloom filter
● Weeds out most of the k-mers occurring once
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Data structures

● “Bad programmers worry about the

code. Good programmers worry about

data structures and their relationships.”

-- Linus Torvalds

https://plus.google.com/u/0/+LinusTorvalds/posts
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Some results with Ray Meta

● All these results are on Colosse
● Round-trip in-application point-to-point latency 

> 100 microseconds for 512-process jobs
● 3 000 000 000 reads from a 1000-bacterium 

metagenome, 15 hours on 1024 cores
● 400 000 000 reads from 100-bacterium 

metagenome, 14 hours, 128 cores
● Includes also k-mer based profiling (genome 

abundance, taxonomy, gene ontology)
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Questions and answers
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