
N-Body Dynamics

N-Body
dynamics

• N interacting bodies

• Pairwise forces; here, Gravity.

• (here, stars in a cluster; could
be molecular dynamics,
economic agents...)

. .
. .

..
.

. .
.
.
. .

.
..
.

.
.

.
.

. .
. ..
.

.
. ..

.
. .

. .
.

..

.
.

.

.. .

. .
.
. ..

..

. ..
..

..

..
.

.
.

.

F1,2 = −Gm1m2

r2
1,2

r̂

N-Body
dynamics

• N interacting bodies

• Pairwise forces; here, Gravity.

• (here, stars in a cluster; could
be molecular dynamics,
economic agents...)

. .
. .

..
.

. .
.
.
. .

.
..
.

.
.

.
.

. .
. ..
.

.
. ..

.
. .

. .
.

..

.
.

.

.. .

. .
.
. ..

..

. ..
..

..

..
.

.
.

.

nbody
•cd ~/ppp/nbodyc
•make
•./nbodyc

A Particle type
• Everything based on a array of

structures (‘derived data
types’)

nbody.f90, line 5

Main loop
• nbody_step - calls calculate

forces, updates positions.

• calculate energy (diagnostic)

• display particles. nbody.f90, line 35

Calculate
Forces

• For each particle i

• Foreach other particle j>i

• Calculate distance (most
expensive!)

• Increment force

• Increment potential energy

nbody.f90, line 100

Decomposing
onto different

processors
• Direct summation (N2) - each

particle needs to know about
all other particles

• Limited locality possible

• Inherently a difficult problem
to parallelize in distributed
memory

. .
. .

..
.

. .
.
.
. .

.
..
.

.
.

.
.

. .
. ..
.

.
. ..

.
. .

. .
.

..

.
.

.

.. .

. .
.
. ..

..

. ..
..

..

..
.

.
.

.

First go:
Everyone sees

everything
• Distribute the work, but not

the data

• Everyone has complete set of
particle data

• Just work on our own
particles

• Send everyone our particles’
data afterwards

Terrible Idea (I)
• Requires the entire problem to

fit in the memory of each node.

• In general, you can’t do that
(1010-11 particle simulation)

• No good for MD, astrophysics
but could be useful in other areas
(few bodies, complicated
interactions) - agent-based
simulation

• Best approach depends on your
problem

Terrible Idea
(1I)

Tcomp ∼ cgrav

�
N

P

�
NCcomp

= cgrav
N2

P
Ccomp

Tcomm ∼ cparticle
N

P
(P − 1) Ccomm

≈ cparticleNCcomm

Tcomm

Tcomp
≈ cparticle

cgrav

1
N

P
Ccomm

Ccomp

Since N is fixed, as P
goes up, this fraction

gets worse and
worse

Terrible Idea
(III)

• Wastes computation.

• Proc 0 and Proc 2 both
calculate the force between
particle 1 and particle 11.

Can address (II)
a little

• Collecting everyone’s data is
like a global sum

• (Concatenation is the sort of
operation that allows
reduction)

• GATHER operation

• Send back the results:
ALLGATHER

• 2 (P-1) vs P2 messages, but
length differs

0 1 2 3

+ +

+

Avg Message Length =
(N/2 log2P)/(P-1)
~N + N/P log2(P)

Total sent ~
2 N log2(P) vs N P

Can address (I)
a little

0 1 2 3

+ +

+

Tcomp = cgrav
N2

P
Ccomp

Tcomm ∼ cparticle2N
log2 P

P
Ccomm

Tcomm

Tcomp
≈ cparticle

cgrav

2
N

log2 (P)
Ccomm

Ccomp

Another
collective
operation

0 1 2 3

+ +

+

Stuff you’re
sending How Much What Type

Place you’re
receiving

Who’s getting all
the data

int MPI_Gather (void *sendbuf, int sendcnt, MPI_Datatype sendtype,
 void *recvbuf, int recvcount, MPI_Datatype recvtype,
 int root, MPI_Comm comm);

Another
collective
operation

0 1 2 3

+ +

+

Stuff you’re
sending How Much What Type

Place you’re
receiving

Who’s getting all
the data

MPI_GATHER (sendbuf, INTEGER sendcnt, INTEGER sendtype,
 recvbuf, INTEGER recvcount, INTEGER recvtype,
 INTEGER root, INTEGER comm, INTEGER ierr);

But what data
type should we

use?
• Not just a multiple of a single

data type

• Contiguous, vector, subarray
types won’t do it.

MPI_TYPE_CREATE_STRUCT(INTEGER COUNT, INTEGER ARRAY_OF_BLOCKLENGTHS(*),
! ! INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF DISPLACEMENTS(*),
! ! INTEGER ARRAY_OF_TYPES(*), INTEGER NEWTYPE, INTEGER IERROR)

int MPI_Type_create_struct(int count, int array_of_blocklengths[],
 MPI_Aint array_of_displacements[], MPI_Datatype array_of_types[],
 MPI_datatype *newtype);

MPI Structures
• Like vector, but:

• displacements in bytes

• array of types

ch
ar

ac
ter

do
ub

le
pr

ec
isi

on

int
eg

er

int
eg

er

disp = 0
count=1

type=MPI_CHARACTER

disp = 1
count=1

type=MPI_DOUBLE_PRECISION

disp = 7
count=2

type=MPI_INTEGER

MPI Structures
• Types MPI_LB and MPI_UB

can point to lower and upper
bounds of the structure, as
well

ch
ar

ac
ter

do
ub

le
pr

ec
isi

on

int
eg

er

int
eg

er

disp = 0
count=1

type=MPI_LB

disp = 11
count=1

type=MPI_UB

MPI Type Maps
• Complete description of this structure looks like:

blocklens = (1,1,1,2,1)
displacements = (0,0,1,6,10)
types = (MPI_LB, MPI_CHARACTER,
MPI_DOUBLE_PRECISION, MPI_INTEGER, MPI_UB)

• Note typemaps not unique; could write the integers out
as two single integers with displacements 6, 8.

ch
ar

ac
ter

do
ub

le
pr

ec
isi

on

int
eg

er

int
eg

er

MPI Type Maps
• What does type map look

like for Nbody?

MPI Type Maps
• What does type map look

like for Nbody?

• How laid out in memory
depends entirely on
compiler, compiler options.

• alignment, padding...

MPI Type Maps
• Use MPI_GET_ADDRESS to

find addresses of different
objects, and subtract the two
to get displacements

• Build structure piece by
piece.

Another
collective
operation

0 1 2 3

+ +

+
integer :: startp, endp, locpoints
integer :: ptype
type(Nbody), dimension(N) :: pdata

call MPI_Allgather(pdata(startp), locpoints, ptype,
 pdata, locpoints, ptype,

 MPI_COMM_WORLD, ierr)

What if not
same # of
particles?

0 1 2 3

+ +

+
• When everyone has same # of

particles, easy to figure out
where one processor’s piece
goes in the global array

• Otherwise, need to know how
many each has and where
their chunk should go in the
global array

What if not
same # of
particles?

0 1 2 3

+ +

+
= =

=

Array of counts; eg {6,4,4,4}
Where they should go; eg

{0,6,10,14}

How would we
get this data?

Allgather!
0 1 2 3

+ +

+
= =

=
int counts[size], disp[size];
int mystart=..., mynump=...;

MPI_Allgather(&mynump, 1, MPI_INT,
 counts, 1, MPI_INT, MPI_COMM_WORLD);
disp[i]=0;
for (i=1;i<size;i++) disp[i]=disp[i-1]+counts[i];

MPI_Allgatherv(&(data[mystart]), mynump, MPI_Particle,
 data, counts, disp, MPI_Particle,

 MPI_COMM_WORLD);

Other stuff
about the nbody

code
• At least plotting remains easy.

• Generally n-body codes keep
track of things like global
energy as a diagnostic

• We have a local energy we
calculate on our particles;

• Should communicate that to
sum up over all processors.

• Let’s do this together

edit nbody-allgather.f90

Problem (I)
remains --
memory

• How do we avoid this?

• For direct summation, we
need to be able to see all
particles;

• But not necessarily at once.

0 1 2 3

Pipeline
• 0 sends chunk of its particles

to 1, which computes on it,
then 2, then 3

• Then 1 does the same thing,
etc.

• Size of chunk: tradeoff -
memory usage vs. number of
messages

• Let’s just assume all particles
go at once, and all have same
of particles (bookkeeping)

0 1 2 3

Pipeline
• No need to wait for 0s chunk

to be done!

• Everyone sends their chunk
forward, and keeps getting
passed along.

• Compute local forces first,
then start pipeline, and
foreach (P-1) chunks compute
the forces on your particles by
theirs.

0 1 2 3

Pipeline
• Work unchanged

• Communication - each
process sends (P-1) messages
of length (N/P)

0 1 2 3

Tcomp = cgrav
N2

P
Ccomp

Tcomm = cparticle(P − 1)
N

P
Ccomm → cparticleNCcomm

Tcomm

Tcomp
≈ cparticle

cgrav

1
N

P
Ccomm

Ccomp

Pipeline
• Back to the first approach.

• But can do much bigger
problems

• If we’re filling memory, then N
~ P, and Tcomm/Tcomp is constant
(yay!)

• With previous approach,
maximum problem size is
fixed by one processor’s
memory.

0 1 2 3

Pipeline
• Sending the messages: like one

direction of the guardcell fills
in the diffusion eqn; everyone
sendrecv’s.

• Periodic or else 0 would never
see anyone elses particles!

• Copy your data into a buffer;
send it, receive into another
one.

• Compute on received data

• Swap send/recv and continue.

0

send
recv

Compute(recv)

send
recv

send
recv

Pipeline
• Good: can do bigger

problems!

• Bad: High communication
costs, not fixable

• Bad x 2: still doing double
work.

0 1 2 3

Pipeline
• Double work might be fixable

• We are sending whole particle
structure when nodes only
need x[NDIMS], mass.

• Option 1: we could only send
chunk half way (for odd #
procs); then every particle has
seen every other

• If we update forces in both,
then will have computed all
non-local forces...)

0 1 2

Pipeline
• Option 2: we could proceed

as before, but only send the
essential information

• Cut down size of message by
a factor of 4/11

• Which is better?

0 1 2

Displaying Data
• Now that no processor owns

all of the data, can’t make plots
any more

• But the plot is small; it’s a
projection onto a 2d grid of
the 3d data set.

• In general it’s only data-sized
arrays which are ‘big’

• Can make it as before and
Allreduce it

. .
. .

..
.

. .
.
.
. .

.
..
.

.
.

.
.

. .
. ..
.

.
. ..

.
. .

. .
.

..

.
.

.

.. .

. .
.
. ..

..

. ..
..

..

..
.

.
.

.

Overlapping
Communication
& Computation
• If only updating local forces,

aren’t changing the data in the
pipeline at all.

• What we receive is what we
send.

• Could issue send right away,
but need to compute...

0

send
recv

Compute(recv)

send
recv

send
recv

Overlapping
Communication
& Computation
• Now the communications will

happen while we are
computing

• Significant time savings! (~30%
with 4 process)

0

send
recv

Copy recv;
swap buffers

Start isend/irecv

send
recv

send
recv

Compute

Hands on

• Implement simplest pipeline (blocking)

• Try just doing one timestep, but calculating
forces one block at a time

• Then sending blocks around

• Then non-blocking/double buffering

