Intel Xeon Phi

SNUG TechTalk

SciNet
www.scinet.utoronto.ca
University of Toronto
Toronto, Canada

February 12, 2014

Scilet

© Hardware

© Software

© Summary

Scilet

YRoN PR Coproessos

http://www.intel.com

Scilet

What is it?
@ Intel x86 based Accelerator/Co-processor
e Many Integrated Cores (MIC) Architecture

@ Large number of low-powered, but low cost (computational
overhead, power, size, monetary cost) processors (pentiums).

@ Heterogeneous computing: Host and Phi can work together
on the problem.

Scilet

What is it?
o Intel x86 based Accelerator/Co-processor
e Many Integrated Cores (MIC) Architecture

@ Large number of low-powered, but low cost (computational
overhead, power, size, monetary cost) processors (pentiums).

@ Heterogeneous computing: Host and Phi can work together
on the problem.

Xeon Phi 5110P
@ 60 cores @ 1.053GHz
e 3 GB memory
@ 4-way SMT
@ PCle Gen2 bus connectivity

)
@ Runs linux onboard) :I.SEU'

AAAAAA

History

Timeline of Many-Core at Intel

Era of Ter CT0 Keyrots Teraflops Research Single-chip Cloud Aubrey Isle &

Processor (Polaris) Computer (Rock Creek) MIC Architecture

Xenn Phi

%»mxk%»mxl%m

Man\r-oure Many-core Tera-scaie wurkloads, Unwersal 1 Teraflaps H.am,--mfe ¥eon Phi enters
Technology RE&D agenda Computing simulators, Parallel SGEMMon Applications Top500 at #150
Strategic & BUlarabee Research software & Computing Larrabee Research (Pre-launch)
Planning Development Program insights from Research @ 5009 Community

(804 projects) Intel Labs Centers

http://www.intel.com

¢
CANADA

History

@ Larrabee (concept video card design)
e Knights ferry (MIC development platform)
e 32 core, 2GB
e ~ 750 GFlops SP
@ Knights corner (Xeon Phi)
e 60 core, 8/16GB
e ~ 1 TFlops DP
e Knights landing (NextGen 2015)

e 72 core, upto 384GB

e ~ 3 TFlops DP

@ native processor

e storm lake interconnect

Sciflet

Compute Canada Xeon Phi Resources

SciNet - ArcX
@ 1 node (1 x 8-core Sandybridge Xeon, 32GB)
@ 1 x Intel Xeon Phi 3120A (57 1.1 GHz cores and 6GB)
@ gsub -1 nodes=1:ppn=8,walltime=2:00:00 -q arcX -I
@ module load intel/14.0.1 intelmpi/4.1.2.040

Calcu Quebec - Guillimin
@ 50 nodes (2 x 8-core Intel Sandy Bridge Xeon, 64GB)
@ 2 x Intel Xeon Phi 5110P (60 1.053GHz cores and 8GB)

5Eﬁ\let

uuuuuuu

© Hardware

© Software

© Summary

Scilet

(’ compute « calcul
CANADA

Software Stack

Linux* Host

Offload libraries, user-
level driver, user-
accessible APIs and
libraries

User-level code

System-level code

coprocessor support

Intel® Xeon Phi™
libraries, tools, an

drivers

]

l

Intel® Xeon Phi™ coprocessor

| User code I

Offload libraries,
user-accessible

APIs and
libraries

User code

Standard OS
hbraries plus an
3rd-party or Intel

libraries

User-level code
System-level code

Intel® Xeon Phi™
coprocessor communication
and application-launching
support

http://www.intel.com

Scilet

(’ compute « calcul
CANADA

Languages
o C, C++, Fortran
e MPI, OpenMP 4.0, OpenCL
e TBB, Cilk+

&ﬁ\let

AAAAAA

Languages
o C, C++, Fortran
e MPI, OpenMP 4.0, OpenCL
e TBB, Cilk+

Tools
@ Intel Compilers (icc, icpc, ifort)
@ Intel MPI

o Intel Tools (VTune, Advisor, Inspector, etc.)

5Qﬁ\let

nnnnnn

Phi Operating Modes

Single Node Operating Modes

o Native
e Compile and run native on the phi only
e Cross compile with -mmic option
e Login and run using ssh mic0 or using micnatveloadex

o Offload

o Compile and run on Host, with offload to Phi

o More flexible, but heterogeneous computing

@ Device and Host memory not accessible to each other so data
copies required

o Similar to GPU accelerator model

Scilet

Phi Operating Modes

MPI Operating Modes

@ Native
e Compile and run native on the phi only
o Limited to single phi
@ Symmetric
e MPI processes run on both the CPU and the Xeon Phi
e Load balancing required
o Offload

e Host to Host with MPI, use Host offload to Phi
e i.e. Heterogenous/Hybrid code design
o Most likely design for large salable codes

Scilet

File System on Phi

Phi and the SciNet Filesystem
e Phi $HOME is /localscratch/$HOME, mounted from arc09
@ Can be useful for development, but performance is in general
not very good

@ Minimize direct native data transfers from Phi
(i.e. do your 1/O on the host)

5Qﬁ\let

nnnnnn

Examples: Native OpenMP

@ Cross compile a standard OpenMP code on host

$module load intel/14.0.1
Sicc -0 omp.MIC -mmic -openmp omp.c

@ Run using ssh

$cp omp.MIC cd /localscratch/$HOME

$ssh micO

$export OMP_NUM_THREADS=60

$export LD_LIBRARY_PATH=

/home/scinet/intel /composer_xe_2013_sp1.0.080/compiler/lib/mic
$./omp.MIC

@ Run using micnativeloadex

$micnativeloadex omp.MIC -e "OMP_NUM_THREADS=60"

Scilet

Example: Offload with OpenMP

@ Programmer specified parts are 'offloaded’ to the device

#pragma offload target(mic:0)

@ Declare device variables

#pragma offload-attribute(push, target(mic))
static float *indata, *outdata;
#pragma offload attribute(pop)

e Data movement to/from host/device

#pragma offload target(mic:0) \
in(indata:length(size)) \
out (outdata:length(size))

ScCiet

Example: Offload with OpenMP

Code

#define SIZE=10000

//device memory }

#pragma offload_atribute(push, target(mic))
static float *indata, *outdata;

#pragma offload_attribute(pop)

//device code
__attribute__((target(mic))) void devicework(float *in, float *opnt)
int i;
#pragma omp parallel for shared(out,in) private(i)
for (i=0; i <SIZE; i++) {

out[i] = sqrt(inl[il);
}

Scilet

(’ compute « calcul
CANADA

Example: Offload with OpenMP

Code - continued

int main(int argc, charx argv[]) {
indata = (float*)malloc(SIZE*sizeof (float));
outdata = (float*)malloc(SIZE*sizeof (float));

for (i = 0; i < SIZE; i++) {
indatal[i] = (float) (ix*i);
outdatal[i] = 0.0;

}

for(i = 0; i < 100; i++){

#pragma offload target(mic:0) \
in(indata:length(SIZE)) \
out (outdata:length(SIZE))

devicework(indata,outdata)

}

free(indata); free(outdata);
return O;

Hcilet

(? compute « calcul
CANADA

Example: Offload with OpenMP

@ Compile as host code

$ icc -o offload -openmp offload.c

@ Run natively

$export MIC_.OMP_NUM_THREADS=4
$./offload

@ For more offload details set

$export OFFLOAD_REPORT=3

5£ﬁ\let

AAAAAA

Offload with OpenMP

Memory Persistence
@ Data transfers are expensive and should be minimized

@ By default variables are allocated at beginning of offload
segment, and free'd at the end

@ However, data can persist on the device between offload
segments

Scilet

Example: Offload with OpenMP

Code: memory fixed

\\after initialized data

#pragma offload_transfer target(mic:0) \
nocopy(indata, outdata : length(SIZE) alloc_if(1) free_if(0))

for(i = 0; i < 100; i++){

#pragma offload target(mic:0) \
in(indata:length(SIZE) alloc_if(0) free_if(0)) \
out (outdata:length(SIZE) alloc_if(0) free_if(0))

devicework(indata,outdata)

}

#pragma offload_transfer target(mic:0) \
nocopy(indata, outdata : length(SIZE) alloc_if(0) free_if(1))

free(indata); free(outdata);

Hcilet

“ compute « calcul
CANADA

More Phi Considerations

Vectorization
@ 16 wide simd registers (AVX-512)
@ #pragma simd
o cilk+ C/C++ extensions

Threads
@ 4 way SMT (60-240 threads)
@ thread affinity
@ KMP_AFFINITY=balanced/compact/scatter

MKL
@ Automatic Offload
@ Compiler Assisted Offload
e MKL ScaLAPACK and Cluster FFT (with IntelMPI) Net

e-calcul
4 Naoa

Which Accelerator?

GPU vs. Phi Considerations
o CUDA/OpenCL vs. native C/C++/Fortran & OpenMP/MPI
500* vs 60 cores
GPU more complex programming/memory model
GPU has higher SP Flops
DP Flops about par
More apps & libs for GPUs today*

Direct access to Xeon Phi (ie ssh mic0)

Can mount filesystems on Phi (nfs off host)

5Eﬁ\let

uuuuuuu

Xeon Phi

@ High computational intensity (Flops/Watt)

@ Interesting compromise between GPU and CPU.

@ In many ways analogous to Blue Gene Q

@ Promotes heterogeneous offload and Hybrid (MPI &
OpenMP) programming
Top 500 list (#1 Tianhe-2 and #7 Stampede)

@ Knights Landing 'native’ chip will remove the separate
memory bottleneck

5Eﬁ\let

uuuuuuu

	Hardware
	Software
	Summary

