
Scientific Computing (Phys 2109/Ast 3100H)
II. Numerical Tools for Physical Scientists

SciNet HPC Consortium

University of Toronto

Winter 2013

Lecture 11

Numerical Integration

Solving ordinary differential equations

Numerical Integration

I =
∫
D f (x) ddx

Ordinary Differential Equation

∑
n

an(x , y)
dny

dxn
= f (x , y)

+ boundary/initial conditions

Molecular Dynamics Simulations

mi r̈i = fi({r}, {ṙj}, t)
+ initial conditions

Numerical Integration

Numerical Integration, or “Quadrature”
How to numerically estimate

I =

∫
D

f (x) ddx

Large variety of methods, depending on d , f (x) and x

For d = 1:

I =

∫ b

a
f (x) dx

1. Regular grid

2. Gaussian
Quadrature

Small d :

1. Regular grid

2. Recursive
Quadrature

Large d :

1. Monte Carlo

Numerical Integration in d = 1
Regularly spaced grid method #1

I(a, b) =

∫ b

a
f (x) dx .

On small interval [a, a + h], interpolate using values at a few points.

I Interpolating polynomial of degree 0 using mid-point:∫ a+h

a
f (x) dx ≈ h f

(
a +

h

2

)
I Linear interpolation based on end-points: Trapezoidal rule∫ a+h

a
f (x) dx ≈ h

2
[f (a) + f (a + h)]

I Compose trapezoidal rule n× on sub-intervals [kh, (k + 1)h]
(k = 0, . . . , n − 1; h = (b − a)/n): Extended trapezoidal rule∫ b

a
f (x) dx ≈ h

[
f (a) + f (b)

2
+

n−1∑
k=1

f (a + kh)

]
+O

(
1

n2

)

Numerical Integration in d = 1

Regularly spaced grid method #2

I Interpolating function of degree 2 on [a, a + 2h] using
end-points and mid-point:
Simpsons’ rule∫ a+2h

a
f (x) dx ≈ h

[
1
3 f (a) + 4

3 f (a + h
2) + 1

3 f (a + h)
]

I Compose n times on full interval:
Extended Simpsons’ rule∫ b

a
f (x) dx ≈ h

[
1
3 f (a) + 4

3 f (a + h) + 2
3 f (a + 2h) + 4

3 f (a + 3h)

+ 2
3 f (a + 4h) + · · ·+ 1

3 f (b)
]

+O
(

1

n4

)

Numerical Integration in d = 1

Method using unevenly spaced grid: Gaussian quadrature

I Based on orthogonal polynomials on the interval.
E.g. Legendre, Chebyshev, Hermite, Jacobi polynomials

I Compute and fi = f (xi) then∫ b

a
f (x) dx ≈

n∑
i=1

vi fi

with choice of xi and vi based on zeroes of polynomial of
degree n and of integrals of orthogonal polynomials.

I Well-defined procedure to find {xi} and {vi}
(see e.g. Numerical Recipes).

I Error roughly the same as Simpsons’ rule but as if n→ 2n.

Numerical Integration in d = 1

Specifiying accuracy

We may know the order of the error term, but not the accuracy.
⇓

Good numerical integration routines increases n until some
specified (relative or absolute) accuracy is achieved.

I Easier with fixed grid because old points get reused.

I But in standard Gaussian quadrature, the {xi} for n and for
n + 1 have no points in common.

I Gauss-Kronrod methods allow reuse, but require specific
sequences of n (e.g. 10, 21, 43, 87).

Numerical Integration in d = 1

Adaptive schemes

If a function is not smooth or behaves differently throughout the
domains, divide and apply the above techniques to subdomains.

Weight functions

I =

∫ b

a
w(x)f (x) dx

There are ways to include weight w in the scheme.

I If w is standard, this can be done by changing the polynomials

I If w has singularities, this may remove numerical difficulties.

Don’t code these yourself! Schemes like this, as well as Gaus-
sian quadratures, are implemented in libraries such as the
gsl and boost::numeric::quadrature.

GSL example (from the GSL docs)
#include <iostream>
#include <cmath>
#include <gsl/gsl integration.h>
double f(double x,void *) { return log(x)/sqrt(x); }
int main() {

int npts = 100;
double nint, nerr, a=0, b=1, answ=-4;
gsl function func;
gsl integration workspace* work;
work = gsl integration workspace alloc(npts);
func.function = &f;
gsl integration qags(&func, a, b, 0, 1e-7,

npts, work, &nint, &nerr);
std::cout << "result =" << nint << "\n"

<< "exact result =" << answ << "\n"
<< "estimated error=" << nerr << "\n"
<< "actual error =" << quad-answ << "\n"
<< "intervals =" << work->size<< "\n";

gsl integration workspace free(work);
}

GSL documentation

Numerical Integration in d > 1 but small.

Why multidimensional integration is hard:

I Requires O(nd) points if its 1d counterpart requires n.

I A function can be peaked, and peak can easily be missed.

I The domain itself can be complicated.

Numerical Integration in d > 1 but small.

So what should you do?

I If you can reduce the d by exploiting symmetry or doing part
of the integral analytically, do it!

I If you know the function to integrate is smooth and its
domain is fairly simple, you could do repeated 1d integrals
(fixed-grid or Gaussian quadrature)

I Otherwise, you’ll have to consider Monte Carlo.

Monte Carlo Integration

Use random numbers to pick points at which to evaluate integrand.

Similar to the rejection/acceptance scheme of the previous lecture.

I Convergence always as 1/
√

n, regardless of d .

I Simple and flexible.

I Can generalize to focus on important parts.

Importance Sampling

I =

∫
V

f (x) dx

Suppose f (x) is non-zero only in specific x regions.

I Want to place more points in region where integrand is large.
I Define function w(x) that tells which regions are significant.

I Require w(x) > 0 for any point x in volume where f 6= 0.
I Re-express integral as:

I =

∫
V

f (x)

w(x)
w(x) dx

I Draw a set of n points {x1, . . . , xn} weighted by w(x), then

I ≈ 1

n

n∑
i=1

f (xi)

w(xi)

I Converges to right answer for n→∞ as 1/
√

n.

How does this improve the rate of convergence?

I The statistical uncertainty is related to the variance σ2
I of I :

σ2
I

=
1

n

n∑
i

〈∆Ii∆Ii 〉 where ∆Ii =
f (xi)

w(xi)
− I

(assuming ∆Ii are statistically independent).

I Vastly different values of f (xi)/w(xi) lead to large uncertainty.

I If αw(xi) = f (xi), then f (xi)/w(xi) = α and〈
f (xi)

w(xi)

〉
= I = α

〈(
f (xi)

w(xi)

)2
〉

= α2,

and σ2
I

= 0.

I Generally desire all f (xi)/w(xi) to be roughly the same for all
sampled points xi to mimimize σ2

I
.

ODE solvers

Ordinary Differential Equations (ODEs)∑
n

an(x , y)
dny

dxn
= f (x , y)

Example

d2y

dx2
= −y

.

I Ordinary → x is one dimensional.

I Boundary conditions: much like PDEs: next week.

I Initial conditions: y , dy
dx , . . . , at x = x0

I Define y0 = y ; y1 = dy
dx , . . . , → set of first order ODEs

Example: dy0

dx
= y1

dy1

dx
= −y0

Numerical approaches

Start from the general form:

dyi

dx
= f (x , {yj})

I All approaches will evaluate f at discrete points x0, x1,

I Initial conditions: specify yi (x0) and dyi
dx (x0).

I Consecutive points may have a fixed step size h = xk+1 − xk

or may be adaptive.

I {yj(xi+1)} may be implicitly dependent on f at that value.

Stiff ODEs

I A stiff ODE is one that is hard to solve, i.e. requiring a very
small stepsize h or leading to instabilities in some algoritms.

I Usually due to wide variation of time scales in the ODEs.

I Not all methods equally suited for stiff ODEs

ODE solver algorithms: Euler
To solve:

dy

dx
= f (x , y)

Simple approximation:

yn+1 ≈ yn + hf (xn, yn) “forward Euler ′′

Rational:

y(xn + h) = y(xn) + h
dy

dx
(xn) +O(h2)

So:
y(xn + h) = y(xn) + hf (xn, yn) +O(h2)

I O(h2) is the local error.

I For given interval [x1, x2], there are n = (x2 − x1)/h steps

I Global error: n ×O(h2) = O(h)

I Not very accurate, nor very stable (next): don’t use.

Stability

Example: solve harmonic oscillator numerically:

dy (1)

dx
= y (2)

dy (2)

dx
= −y (1)

Use Euler (yn+1 ≈ yn + hf (xn, yn)) gives(
y

(1)
n+1

y
(2)
n+1

)
=

(
1 h
−h 1

)(
y

(1)
n

y
(2)
n

)

Stability governed by eigenvalues λ± = 1± ih of that matrix.
|λ±| =

√
1 + h2 > 1 ⇒ Unstable for any h!

ODE solver algorithms: implicit mid-point Euler

To solve:
dy

dx
= f (x , y)

Symmetric simple approximation:

yn+1 ≈ yn + hf (xn, (yn + yn+1)/2) “mid-point Euler ′′

This is an implicit formula, i.e., has to be solved for yn+1.

Example (Harmonic oscillator)[
1 −h

2
h
2 1

] [
y

[1]
n+1

y
[2]
n+1

]
=

[
1 h

2

−h
2 1

] [
y

[1]
n

y
[2]
n

]
⇒

[
y

[1]
n+1

y
[2]
n+1

]
= M

[
y

[1]
n

y
[2]
n

]

Eigenvalues M are λ± = (1±ih/2)2

1+h2/4
so |λ±| = 1⇒ Stable for all h

Implicit methods often more stable and allow larger step size h.

ODE solver algorithms: Predictor-Corrector

1. Computation of new point

2. Correction using that new point

I Gear P.C.: keep previous values of y to do higher order Taylor
series (predictor), then use f in last point to correct. Can

suffer from catestrophic cancellation at very low h.

I Runge-Kutta: Refines by using mid-points. Workhorse even

behind fancier solvers.

k1 = hf (x , y)

k2 = hf (x + h/2, y + k1/2)

4th order version: k3 = hf (x + h/2, y + k2/2)

k4 = hf (x + h, y + k3)

y ′ = y +
k1

6
+

k2

3
+

k3

3
+

k4

6

Further ODE solver techniques

Adaptive methods

As with the integration, rather than taking a fixed h, vary h such
that the solution has a certain accuracy.

Don’t code this yourself! Adaptive schemes are implemented
in libraries such as the gsl and boost::numeric::odeint.

Geometric, symplectic and variants

Respects hamiltonian form, better energy conservation.
Will discuss in the context of MD.

	Numerical Integration
	Solving ordinary differential equations

