Scientific Computing (Phys 2109/Ast 3100H)
II. Numerical Tools for Physical Scientists

SciNet HPC Consortium

University of Toronto

Winter 2013

Scilet

Lecture 11

Numerical Integration

Solving ordinary differential equations

Scilet

‘) compute «calcul
CANADA

Numerical Integration

I = [,f(x)dx

Ordinary Differential Equation

d"y
D anlay) o, = f(xy)

n
+ boundary/initial conditions

Molecular Dynamics Simulations

..oooo
mit, = f({r}. (). 1) X4
+ initial conditions %.: ..

Seﬁ\let

AAAAAA

Numerical Integration

Scilet

Numerical Integration, or “Quadrature”
How to numerically estimate

I= /Df(x) dx

1. Regular grid

2. Gaussian
Quadrature

Numerical Integration in d =1
Regularly spaced grid method #1

b
I(a,b) = / f(x)dx.
a
On small interval [a, a + h], interpolate using values at a few points.

» Interpolating polynomial of degree 0 using mid-point:

a+h h
/ f(x)dx%hf<a+2)

» Linear interpolation based on end-points: Trapezoidal rule

a+h h
/a f(x)dx%E[f(a)—i-f(a%-h)]

» Compose trapezoidal rule nx on sub-intervals [kh, (k + 1)h]
(k=0,...,n—1; h=(b— a)/n): Extended trapezoidal rule

1
/bf(x)dxzh[f(a +f(b)+Zf +kh] <1 ot

k=1 P omrue: «caleul

AAAAAA

Numerical Integration in d =1

Regularly spaced grid method #2

» Interpolating function of degree 2 on [a, a + 2h] using
end-points and mid-point:
Simpsons’ rule

a+2h
/ F(x)dx = h[3F(a) + 4f(a+ 8) + 3F(a+ h)]

» Compose n times on full interval:
Extended Simpsons’ rule

/bf(x)dx% h[F(a)+ 4F(a+ h) + 2F(a+2h) +

Ar
3
+2f(a+4h)+-- + 3f(b (n4>

SCiNet

f(a+ 3h)

Numerical Integration in d =1

Method using unevenly spaced grid: Gaussian quadrature

» Based on orthogonal polynomials on the interval.
E.g. Legendre, Chebyshev, Hermite, Jacobi polynomials

» Compute and f; = f(x;) then

n

b
/ f(x)dx ~ Zv;ﬁ

i=1
with choice of x; and v; based on zeroes of polynomial of
degree n and of integrals of orthogonal polynomials.

» Well-defined procedure to find {x;} and {v;}
(see e.g. Numerical Recipes).

» Error roughly the same as Simpsons’ rule but as if n — 2n.

Scilet

Numerical Integration in d =1

Specifiying accuracy

We may know the order of the error term, but not the accuracy.

4

Good numerical integration routines increases n until some
specified (relative or absolute) accuracy is achieved.

» Easier with fixed grid because old points get reused.

» But in standard Gaussian quadrature, the {x;} for n and for
n + 1 have no points in common.

» Gauss-Kronrod methods allow reuse, but require specific
sequences of n (e.g. 10, 21, 43, 87).

Scilet

Numerical Integration in d =1
Adaptive schemes

If a function is not smooth or behaves differently throughout the
domains, divide and apply the above techniques to subdomains.

Weight functions

I= /ab w(x)f(x)dx

There are ways to include weight w in the scheme.
» If w is standard, this can be done by changing the polynomials

» If w has singularities, this may remove numerical difficulties.

Don’t code these yourself! Schemes like this, as well as Gaus-
sian quadratures, are implemented in libraries such as the
gsl and boost: :numeric: :quadrature.

SciNet

GSL example (from the GSL docs)

#include <iostream>
#include <cmath>
#include <gsl/gsl_integration.h>
double f£(double x,void *) { return log(x)/sqrt(x); }
int main() {
int npts = 100;
double nint, nerr, a=0, b=1, answ=-4;
gsl function func;
gsl integration workspace* works;
work = gsl_integration workspace_alloc(npts);
func.function = &f;
gsl_integration_qags(&func, a, b, 0, 1e-7,
npts, work, &nint, &nerr);

std::cout << "result =" << nint << "\n“
<< "exact result =" << answ << "\n"
<< "estimated error=" << merr << "\n"
<< "actual error =" << quad-answ << "\nn
<< "intervals =" << work->size<< "\n";

gsl_integration workspace_free (work) ;

} “Het

npute ca\cu\
-r

GSL documentation

(<] 22 | (O www.gnu.org
17.4 QAGS adaptive integration with singularities

The presence of an integrable singularity in the integration region causes an adaptive routi
subintervals around the singularity. As the subintervals decrease in size the successive app
converge in a limiting fashion. This approach to the limit can be accelerated using an extr:
QAGS algorithm combines adaptive bisection with the Wynn epsilon-algorithm to speed u
types of integrable singularities.

— Function: int gsl_integration_qags (const gsl_function * f, double a, double b, double
limit, gsi_integration_workspace * workspace, double * result, double * abserr)

This function applies the Gauss-Kronrod 21-point integration rule adaptively until a
of f over (a,b) is achieved within the desired absolute and relative error limits, epsal
are extrapolated using the epsilon-algorithm, which accelerates the convergence of t
presence of discontinuities and integrable singularities. The function returns the fing
the extrapolation, result, and an estimate of the absolute error, abserr. The subinterv
stored in the memory provided by workspace. The maximum number of subintervals
may not exceed the allocated size of the workspace.

T GETINTL

() compute «calcul
CANADA

Numerical Integration in d > 1 but small.

Why multidimensional integration is hard:

» Requires O(n?) points if its 1d counterpart requires n.
» A function can be peaked, and peak can easily be missed.

» The domain itself can be complicated.

Numerical Integration in d > 1 but small.

So what should you do?

» If you can reduce the d by exploiting symmetry or doing part
of the integral analytically, do it!

» If you know the function to integrate is smooth and its
domain is fairly simple, you could do repeated 1d integrals
(fixed-grid or Gaussian quadrature)

» Otherwise, you'll have to consider Monte Carlo.

Scilet

Monte Carlo Integration

Use random numbers to pick points at which to evaluate integrand.

Similar to the rejection/acceptance scheme of the previous lecture.
» Convergence always as 1//n, regardless of d.
» Simple and flexible.

» Can generalize to focus on important parts.
Scilet

o compute «calcul
CANADA

Importance Sampling

= /\/ f(x)dx

Suppose f(x) is non-zero only in specific x regions.
» Want to place more points in region where integrand is large.

» Define function w(x) that tells which regions are significant.

» Require w(x) > 0 for any point x in volume where f # 0.
» Re-express integral as:

f(x)
= w(x)dx
w9
» Draw a set of n points {xi,...,x,} weighted by w(x), then
- 1
[~ =
» Converges to right answer for n — oo as 1/4/n. Met

How does this improve the rate of convergence?

> The statistical uncertainty is related to the variance o of I:

1 4 f Xi —
02 = - Z (ALAL)Y where Al = w((x,-)) —1

(assuming Al; are statistically independent).
» Vastly different values of f(x;)/w(x;) lead to large uncertainty.
> If aw(x;) = f(x;), then f(x;)/w(x;) = a and

(W)= (CE))-

and 072 =0.
» Generally desire all f(x;)/w(x;) to be roughly the same for all
sampled points x; to mimimize o2. -
PIee PO ' Scifet

ODE solvers

Scilet

Ordinary Differential Equations (ODEs)

n
Zn: a"(va)jX),: = f(x,y)
Example 3
. 2
& 1
dx2 ,
» Ordinary — x is one dimensional.*, ; . . . w0
» Boundary conditions: much like PDEs: next week. -
» [nitial conditions: y, j—i, ..., at x = xg
» Define yop = y; yv1 = %, ..., — set of first order ODEs
Example: dyo
dx =N
dy

Numerical approaches

Start from the general form:
dyi
dx = f(X7 {yj})

» All approaches will evaluate f at discrete points xp, x1,
.. .. . dy;
> Initial conditions: specify y;(xo) and G (xo).
» Consecutive points may have a fixed step size h = xx11 — Xk
or may be adaptive.

> {yj(xi+1)} may be implicitly dependent on f at that value.

Scilet

Stiff ODEs

» A stiff ODE is one that is hard to solve, i.e. requiring a very
small stepsize h or leading to instabilities in some algoritms.

» Usually due to wide variation of time scales in the ODEs.

» Not all methods equally suited for stiff ODEs

Scilet

ODE solver algorithms: Euler

To solve: d
y

Y _f

0 = [y)
Simple approximation:

Ynt+1 = Yn + hf (Xn, ¥n) “forward Euler”
Rational: d
Y+ h) = y(m) + b2 (x0) + O(?)

So:

y(n -+ h) = y(xn) + hf (xa, yn) + O(h?)
O(h?) is the local error.

Global error: n x O(h?) = O(h)

Not very accurate, nor very stable (next): don't use.

vV v v VY

For given interval [x1, x2], there are n = (xo — x1)/h steps

Scilet

Stability

Example: solve harmonic oscillator numerically:

dy(l) @
dx =Y
dy(2) B)
dx -

Use Euler (ynt1 = yn + hf(xn, yn)) gives

1 1
)’r(yg-)l — < 1 h))/r(12)
Y,(1+)1 —h 1 }/r(1)
Stability governed by eigenvalues A+ = 1 + jh of that matrix.
[Ax] =vV1+h?>>1 = Unstable for any h!

Scilet

ODE solver algorithms: implicit mid-point Euler

To solve: q
dy
=f(x,y)

dx
Symmetric simple approximation:
Ynt+1 = Yn + hf (Xn, (Vn + Ynt+1)/2) “mid-point Euler”

This is an implicit formula, i.e., has to be solved for y,.1.
Example (Harmonic oscillator)
1
SRR
b " b
2 yn+1 2

[1] 1] [1]

2 2 - 2

] [[2]] [y,[7+1] []
(1:|:lh/2

Eigenvalues M are Ay = Trht/4- O |A+| = 1 = Stable for all h

= NS>

’Impllat methods often more stable and allow larger step size h. ‘

5eﬁ\let

ODE solver algorithms: Predictor-Corrector

1. Computation of new point

2. Correction using that new point

» Gear P.C.: keep previous values of y to do higher order Taylor
series (predictor), then use f in last point to correct. Can

suffer from catestrophic cancellation at very low h.

» Runge-Kutta: Refines by using mid-points. Workhorse even

behind fancier solvers.

k1
ko
4th order version: k3
k.

!/

y

hf(x,y)

hf(x+ h/2,y + ki/2)
hf(x + h/2,y + ko /2)
hf(x+ h,y + k3)

k kr» k ks -
ytetgztgte SCillet

Further ODE solver techniques

Adaptive methods

As with the integration, rather than taking a fixed h, vary h such
that the solution has a certain accuracy.

Don’t code this yourself! Adaptive schemes are implemented
in libraries such as the gsl and boost: :numeric: :odeint.

Geometric, symplectic and variants

Respects hamiltonian form, better energy conservation.
Will discuss in the context of MD.

Scilet

	Numerical Integration
	Solving ordinary differential equations

