
CITA|ICAT

The Performance of
Memory:

Avoiding time-wasting pitfalls
Fall 2012

CITA|ICAT

HW2

CITA|ICAT

HW2

CITA|ICAT

CUDA Memories

SM#1 SM#2

Global
Mem

(On Card)

Registers
(On Chip)

Memory
On

Chip? Cached? R/W Scope

Register On No R/W Thread

Shared On No R/W Block

Global Off No R/W Kernel, Host

Constant Off Yes R Kernel, Host

Texture Off Yes R(W?) Kernel, Host

‘Local’* Off No R/W Thread

* if you run out of registers, will put ‘local’ mem in global.

CITA|ICAT

Making effective use of
CUDA memories

• Preload data wherever
possible

• Global memory -

• Coalesced access

• Make use of 128B (or,
maybe, 32B) at a time

• Profiler to see what’s
happening

• Shared memory

• Bank conflicts

Memory
On

Chip? Cached? R/W Scope

Register On No R/W Thread

Shared On No R/W Block

Global Off No R/W Kernel, Host

Constant Off Yes R Kernel, Host

Texture Off Yes R(W?) Kernel, Host

‘Local’* Off No R/W Thread

CITA|ICAT

Stalling on Memory
Access

SM#1

Warp 1, Inst. 12

Warp 5, Inst. 12

Warp 7, Inst. 12

Warp 4, Inst. 12

Warp 2, Inst. 12

Warp 1, Inst. 13

Queue
• Graphics card schedules by the

warp on an SM

• All warps that are ready to
execute get scheduled

• Not ready to execute - stalled
on memory access

• Nothing ready - SM sits idle.

CITA|ICAT

Stalling on Memory
Access

SM#1

Warp 1, Inst. 12

Warp 5, Inst. 12

Warp 7, Inst. 12

Warp 4, Inst. 12

Warp 2, Inst. 12

Warp 1, Inst. 13

Queue

• Two ways to ensure no idle SM:

• Lots of warps
(=blocks*threads/32); hide
latency with other threads.

• Little or no stalling on
memory access; hide latency
within threads.

• Sometimes work to counter
purposes! Must experiment to
see what works best for your
algorithm.

CITA|ICAT

Stalling happens on use.

• Kernel does not stall on
loading data

• Stalls when data not yet
ready needs to be used

• Can “preload” data that
you will need at beginning
of kernel

• Hide latency by doing as
much work as possible
before need bulk of data.

} register vars

ok
ok

stall

CITA|ICAT

Keep memory accesses
going

• Make maximum use of
memory bandwidth
hardware provides

• To fully use a pipe, must
have bandwidth x latency
memory accesses ‘in
flight’.

• Little’s Law, Queueing
theory - http://en.wikipedia.org/
wiki/Little%27s_law

{ {
latency

band-
width

http://en.wikipedia.org/wiki/Little%27s_law
http://en.wikipedia.org/wiki/Little%27s_law
http://en.wikipedia.org/wiki/Little%27s_law
http://en.wikipedia.org/wiki/Little%27s_law

CITA|ICAT

Coalesced Memory
Access

• Global memory is slow

• Get as much out of it per
access as possible

• HW reads 128 byte lines
from global memory
(Fermi: can turn off
caching and read 4x
32byte segments)

• Want to make the most
of this

SM#1

0 128 256

CITA|ICAT

Coalesced Memory
Access

• Corresponds to 4B for
each thread in a warp

• If each thread in warp
reads consecutive float,
aligned w/ boundary, can
be coalesced into 1 read:
high bandwidth

• Warp can continue after
1 global read cycle

SM#1

0 128 256

CITA|ICAT

Coalesced Memory
Access

• If each thread in warp
reads consecutive float,
but offset, can be
coalesced into 2 read:
reduced bandwidth

• Warp can continue after
2 global read cycle (and
128B of bandwidth
wasted)

SM#1

0 128 256

CITA|ICAT

Coalesced Memory
Access

• Random access is a
nightmare

• Can potentially take 32
times as long, wasting
97% of available global
memory bandwidth

SM#1

0 128 256

CITA|ICAT

List reversal

• Imagine having to reverse
a list

• (Sounds dumb, but matrix
transpose, partial
pivoting, various graph
algorithms require data
reordering)

• Obvious way to do this,
particularly on older (pre
cc 1.2) hardware, doesn’t
work well:

0 1 2 3 4 5 6 7 8 9

9 8 7 6 5 4 3 2 1 0

CITA|ICAT

List reversal

Read - coalesced

CITA|ICAT

List reversal

Read - coalesced

Write - reversed - possibly noncoalesced

CITA|ICAT

List reversal

Do permutation
in shared
memory

[ljdursi@tpb1 class4]$./reverse --nvals=960 --nblocks=30
For run with n = 960, nblocks = 30, blocksize = 32,
iters=1,
CPU time = 0.002 millisec.
GPU time = 0.101 millisec, diff = 0.000000.
GPU2 time = 0.059 millisec, diff = 0.000000.

CITA|ICAT

HW2

global memory access

CITA|ICAT

HW2

CUDA thread blocks are organized filling in x direction
first, then y, then z; (x,y,z) x is fastest moving.

Map to image: columns are fastest varying, then rows.

So this thread ordering has thread #1 accessing pixel
1, thread #2 accessing pixel 2, etc... coallesced.

CITA|ICAT

(+flip row, col in grid)

CITA|ICAT

NSight, Eclipse edition
• For Mac, Linux

in CUDA 5.0

• (NSight for
Studio for win
earlier)

• type “nsight”,
put into IDE
with debugger,
profiler, etc

CITA|ICAT

Profile Configurations
• Under profile

menu, Profile
Configurations
will let you
choose the
executable,
arguments to
profile

• Then clicking
“profile” takes
you into profiling
perspective,
does timeline.

CITA|ICAT

Profile Configurations

• Initial time line gives overview of kernels duration for entire run

• “Analyze entire application” also lets you see if you’re keeping
multiple GPUs busy, etc.

• Analyze Kernels lets you get stats about particular kernels.

CITA|ICAT

• Have to do for each kernel under consideration

• Profiler may have to run multiple times each to get all the data

• Uncoallesced one has (even) worse memory access: more
transactions (4x)

CITA|ICAT

Visual Profiler

• Cuda/OpenCL profiler
comes with NVidia SDK
3.2, 4.0

• run with computeprof

• From there, you can run
an application and look at
timings

CITA|ICAT

Visual Profiler

• Click ‘Profile application’
to begin getting data,

CITA|ICAT

Visual Profiler

• Click ‘Profile application’
to begin getting data,

• Enter directory,
executable, and
arguments of program to
profile,

CITA|ICAT

Visual Profiler

• Click ‘Profile application’
to begin getting data,

• Enter directory,
executable, and
arguments of program to
profile,

• and then run the
program. Program runs
several times to get all
counter information.

CITA|ICAT

Visual Profiler

• Summary table shows lots of good stuff

• Here we see overall kernel time is about 12% faster,
presumably because of roughly ~12% better global
memory throughput.

CITA|ICAT

Another Example:
Multi-block y=ax+b

• Break input, output
vectors into blocks

• Within each block, thread
index specifies which
item to work on

• Each thread does one
update, puts results in y[i]

x}
y

y[i] = a*x[i]+b

}

CITA|ICAT

Another Example:
Multi-block y=ax+b

• Break input, output
vectors into blocks

• Within each block, thread
index specifies which
item to work on

• Each thread does one
update, puts results in y[i]

• But now with a stride:

• Can coalesce reads,
writes, but not both.

x

y

y[(3*i)%n] = a*x[i]+b

CITA|ICAT

Another Example:
Multi-block y=ax+b

• Break input, output
vectors into blocks

• Within each block, thread
index specifies which
item to work on

• Each thread does one
update, puts results in y[i]

• But now with a stride:

• Can coalesce reads,
writes, but not both.

x

y

y[(3*i)%n] = a*x[i]+b

CITA|ICAT

Coalesced Memory
Access

• Rewriting algorithm to
ensure coalesced
memory access probably
most important
optimization.

• Try to rearrange data
before transfer to device
to be in order needed;

• Reorder in shared mem if
necessary.

SM#1

0 128 256

CITA|ICAT

Shared Memory Bank
Conflicts

• Each thread in warp
accesses different bank:
no problem.

SM#1

CITA|ICAT

Shared Memory Bank
Conflicts

• Each thread in warp
accesses different bank:
no problem.

SM#1

CITA|ICAT

Shared Memory Bank
Conflicts

• Each thread in warp
accesses different bank:
no problem.

• Each thread accesses
same one value:
‘broadcast’, no problem.

SM#1

CITA|ICAT

Shared Memory Bank
Conflicts

• Each thread in warp
accesses different bank:
no problem.

• Each thread accesses
same one value:
‘broadcast’, no problem.

• Multiple threads need
data from same bank:
conflict. Accesses are
serialized.

SM#1

CITA|ICAT

Shared Memory Bank
Conflicts

• Imagine 8 banks, and
working on an 8xN
matrix

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

Ba
nk

 0
Ba

nk
 1

Ba
nk

 2
Ba

nk
 3

Ba
nk

 4
Ba

nk
 5

Ba
nk

 6
Ba

nk
 7

CITA|ICAT

Shared Memory Bank
Conflicts

• Imagine 8 banks, and
working on an 8xN
matrix

• Row operations are great

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

Ba
nk

 0
Ba

nk
 1

Ba
nk

 2
Ba

nk
 3

Ba
nk

 4
Ba

nk
 5

Ba
nk

 6
Ba

nk
 7

CITA|ICAT

Shared Memory Bank
Conflicts

• Imagine 8 banks, and
working on an 8xN
matrix

• Row operations are great

• Column operations
maximally bad

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

Ba
nk

 0
Ba

nk
 1

Ba
nk

 2
Ba

nk
 3

Ba
nk

 4
Ba

nk
 5

Ba
nk

 6
Ba

nk
 7

CITA|ICAT

Shared Memory Bank
Conflicts

• Imagine 8 banks, and
working on an 8xN
matrix

• Row operations are great

• Column operations
maximally bad

• Solutions

• Row ops if possible

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

Ba
nk

 0
Ba

nk
 1

Ba
nk

 2
Ba

nk
 3

Ba
nk

 4
Ba

nk
 5

Ba
nk

 6
Ba

nk
 7

CITA|ICAT

Shared Memory Bank
Conflicts

• Imagine 8 banks, and
working on an 8xN
matrix

• Row operations are great

• Column operations
maximally bad

• Solutions

• Row ops if possible

• Pad matrix with extra
column to stride
across banks

0 1 2 3 4 5 6 7

_ 8 9 10 11 12 13 14

15 _ 16 17 18 19 20 21

22 23 _ 24 25 26 27 28

29 30 31 _ 32 33 34 35

36 37 38 39 _ 40 41 42

43 44 45 46 47 _ 48 49

50 51 58 59 60 61 62 63

Ba
nk

 0
Ba

nk
 1

Ba
nk

 2
Ba

nk
 3

Ba
nk

 4
Ba

nk
 5

Ba
nk

 6
Ba

nk
 7

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

CITA|ICAT

Warps in multi-d blocks

• Easy to see how warps are
assigned in 1-d block:

• First 32 = warp0

• Next 32 = warp1..

• How done in 2d block?

• C ordering: x first, then y

• blockDim.x = 32:

• warp 0 : blockDim.y = 0

• warp 1: blockDim.y = 1..

CITA|ICAT

matmult.cu

Striding through matrix
w/ slow moving index;

Massive bank conflicts if
blocksize = warpsize

CITA|ICAT

marten$./matmult --matsize=1536 --nblocks=48
Matrix size = 1536, Number of blocks = 48.
CPU time = 29466.5 millisec, GFLOPS=0.245966
GPU time = 522.71 millisec, GFLOPS=13.865733, diff = 0.000000.
GPU2 time = 128.905 millisec, GFLOPS=56.225572, diff = 0.000000.

4x performance

blocksize = 32
= warpsize

CITA|ICAT

Memory structure
informs block sizes:

• By choosing block size in such a way to maximize global,
shared memory bandwidth and preloading data into shared,
can extract significant performance

• Get your code working first, then use these considerations to
get them working fast

• Use tuned code where available (this is still much slower than
CUBLAS, MAGMA!)

 ./matmult --matsize=1536 --nblocks=24
Matrix size = 1536, Number of blocks = 24.
CPU time = 29467.4 millisec, GFLOPS=0.245958
GPU time = 8.203 millisec, GFLOPS=883.549593, diff = 0.000000.
GPU2 time = 8.122 millisec, GFLOPS=892.361156, diff = 0.000000.

CITA|ICAT

Homework: Transpose
• Using matmult as a template, write CPU code, then GPU

code, which transposes a (float) matrix (square, for
simplicity).

• First GPU version: just global memory accesses. (Either
read or write necessarily non-coallesced.

• Second version: read tile into shared memory, do both
read and write coallesced.

• Time the differences, and use profiler to examine access
efficiency. Use (say) 16x16 blocks, and “big enough” that
cpu, first gpu version take ~ seconds.

• Note: CPU version also benefits from this “tiling” due to
cache

