N-Body Dynamics

N-Body
dynamics

* N interacting bodies
* Pairwise forces; here, Gravity.

* (here, stars in a cluster; could
be molecular dynamics,
economic agents...)

N-Body
dynamics

* N interacting bodies
* Pairwise forces; here, Gravity.

* (here, stars in a cluster; could
be molecular dynamics,
economic agents...)

nbody

e cd ~/ppp/nbodyc

® make

¢ . /nbodyc

type Nbody

integer :: id
double precision, dimension(3) :: X
double precision, dimension(3) :: vel

double precision, dimension(3) :: force

A PartiCIG type double precision :: mass

double precision :: potentialE
end type Nbody

nbody.f90,line 5

e Everything based on a array of
structures (‘derived data

types’)

Main loop

* nbody step - calls calculate
forces, updates positions.

* calculate energy (diagnostic)

* display particles.

call 1nitialize particles(pdata, npts, simulati
call calculate forces fastest(pdata, npts)
call calculate energy(pdata, npts, tote)

do 1= ,nsteps
call nbody step(pdata, npts, dt)
call calculate energy(pdata, npts, tote)
time = time + dt
if (output /= 0) then
print *, i, dt, time, tote

if (mod(i,outevery) == 0) then
call display particles(pdata, npts,
endif|
endif

enddo

nbody.£90,line 35

do i=1,n

do)=i+1,n
rsq = EPS*EPS
dx = 0.
do d=1,
dx(d) = pdata())%x(d) - pdata(i)%sx(d)
alculate
enddo
ir = 1./sqrt(rsq)

rsq = ir/rsq

do d=1,
FO rces forcex = rsq*dx(d) * pdata(i)%smass * pdata())%smass

pdata(i)%force(d) = pdata(i)%force(d) + forcex
pdata(j)sforce(d) = pdata())%force(d) - forcex
o I I enddo
FOI' eaCh PartICIe | pdata(i)%spotentialE = pdata(i)%potentialE -
F h h . | 'S gravconst * pdata(i)%smass * pdata(])%smass * 1ir
® pdata(j)%spotentialE = pdata(i)%potentialE -
oreac Ot er Partlc € l | gravconst * pdata(i)%smass * pdata(])%smass * ir
. enddo
e Calculate distance (most enddo

expensive!)

nbody. £90,line 100

e |ncrement force

* Increment potential energy

Decomposing
onto different
Processors

e Direct summation (N?) - each
particle needs to know about
all other particles

e Limited locality possible

* Inherently a difficult problem
to parallelize in distributed
memory

First go:

Everyone sees \

everything

Distribute the work, but not
the data

Everyone has complete set of

particle data

Just work on our own
particles

Send everyone our particles’

data afterwards

. R »

Terrible ldea (l)

e Requires the entire problem to

fit in the memory of each node.

* |n general, you can’t do that
(10911 particle simulation)

* No good for MD, astrophysics
but could be useful in other areas
(few bodies, complicated
interactions) - agent-based
simulation

* Best approach depends on your
problem

Terrible Ildea

() N
Tcomp ™~ Cgrav <F NCcomp R R E R e
N2
P

— Cgrayv Ccomp

N
Tcomm ™~ Cparticle? (P — 1) Ocomm

¢

Cparticle NCcomm

£ comm Cparticle | pCComm Since N is fixed, as P
1 comp Cgrav. IV Ccomp goes up, this fraction
gets worse and
worse

¢

Terrible Ildea

(1)

* Wastes computation.

e Proc 0 and Proc 2 both
calculate the force between

particle | and particle |1.

Canaddress(Il) , , ,
a little Cc—© G

4+ e +
e Collecting everyone’s data is o
I|ke 1 gIObaI sum [e|e[e[ef[ee[e]e] + [e]efee[e]ele]e]

e (Concatenation is the sort of
operation that allows
reduction)

e GATHER operation

¢ Send back the results:
ALLGATHER

e 2 (P-1) vs P2 messages, but Total sent ~
length differs 2 N log2(P) vs N P

[e[e[e[e][e[e[e[efe[efe]e[e]e o]

Avg Message Length =
(N/2 log2P)/(P-1)
~N + N/P logy(P)

Canaddress () , . ,
a little (>—) (3

-+ +
»
[e]eefe][e]e[e]e] + [e[efefefe[e = -]
N2
Tcomp — Cgrav?ccomp Clleelelsle[e[ee[eTe - [-[-T:

log, P
Tcomm ~ Cparticle 2N Og; Ccomm

Tcomm Cparticle 2 Ccomm
comp Corav comp

Anhother
collective

0 I 2 3
operation) ()
4 [Gelere +

[e]e[e[e|[e[e]e]e] ofofefofo[e]e o]

-4

Stuff you’re CEBEEIEEEEFEEREEETR
sending How Much What Type

int MPI Gather (void *sendbuf, int sendcnt, MPI Datatype sendtype,

void *recvbuf, int recvcount, MPI Datatype recvtype
/int root, MPI Comm comm);

Place you're 0
receiving

Who's getting all
the data

Anhother
collective

0 I 2 3
operation) ()
4 [Gelere +

[e]e[e[e|[e[e]e]e] ofofefofo[e]e o]

-4

Stuff you’re CEBEEIEEEEFEEREEETR
sending How Much What Type

MPI GATHER (sendbuf, INTEGER sendcnt, INTEGER sendtype,
recvbuf, INTEGER recvcount, INTEGER recvtype,
-”,,f””’?INTEGER root, INTEGER comm, INTEGER ierr);
Place you're 4
receiving

Who's getting all
the data

But what data
type should we

type Nbody

integer :: id
7 double precision, dimension(3) :: X
use. double precision, dimension(3) :: vel
double precision, dimension(3) :: force
* Not just a multiple of a single double precision :: mass
double precision :: potentialE
data type end type Nbody

e Contiguous, vector, subarray
types won'’t do it.

MPI TYPE CREATE STRUCT(INTEGER COUNT, INTEGER ARRAY OF BLOCKLENGTHS(*),
INTEGER (KIND=MPI ADDRESS KIND) ARRAY OF DISPLACEMENTS(*),
INTEGER ARRAY OF TYPES(*), INTEGER NEWTYPE, INTEGER IERROR)

int MPI Type create struct(int count, int array of blocklengths[],
MPI Aint array of displacements[], MPI Datatype array of types[],
MPI datatype *newtype);

disp =0 &°
count=| & Q&o < <
type=MP_CHARACTER & ¢ K4

N s Nl
MPI Structures \
disp =7

e Like vector, but:

count=2
e displacements in bytes type=MP|_INTEGER

* array of types
disp = |

count=|
type=MP| _DOUBLE_PRECISION

disp =0 &°

count=| & Q&o < <

type=MP|_LB 3 QY @Qg @Qg

\e’& S D

T

MPI Structures 1

disp = |1

e Types MPIl_LB and MPI_UB count=|

can point to lower and upper type=MP|_UB
bounds of the structure, as B
well

MPI Type Maps

e Complete description of this structure looks like:
blocklens = (1,1,1,2,1)
displacements = (0,0,1,6,10)
types = (MPI_LB, MPI_CHARACTER,
MPI_DOUBLE_PRECISION, MPI_INTEGER, MPI_UB)

* Note typemaps not unique; could write the integers out
as two single integers with displacements 6, 8.

type Nbody

integer :: id
double precision, dimension(3) :: X
MPI Type MaPS double precision, dimension(3) :: vel
double precision, dimension(3) :: force
double precision :: mass
e What does type map look double precision :: potentialE

end type Nbody

like for Nbody?

MPI Type Maps

* What does type map look
like for Nbody?

* How laid out in memory
depends entirely on
compiler, compiler options.

* alignment, padding...

type Nbody
integer :: id

double precision, dimension(3) ::
double precision, dimension(3) ::
double precision, dimension(3) ::
double precision ::
double precision ::

end type Nbody

mass
potentialE

X
vel
force

MPI Type Maps

e Use MPI_GET_ ADDRESS to
find addresses of different
objects, and subtract the two
to get displacements

e Build structure piece by
piece.

type(Nbody), dimension(2) :: sample
integer, parameter :: nelements=

integer(kind=MPI_Address kind),dimension(nelements) ::
integer(kind=MPI Address kind) :: addrl, addr2
integer,dimension(nelements) :: blocksize
integer,dimension(nelements) :: types

disps(l) =

types(l) = MPI LB

blocksize(l) =

call MPI GET ADDRESS(sample('), addrl, ierr)

call MPI_GET ADDRESS(sample(') % id, addr2, ierr)
disps(.) = addr2 - addrl

types(2) = MPI_INTEGER

blocksize(:) =

call MPI GET ADDRESS(sample(') % mass, addr2, ierr)
disps(’) = addr2 - addrl

types(®) = MPI_DOUBLE PRECISION

blocksize(®) =

call MPI_GET_ADDRESS(sample(') % potentialk, addr2, lerr

call MPI_TYPE CREATE STRUCT(nelements, blocksize, disps, types,
newtype, 1ierr)
call MPI_TYPE COMMIT (newtype,ierr)

Another

collective o,
operation - G
4+ e +
»
[e][e[e]e][e]e[e]e] + [e]eefele[e o]
integer :: startp, endp, locpoints
integer :: ptype
type(Nbody), dimension(N) :: pdata

call MPI Allgather(pdata(startp), locpoints, ptype
pdata, locpoints, ptype,
MPI COMM WORLD, ierr)

vvhat It not
same # of

particles!? (>—) ()

Glelslslels] = -+
* When everyone has same # of o
Part|C|eS, easy to ﬁgure out [e[e[e[e[e]e][e[e[e]e] + [e]efefe[e[e[o]]

where one processor’s piece
goes in the global array

[e]e[eeJe][e[e[e[e][e[e]o]o|e]

* Otherwise, need to know how
many each has and where
their chunk should go in the
global array

vvhat It not
same # of

particles? Q Q Q @

Clels[slels] = + |
p— =
[[e[s[elssl[e e eTe] 4+ EEEEEEET

[e]e[eJeefe|[e[e[e[e[e[o]e]o]e o e

int MPI Allgatherv { wvoid *sendbuf, int sendcount, MPI Datatype sendtype,
vold *recvbuf, int *recvcounts, int *displs,
MPI Datatype recv e, MPI Comm comm)} ¢

Array of counts; eg {6,4,4,4}

Where they should go; eg
{0,6,10,14}

Fow would we
get this data?’ :
Allgather! &

Clelelelele] ==

2 3

O—

+

—

int counts[size], disp[size];
int mystart=..., mynump=...;

MPI Allgather(&mynump, 1, MPI INT,

counts, 1, MPI INT, MPI COMM WORLD);
disp[1]=0;
for (i=1l;i<size;1++) disp[i]=disp[i-1]+counts[i];

MPI Allgatherv(&(data[mystart]), mynump, MPI Particle,
data, counts, disp, MPI Particle,
MPI COMM WORLD) ;

about the nbody

Other stuff

code

At least plotting remains easy. g o g oy g g T Pl P P P S

Generally n-body codes keep
track of things like global
energy as a diagnostic

We have a local energy we

calculate on our particles; edit nbody-allgather.f90
Should communicate that to

sum up over all processors.
Let’s do this together

rroblem (1)
remains --
memory

e How do we avoid this!?

¢ For direct summation, we
need to be able to see all
particles;

e But not necessarily at once.

O -

O -

O~

10 -

Pipeline

0 sends chunk of its particles
to |, which computes on it,
then 2, then 3

Then | does the same thing,
etc.

Size of chunk: tradeoff -
memory usage vs. number of
messages

Let’s just assume all particles
go at once, and all have same
of particles (bookkeeping)

/EQ °

O -

O~
O%

I 2 3

Pipeline (O) O O O

[o[e]e]e] (o [e]e]e]

e No need to wait for Os chunk FEEE—y CEEE—pEEEE— FEEE
to be done! EEEE— CEEE—)y GEEE—»EEEE

* Everyone sends their chunk EEEE —> FEEE—> EEEE— FEEE

forward, and keeps getting
passed along.

e Compute local forces first,
then start pipeline, and
foreach (P-1) chunks compute
the forces on your particles by
theirs.

I 2 3

Pipeline (O) O O O

[oefefe [o[o[e]e]
* Work unchanged EEET—y GEEE—»EEEE— y FEER
T — N_ZC [lelele]——> [I-[:T-]l— 3 [eTe[e]e] m——p[TeTeT¢]
comp grav P comp EEEE — >EEEE—» EEEE, GEEE
e Communication - each
process sends (P-1) messages
of length (N/P) N
Tcomm — Cparticle(P _ 1)Fccomm — CparticleNCcomm

Tcomm - Cparticle 1 PCcomm

Y

Tcomp Cgrav N Ccomp

I 2 3

Pipeline (O) O O O

[ofefe]e] [o[e]e]e]

e Back to the first approach. FEEE., GEEE— »EEEE_y FEEE
* But can do much bigger EEEE— CEEElL—y FEEE—»EEER
problems FEEE —>EREEE— FEEE—y

* If we're filling memory, then N
~ B and Tcomm/ Tcomp is constant

(yay')
* With previous approach,
maximum problem size is

fixed by one processor’s
memory.

Pipeline

Sending the messages: like one
direction of the guardcell fills
in the diffusion eqn; everyone
sendrecv’s.

Periodic or else 0 would never
see anyone elses particles!

Copy your data into a buffer;
send it, receive into another
one.

Compute on received data

Swap send/recv and continue.

[e[e]e [o |

Compute(recv)

I 2 3

Pipeline (O) O O O

[ofefe]e] [o[e]e]e]

* Good: can do bigger Y e e —
problems! - s, s ammm

e Bad: High communication FREE —>EEEE— FEEE— EEEE

costs, not fixable

e Bad x 2:still doing double
work.

Pipeline

Double work might be fixable

We are sending whole particle

structure when nodes only
need x[NDIMS], mass.

Option |: we could only send
chunk half way (for odd #
procs); then every particle has
seen every other

If we update forces in both,
then will have computed all
non-local forces...)

O -

O~

[eJe]eTo =)

1O -

——p[ee]e]e]

Pipeline

e Option 2: we could proceed
as before, but only send the
essential information

e Cut down size of message by 0 | 2
a factor of 4/1 | O O O
e Which is better? —

[Tele[s]— [e[e[e[e]m—p[e]e]e]e]

Displaying Data

* Now that no processor owns
all of the data, can’t make plots
any more

e But the plot is small;it’s a
projection onto a 2d grid of
the 3d data set.

* In general it’s only data-sized
arrays which are ‘big’

e Can make it as before and
Allreduce it

vverlapping
Communication
& Computation

* If only updating local forces,
aren’t changing the data in the
pipeline at all.

e What we receive is what we
send.

e Could issue send right away,
but need to compute...

[ofe]e]e |m—

——>{e[e]e]e]

Compute(recv)

[eTeTe [o [

vverlapping
Communication
& Computation

10 -

o[eYe]e]
* Now the communications will FEEE—>
happen while we are
computing e 0000
e Significant time savings! (~30% — P

Copy recv;
swap buffers
Start isend/irecv

[eTeTe [o [

with 4 process)

[e[e]e[ef=t—>

Compute

Hands on

Implement simplest pipeline (blocking)

Try just doing one timestep, but calculating
forces one block at a time

Then sending blocks around

Then non-blocking/double buffering

