
(word cloud of all the MPI hydro code written for this course: http://www.wordle.net)

An introduction to MPI

http://www.wordle.net
http://www.wordle.net

• Not built in to compiler

• Function calls that can be
made from any compiler,
many languages

• Just link to it

• Wrappers: mpicc, mpif77

MPI is a Library for
 Message-Passing

Fortran

C

MPI is a Library for
 Message-Passing

• Communication/coordination
between tasks done by
sending and receiving
messages.

• Each message involves a
function call from each of the
programs.

CPU1

CPU2

CPU3

CPU0

MPI is a Library for
 Message-Passing

• Three basic sets of
functionality:

• Pairwise communications via
messages

• Collective operations via
messages

• Efficient routines for getting
data from memory into
messages and vice versa

CPU1

CPU2

CPU3

CPU0

Messages
• Messages have a sender and

a receiver

• When you are sending a
message, don’t need to specify
sender (it’s the current
processor),

• A sent message has to be
actively received by the
receiving process

CPU1 CPU3

count of MPI_SOMETYPE

tag

Messages
• MPI messages are a string of

length count all of some
fixed MPI type

• MPI types exist for
characters, integers, floating
point numbers, etc.

• An arbitrary integer tag is
also included - helps keep
things straight if lots of
messages are sent.

CPU1 CPU3

count of MPI_SOMETYPE

tag

Size of MPI
Library

• Many, many functions (>200)

• Not nearly so many concepts

• We’ll get started with just
10-12, use more as needed.

MPI_Init()
MPI_Comm_size()
MPI_Comm_rank()
MPI_Ssend()
MPI_Recv()
MPI_Finalize()

Hello World
• The obligatory starting point

• cd ~/ppp/mpi-intro

• Type it in, compile and run it
together

Fortran

edit hello-world.c or .f90
$ mpif90 hello-world.f90
 -o hello-world
or
$ mpicc hello-world.c
 -o hello-world
$ mpirun -np 1 hello-world
$ mpirun -np 2 hello-world
$ mpirun -np 8 hello-world

C

What mpicc/
mpif77 do

• Just wrappers for the system
C, Fortran compilers that have
the various -I, -L clauses in
there automaticaly

• -v option (sharcnet) or
--showme (OpenMPI) shows
which options are being used

$ mpicc --showme hello-world.c
-o hello-world

gcc -I/usr/local/include
 -pthread hello-world.c -o
hello-world -L/usr/local/lib
-lmpi -lopen-rte -lopen-pal
-ldl -Wl,--export-dynamic -lnsl
-lutil -lm -ldl

What mpirun
does

• Launches n processes, assigns
each an MPI rank and starts
the program

• For multinode run, has a list of
nodes, ssh’s to each node and
launches the program

ssh node1

ssh node2

ssh node3

hello-world

hello-world

hello-world

hello-world

Number of
Processes

• Number of processes to use is
almost always equal to the
number of processors

• But not necessarily.

• On your nodes, what happens
when you run this?

$ mpirun -np 24 hello-world

mpirun runs
any program

• mpirun will start that process-
launching procedure for any
progam

• Sets variables somehow that
mpi programs recognize so
that they know which process
they are

$ hostname
$ mpirun -np 4 hostname
$ ls
$ mpirun -np 4 ls

make
• Make builds an executable from a

list of source code files and rules

• Many files to do, of which order
doesn’t matter for most

• Parallelism!

• make -j N - launches N
processes to do it

• make -j 2 often shows speed
increase even on single processor
systems

$ make
$ make -j 2
$ make -j

Overlapping
Computation with I/O

P=1 Get file1.c Write file1.o file2.c file2.oCompile Compile

P=2
Get file1.c Write file1.oCompile

file2.c file2.oCompile

What the code
does

• (FORTRAN version; C is similar)

use mpi : imports declarations for MPI
function calls

call MPI_INIT(ierr):
initialization for MPI library.
Must come first.
ierr: Returns any error code.

call MPI_FINALIZE(ierr):
close up MPI stuff.
Must come last.
ierr: Returns any error code.

call MPI_COMM_RANK,
call MPI_COMM_SIZE:

requires a little more exposition.

Communicators

• MPI groups processes into
communicators.

• Each communicator has some
size -- number of tasks.

• Each task has a rank 0..size-1

• Every task in your program
belongs to
MPI_COMM_WORLD

0

1

2

3
MPI_COMM_WORLD:

size=4, ranks=0..3

Communicators
• Can create our own

communicators over the same
tasks

• May break the tasks up into
subgroups

• May just re-order them for
some reason

0

1

2

3

MPI_COMM_WORLD:
size=4, ranks=0..3

2

0

1

new_comm
size=3, ranks=0..2

call MPI_COMM_RANK,
call MPI_COMM_SIZE:

get the size of communicator,
the current tasks’s rank within
communicator.

put answers in rank and
size

Rank and Size much
more important in
MPI than OpenMP

• In OpenMP, compiler assigns
jobs to each thread; don’t
need to know which one you
are.

• MPI: processes determine
amongst themselves which
piece of puzzle to work on,
then communicate with
appropriate others.

rank = 1

rank = 2

rank = 3

rank = 0

C Fortran

• #include <mpi.h> vs use mpi

• C - functions return ierr;

• Fortran - pass ierr

• MPI_Init

Our first real
MPI program
- but no Ms

are P’ed!
• Let’s fix this

• mpicc -o firstmessage
firstmessage.c

• mpirun -np 2 ./firstmessage

• Note: C - MPI_CHAR

Fortran
version

• Let’s fix this

• mpif90 -o
firstmessage
firstmessage.f90

• mpirun -np 2 ./
firstmessage

• FORTRAN -
MPI_CHARACTER

MPI_Status status;

ierr = MPI_Ssend(sendptr, count, MPI_TYPE, destination,
 tag, Communicator);

ierr = MPI_Recv(rcvptr, count, MPI_TYPE, source, tag,
 Communicator, status);

C - Send and Receive

integer status(MPI_STATUS_SIZE)

call MPI_SSEND(sendarr, count, MPI_TYPE, destination,
 tag, Communicator)

call MPI_RECV(rcvarr, count, MPI_TYPE, source, tag,
 Communicator, status, ierr)

Fortran - Send and Receive

Special Source/Dest:
MPI_PROC_NULL

MPI_PROC_NULL basically ignores the relevant
operation; can lead to cleaner code.

Special Source:
 MPI_ANY_SOURCE

MPI_ANY_SOURCE is a wildcard; matches any source
when receiving.

More
complicated

example:
• Let’s look at

secondmessage.f90,
secondmessage.c

More
complicated

example:
• Let’s look at

secondmessage.f90,
secondmessage.c

Compile and
run

• mpi{cc,f90} -o secondmessage
secondmessage.{c,f90}

• mpirun -np 4 ./secondmessage

$ mpirun -np 4 ./secondmessage
3: Sent 9.000000 and got 4.000000
0: Sent 0.000000 and got -999.000000
1: Sent 1.000000 and got 0.000000
2: Sent 4.000000 and got 1.000000

0 1 2

“Hello” “Hello”

0 1 2

“Hello” “Hello”

“Hello”Implement
periodic boundary

conditions
• cp secondmessage.{c,f90}

thirdmessage.{c,f90}

• edit so it `wraps around’

• mpi{cc,f90} thirdmessage.
{c,f90} -o thirdmessage

• mpirun -np 3 thirdmessage

0 1 2

Send Send
0 1 2

Send RecvSend

0 1 2

RecvSend

0 1 2

0 1 2

Send Send

Send

0,1,2

0 1 2

Send Send

Send

Deadlock
• A classic parallel bug

• Occurs when a cycle of tasks
are for the others to finish.

• Whenever you see a closed
cycle, you likely have (or risk)
deadlock.

Big MPI
Lesson #1

All sends and receives must be paired, at
time of sending

Different
versions of

SEND
• SSEND: safe send; doesn’t

return until receive has
started. Blocking, no buffering.

• SEND: Undefined. Blocking,
probably buffering

• ISEND : Unblocking, no
buffering

• IBSEND: Unblocking, buffering

Send

System buffer

Buffering

(Non) Blocking

Buffering is
dangerous!

• Worst kind of danger: will
usually work.

• Think voice mail; message
sent, reader reads when ready

• But voice mail boxes do fill

• Message fails.

• Program fails/hangs
mysteriously.

• (Can allocate your own
buffers)

Send

System buffer

Buffering

Without using new MPI
routines, how can we fix

this?

• First: evens send, odds receive

• Then: odds send, evens receive

• Will this work with an odd # of processes?

• How about 2? 1?

0 1

Send Recv

2

Send

3

Recv

0 1

SendRecv

2

Send

3

Recv

Evens send first

Then odds

fourthmessage.f90

Evens send first

Then odds

fourthmessage.c

• A blocking send and
receive built in together

• Lets them happen
simultaneously

• Can automatically pair
the sends/recvs!

• dest, source does not
have to be same; nor do
types or size. fifthmessage.c

Something
new: Sendrecv

• A blocking send and
receive built in together

• Lets them happen
simultaneously

• Can automatically pair
the sends/recvs!

• dest, source does not
have to be same; nor do
types or size. fifthmessage.f90

Something
new: Sendrecv

MPI_Status status;

ierr = MPI_Sendrecv(sendptr, count, MPI_TYPE, destination,tag,
 recvptr, count, MPI_TYPE, source, tag,
 Communicator, &status);

integer status(MPI_STATUS_SIZE)

call MPI_SENDRECV(sendptr, count, MPI_TYPE, destination,tag,
 recvptr, count, MPI_TYPE, source, tag,
 Communicator, status, ierr)

C syntax

FORTRAN syntax

Sendrecv = Send + Recv

Send Args

Recv Args

Why are there two different tags/types/counts?

Min, Mean, Max
of numbers

• Lets try some code that calculates
the min/mean/max of a bunch of
random numbers -1..1. Should go
to -1,0,+1 for large N.

• Each gets their partial results and
sends it to some node, say node 0
(why node 0?)

• ~/ppp/mpi-intro/minmeanmax.
{c,f90}

• How to MPI it?

(min,mean,max)2

(min,mean,max)1

(min,mean,max)0

(min,mean,max)2

(min,mean,max)1

(min,mean,max)0

minmeanmax-mpi.f90

Q: are these sends/recvd
adequately paired?

(min,mean,max)2

(min,mean,max)1

(min,mean,max)0

minmeanmax-mpi.c

Q: are these sends/recvd
adequately paired?

Inefficient!

• Requires (P-1) messages, 2
(P-1) if everyone then needs
to get the answer.

sum1
sum2
sum3

sum1
sum2
sum3

sum1
sum2
sum3

CPU1 CPU2 CPU3

total total total

+ + +

Better
Summing

• Pairs of processors; send
partial sums

• Max messages received log2(P)

• Can repeat to send total back

sum1

CPU1 CPU2 CPU3

sum2

sum1+
sum2

sum3

CPU4

sum4

sum3+
sum4

sum1+
sum2+
sum3+
sum4=
total

Reduction; works for
a variety of operators

(+,*,min,max...)

Tcomm = 2 log2(P)Ccomm

minmeanmax-allreduce.f

MPI_Reduce and
MPI_Allreduce

Performs a reduction
and sends answer to

one PE (Reduce)
or all PEs (Allreduce)

Collective
Operations

• As opposed to the pairwise
messages we’ve seen

• All processes in the
communicator must
participate

• Cannot proceed until all have
participated

• Don’t necessarily know what
goes on ‘under the hood’

CPU 1

CPU 2

CPU 3

CPU 0

1d diffusion
equation

cp -R ~ljdursi/ppp/diffusion .
cd diffusion
make diffusionf or make diffusionc
./diffusionf or ./diffusionc

Discretizing
Derivatives

• Done by finite differencing the
discretized values

• Implicitly or explicitly involves
interpolating data and taking
derivative of the interpolant

• More accuracy - larger
‘stencils’

i-2 i-1 i i+1 i+2

+1 -2 +1

d2Q

dx2

����
i

≈ Qi+1 − 2Qi + Qi−1

∆x2

Diffusion
Equation

• Simple 1d PDE

• Each timestep, new data for
T[i] requires old data for
T[i+1], T[i],T[i-1]

∂T

∂t
= D

∂2T

∂x2

∂T (n)
i

∂t
≈ T (n)

i + T (n−1)
i

∆t

∂T (n)
i

∂x
≈

T (n)
i+1 − 2T (n)

i + T (n)
i−1

∆x2

T (n+1)
i ≈ T (n)

i +
D∆t

∆x2

�
T (n)

i+1 − 2T (n)
i + T (n)

i−1

�

Guardcells
• How to deal with boundaries?

• Because stencil juts out, need
information on cells beyond
those you are updating

• Pad domain with ‘guard cells’
so that stencil works even for
the first point in domain

• Fill guard cells with values
such that the required
boundary conditions are met

Global Domain

0 1 2 3 4 5 6 7

ng = 1
loop from ng, N - 2 ng

Domain
Decomposition http://www.uea.ac.uk/cmp/research/cmpbio/

Protein+Dynamics,+Structure+and+Function

http://sivo.gsfc.nasa.gov
/cubedsphere_comp.html

http://adg.stanford.edu/aa241
/design/compaero.html

http://www.cita.utoronto.ca/~dubinski
/treecode/node8.html

• A very common approach to
parallelizing on distributed
memory computers

• Maintain Locality; need local
data mostly, this means only
surface data needs to be sent
between processes.

http://www.uea.ac.uk/cmp/research/cmpbio/Protein+Dynamics,+Structure+and+Function
http://www.uea.ac.uk/cmp/research/cmpbio/Protein+Dynamics,+Structure+and+Function
http://www.uea.ac.uk/cmp/research/cmpbio/Protein+Dynamics,+Structure+and+Function
http://www.uea.ac.uk/cmp/research/cmpbio/Protein+Dynamics,+Structure+and+Function
http://sivo.gsfc.nasa.gov/cubedsphere_comp.html
http://sivo.gsfc.nasa.gov/cubedsphere_comp.html
http://sivo.gsfc.nasa.gov/cubedsphere_comp.html
http://sivo.gsfc.nasa.gov/cubedsphere_comp.html
http://adg.stanford.edu/aa241/design/compaero.html
http://adg.stanford.edu/aa241/design/compaero.html
http://adg.stanford.edu/aa241/design/compaero.html
http://adg.stanford.edu/aa241/design/compaero.html
http://www.cita.utoronto.ca/~dubinski/treecode/node8.html
http://www.cita.utoronto.ca/~dubinski/treecode/node8.html
http://www.cita.utoronto.ca/~dubinski/treecode/node8.html
http://www.cita.utoronto.ca/~dubinski/treecode/node8.html

Implement a
diffusion

equation in MPI
• Need one neighboring number

per neighbor per timestep

dT

dt
= D

d2T

dx2

Tn+1
i = Tn

i +
D∆t

∆x2

�
Tn

i+1 − 2Tn
i + Tn

i−1

�

Guardcells
• Works for parallel

decomposition!

• Job 1 needs info on Job 2s 0th
zone, Job 2 needs info on Job
1s last zone

• Pad array with ‘guardcells’ and
fill them with the info from the
appropriate node by message
passing or shared memory

• Hydro code: need guardcells 2
deep

n-4 n-3 n-2 n-1 n

-1 0 1 2 3

Global Domain

Job 1

Job 2

• Do computation

• guardcell exchange: each cell has to do 2 sendrecvs

• its rightmost cell with neighbors leftmost

• its leftmost cell with neighbors rightmost

• Everyone do right-filling first, then left-filling (say)

• For simplicity, start with periodic BCs

• then (re-)implement fixed-temperature BCs;
temperature in first, last zones are fixed

n-4 n-3 n-2 n-1 n

-1 0 1 2 3

Job 1

Job 2

Hands-on:
MPI diffusion

• cp diffusionf.f90 diffusionf-
mpi.f90 or

• cp diffusionc.c diffusionc-mpi.c
or

• Make an MPI-ed version of
diffusion equation

• (Build: make diffusionf-mpi
or make diffusionc-mpi)

• Test on 1..8 procs

• add standard MPI calls: init, finalize,
comm_size, comm_rank

• Figure out how many points PE is
responsible for (~totpoints/size)

• Figure out neighbors

• Start at 1, but end at totpoints/size

• At end of step, exchange guardcells;
use sendrecv

• Get total error

C syntax
MPI_Status status;

ierr = MPI_Init(&argc, &argv);
ierr = MPI_Comm_{size,rank}(Communicator, &{size,rank});
ierr = MPI_Send(sendptr, count, MPI_TYPE, destination,
 tag, Communicator);
ierr = MPI_Recv(rcvptr, count, MPI_TYPE, source, tag,
 Communicator, &status);
ierr = MPI_Sendrecv(sendptr, count, MPI_TYPE, destination,tag,
 recvptr, count, MPI_TYPE, source, tag,
 Communicator, &status);
ierr = MPI_Allreduce(&mydata, &globaldata, count, MPI_TYPE,
 MPI_OP, Communicator);

Communicator -> MPI_COMM_WORLD
MPI_Type -> MPI_FLOAT, MPI_DOUBLE, MPI_INT, MPI_CHAR...
MPI_OP -> MPI_SUM, MPI_MIN, MPI_MAX,...

FORTRAN syntax

integer status(MPI_STATUS_SIZE)

call MPI_INIT(ierr)
call MPI_COMM_{SIZE,RANK}(Communicator, {size,rank},ierr)
call MPI_SSEND(sendarr, count, MPI_TYPE, destination,
 tag, Communicator)
call MPI_RECV(rcvarr, count, MPI_TYPE, destination,tag,
 Communicator, status, ierr)
call MPI_SENDRECV(sendptr, count, MPI_TYPE, destination,tag,
 recvptr, count, MPI_TYPE, source, tag,
 Communicator, status, ierr)
call MPI_ALLREDUCE(&mydata, &globaldata, count, MPI_TYPE,
 MPI_OP, Communicator, ierr)

Communicator -> MPI_COMM_WORLD
MPI_Type -> MPI_REAL, MPI_DOUBLE_PRECISION,
 MPI_INTEGER, MPI_CHARACTER
MPI_OP -> MPI_SUM, MPI_MIN, MPI_MAX,...

Non-blocking
communications

Diffusion: Had to
wait for

communications to
compute

• Could not compute end
points without guardcell data

• All work halted while all
communications occurred

• Significant parallel overhead

n-4 n-3 n-2 n-1 n

-1 0 1 2 3

Global Domain

Job 1

Job 2

Diffusion: Had to
wait?

• But inner zones could have
been computed just fine

• Ideally, would do inner zones
work while communications is
being done; then go back and
do end points.

n-4 n-3 n-2 n-1 n

-1 0 1 2 3

Global Domain

Job 1

Job 2

Nonblocking
Sends

• Allows you to get work done while
message is ‘in flight’

• Must not alter send buffer until send
has completed.

• C: MPI_Isend(void *buf, int
count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm
comm, MPI_Request *request)

• FORTRAN: MPI_ISEND(BUF,INTEGER
COUNT,INTEGER DATATYPE,INTEGER
DEST,INTEGER TAG, INTEGER COMM,
INTEGER REQUEST,INTEGER IERROR)

work..

work...

MPI_Isend(...)

Nonblocking
Recv

• Allows you to get work done while
message is ‘in flight’

• Must not access recv buffer until recv
has completed.

• C: MPI_Irecv(void *buf, int
count, MPI_Datatype datatype,
int source, int tag, MPI_Comm
comm, MPI_Request *request)

• FORTRAN: MPI_IREV(BUF,INTEGER
COUNT,INTEGER DATATYPE,INTEGER
SOURCE,INTEGER TAG, INTEGER
COMM, INTEGER REQUEST,INTEGER
IERROR) work..

work...

MPI_Irecv(...)

How to tell if message is
completed?

• int MPI_Wait(MPI_Request *request,MPI_Status
*status);

• MPI_WAIT(INTEGER REQUEST,INTEGER STATUS
(MPI_STATUS_SIZE),INTEGER IERROR)

• int MPI_Waitall(int count,MPI_Request
*array_of_requests, MPI_Status
*array_of_statuses);

• MPI_WAITALL(INTEGER COUNT,INTEGER ARRAY_OF_
REQUESTS(*),INTEGER ARRAY_OF_STATUSES
(MPI_STATUS_SIZE,*),INTEGER IERROR)

Also: MPI_Waitany, MPI_Test...

Hands On
• In diffusion directory, cp diffusion{c,f}-mpi.{c,f90} to

diffusion{c,f}-mpi-nonblocking.{c,f90}

• Change to do non-blocking IO; post sends/recvs, do
inner work, wait for messages to clear, do end points

