
Intel Xeon Phi

SNUG TechTalk

SciNet
www.scinet.utoronto.ca
University of Toronto

Toronto, Canada

February 12, 2014

Outline

1 Hardware

2 Software

3 Summary

Xeon Phi

http://www.intel.com

Xeon Phi

What is it?

Intel x86 based Accelerator/Co-processor

Many Integrated Cores (MIC) Architecture

Large number of low-powered, but low cost (computational
overhead, power, size, monetary cost) processors (pentiums).

Heterogeneous computing: Host and Phi can work together
on the problem.

Xeon Phi 5110P

60 cores @ 1.053GHz

8 GB memory

4-way SMT

PCIe Gen2 bus connectivity

Runs linux onboard

Xeon Phi

What is it?

Intel x86 based Accelerator/Co-processor

Many Integrated Cores (MIC) Architecture

Large number of low-powered, but low cost (computational
overhead, power, size, monetary cost) processors (pentiums).

Heterogeneous computing: Host and Phi can work together
on the problem.

Xeon Phi 5110P

60 cores @ 1.053GHz

8 GB memory

4-way SMT

PCIe Gen2 bus connectivity

Runs linux onboard

History

http://www.intel.com

History

History

Larrabee (concept video card design)

Knights ferry (MIC development platform)

32 core, 2GB
∼ 750 GFlops SP

Knights corner (Xeon Phi)

60 core, 8/16GB
∼ 1 TFlops DP

Knights landing (NextGen 2015)

72 core, upto 384GB
∼ 3 TFlops DP
native processor
storm lake interconnect

Compute Canada Xeon Phi Resources

SciNet - ArcX

1 node (1 x 8-core Sandybridge Xeon, 32GB)

1 x Intel Xeon Phi 3120A (57 1.1 GHz cores and 6GB)

qsub -l nodes=1:ppn=8,walltime=2:00:00 -q arcX -I

module load intel/14.0.1 intelmpi/4.1.2.040

Calcu Quebec - Guillimin

50 nodes (2 x 8-core Intel Sandy Bridge Xeon, 64GB)

2 x Intel Xeon Phi 5110P (60 1.053GHz cores and 8GB)

1 Hardware

2 Software

3 Summary

Software Stack

http://www.intel.com

Programming

Languages

C, C++, Fortran

MPI, OpenMP 4.0, OpenCL

TBB, Cilk+

Tools

Intel Compilers (icc, icpc, ifort)

Intel MPI

Intel Tools (VTune, Advisor, Inspector, etc.)

Programming

Languages

C, C++, Fortran

MPI, OpenMP 4.0, OpenCL

TBB, Cilk+

Tools

Intel Compilers (icc, icpc, ifort)

Intel MPI

Intel Tools (VTune, Advisor, Inspector, etc.)

Phi Operating Modes

Single Node Operating Modes

Native

Compile and run native on the phi only
Cross compile with -mmic option
Login and run using ssh mic0 or using micnatveloadex

Offload

Compile and run on Host, with offload to Phi
More flexible, but heterogeneous computing
Device and Host memory not accessible to each other so data
copies required
Similar to GPU accelerator model

Phi Operating Modes

MPI Operating Modes

Native

Compile and run native on the phi only
Limited to single phi

Symmetric

MPI processes run on both the CPU and the Xeon Phi
Load balancing required

Offload

Host to Host with MPI, use Host offload to Phi
i.e. Heterogenous/Hybrid code design
Most likely design for large salable codes

File System on Phi

Phi and the SciNet Filesystem

Phi $HOME is /localscratch/$HOME, mounted from arc09

Can be useful for development, but performance is in general
not very good

Minimize direct native data transfers from Phi
(i.e. do your I/O on the host)

Examples: Native OpenMP

Cross compile a standard OpenMP code on host

$module load intel/14.0.1
$icc -o omp.MIC -mmic -openmp omp.c

Run using ssh

$cp omp.MIC cd /localscratch/$HOME
$ssh mic0
$export OMP NUM THREADS=60
$export LD LIBRARY PATH=
/home/scinet/intel/composer xe 2013 sp1.0.080/compiler/lib/mic
$./omp.MIC

Run using micnativeloadex

$micnativeloadex omp.MIC -e ”OMP NUM THREADS=60”

Example: Offload with OpenMP

Programmer specified parts are ’offloaded’ to the device

#pragma offload target(mic:0)

Declare device variables

#pragma offload attribute(push, target(mic))
static float *indata, *outdata;
#pragma offload attribute(pop)

Data movement to/from host/device

#pragma offload target(mic:0) \
in(indata:length(size)) \
out(outdata:length(size))

Example: Offload with OpenMP
Code

#define SIZE=10000

//device memory }

#pragma offload_atribute(push, target(mic))

static float *indata, *outdata;

#pragma offload_attribute(pop)

//device code

__attribute__((target(mic))) void devicework(float *in, float *out)

int i;

#pragma omp parallel for shared(out,in) private(i)

for (i=0; i <SIZE; i++) {

out[i] = sqrt(in[i]);

}

Example: Offload with OpenMP
Code - continued

int main(int argc, char* argv[]) {

indata = (float*)malloc(SIZE*sizeof(float));

outdata = (float*)malloc(SIZE*sizeof(float));

for (i = 0; i < SIZE; i++) {

indata[i] = (float) (i*i);

outdata[i] = 0.0;

}

for(i = 0; i < 100; i++){

#pragma offload target(mic:0) \

in(indata:length(SIZE)) \

out(outdata:length(SIZE))

devicework(indata,outdata)

}

free(indata); free(outdata);

return 0;

}

Example: Offload with OpenMP

Compile as host code

$ icc -o offload -openmp offload.c

Run natively

$export MIC OMP NUM THREADS=4
$./offload

For more offload details set

$export OFFLOAD REPORT=3

Offload with OpenMP

Memory Persistence

Data transfers are expensive and should be minimized

By default variables are allocated at beginning of offload
segment, and free’d at the end

However, data can persist on the device between offload
segments

Example: Offload with OpenMP
Code: memory fixed

\\after initialized data

#pragma offload_transfer target(mic:0) \

nocopy(indata, outdata : length(SIZE) alloc_if(1) free_if(0))

for(i = 0; i < 100; i++){

#pragma offload target(mic:0) \

in(indata:length(SIZE) alloc_if(0) free_if(0)) \

out(outdata:length(SIZE) alloc_if(0) free_if(0))

devicework(indata,outdata)

}

#pragma offload_transfer target(mic:0) \

nocopy(indata, outdata : length(SIZE) alloc_if(0) free_if(1))

free(indata); free(outdata);

More Phi Considerations

Vectorization

16 wide simd registers (AVX-512)

#pragma simd

cilk+ C/C++ extensions

Threads

4 way SMT (60-240 threads)

thread affinity

KMP AFFINITY=balanced/compact/scatter

MKL

Automatic Offload

Compiler Assisted Offload

MKL ScaLAPACK and Cluster FFT (with IntelMPI)

Which Accelerator?

GPU vs. Phi Considerations

CUDA/OpenCL vs. native C/C++/Fortran & OpenMP/MPI

500* vs 60 cores

GPU more complex programming/memory model

GPU has higher SP Flops

DP Flops about par

More apps & libs for GPUs today*

Direct access to Xeon Phi (ie ssh mic0)

Can mount filesystems on Phi (nfs off host)

Summary

Xeon Phi

High computational intensity (Flops/Watt)

Interesting compromise between GPU and CPU.

In many ways analogous to Blue Gene Q

Promotes heterogeneous offload and Hybrid (MPI &
OpenMP) programming

Top 500 list (#1 Tianhe-2 and #7 Stampede)

Knights Landing ’native’ chip will remove the separate
memory bottleneck

	Hardware
	Software
	Summary

