The Parallel File System and I/O

SNUG TechTalk

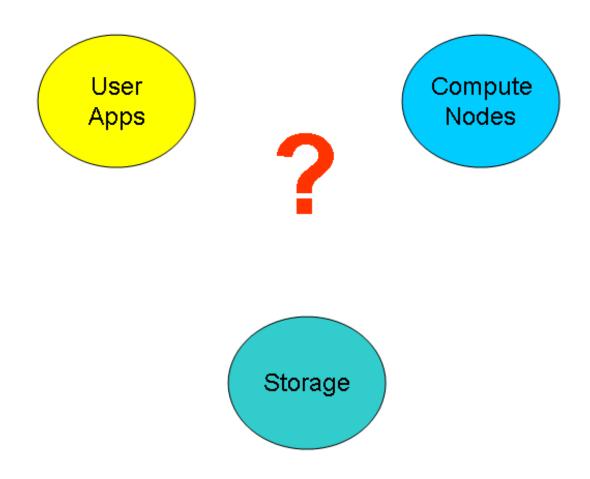
SciNet, Toronto

File system recap

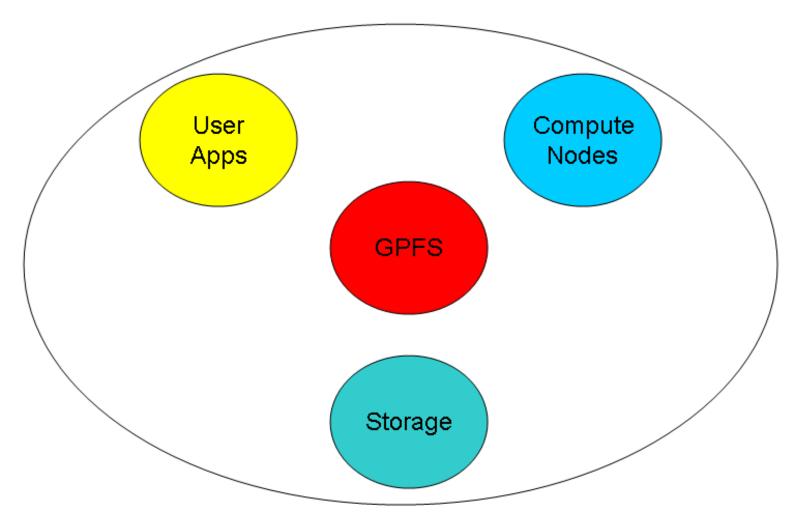
- 1,790 1TB SATA disk drives, for a total of 1.4PB
- Two DCS9900 couplets, each delivering:
 - 4-5 GB/s read/write access (bandwidth)
 - 30,000 IOP/s max (open, close, seek, ...)
- Single GPFS file system on TCS and GPC
- I/O goes over Gb ethernet network on GPC (infiniband on TCS)
- File system is parallel!

File system recap

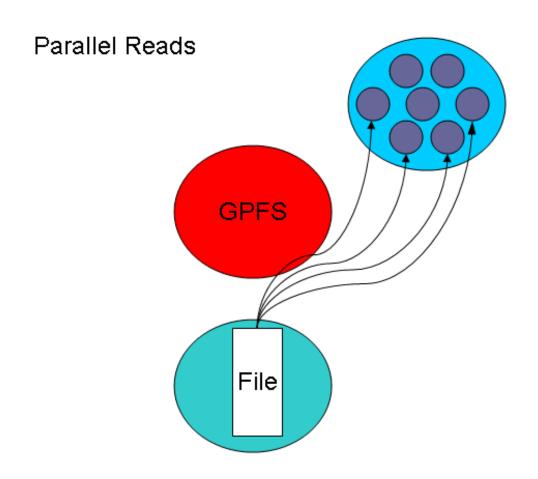
location	quota	block-size	time-limit	backup	devel	comp
/home	10GB	256kB	unlimited	yes	rw	ro
/scratch	X TB	4MB	3 months	no	rw	rw

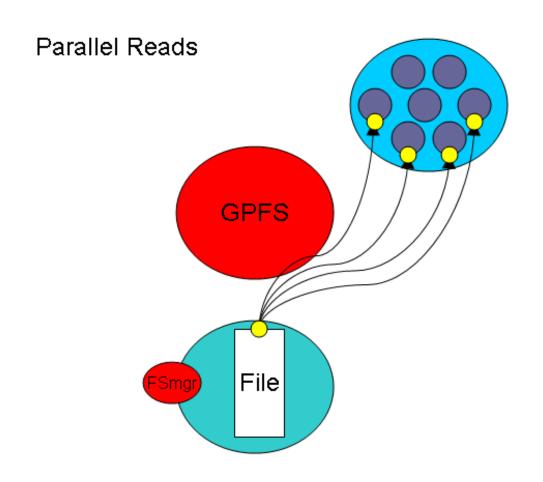

- There are quotas
- Home read-only from compute nodes!
- Big block sizes: small files waste space
- Issues are common to parallel file systems (Lustre, etc.) present in most modern supercomputers.
- Scratch quota per user oversubscribes disk space, so only for when you temporarily really needs a lot of disk space.
- Most users will need much less.

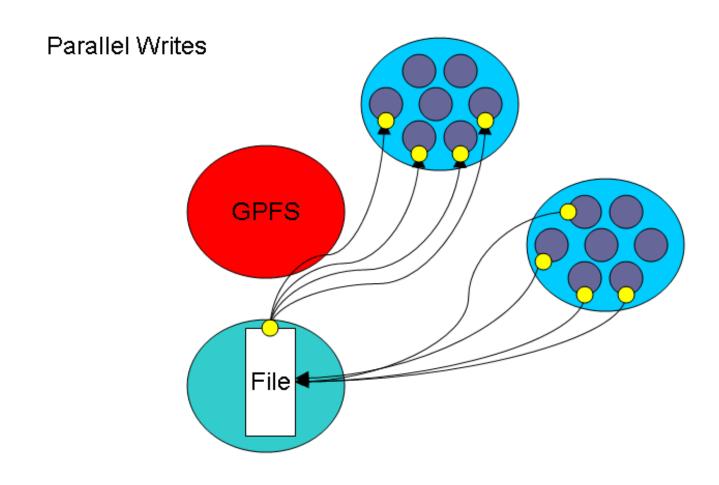
File system recap

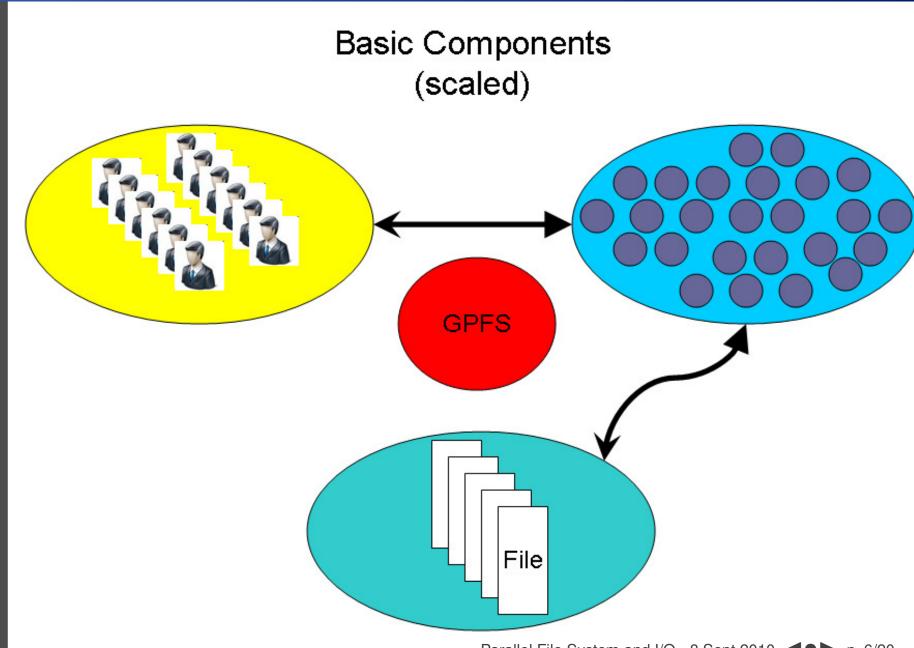

Scratch Policies

- Scratch is intended for active jobs (e.g. writing checkpoints and data during a run).
- Files are purged after 3 months (may need to reduce this to 2 months soon).
- Quotas on space and number of files will be tightened after this week's shutdown.

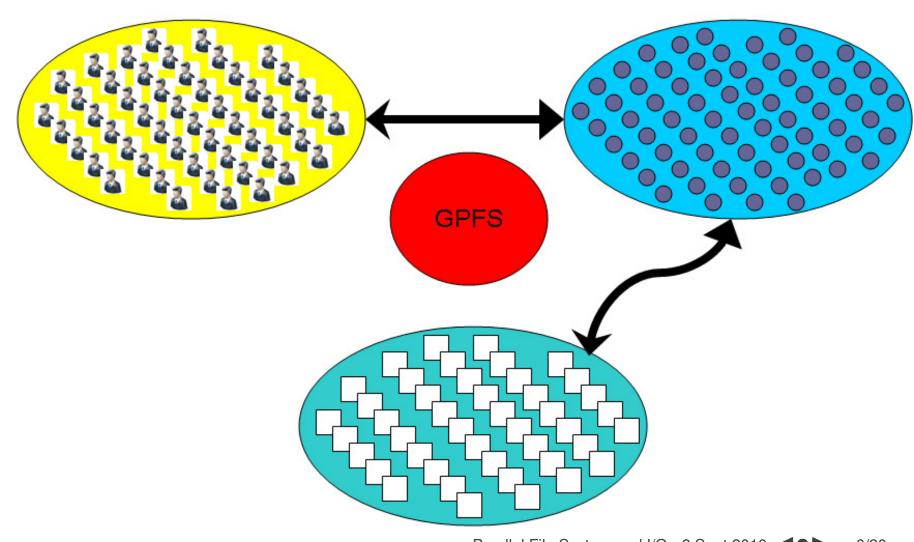

The file system is parallel, what does that mean?

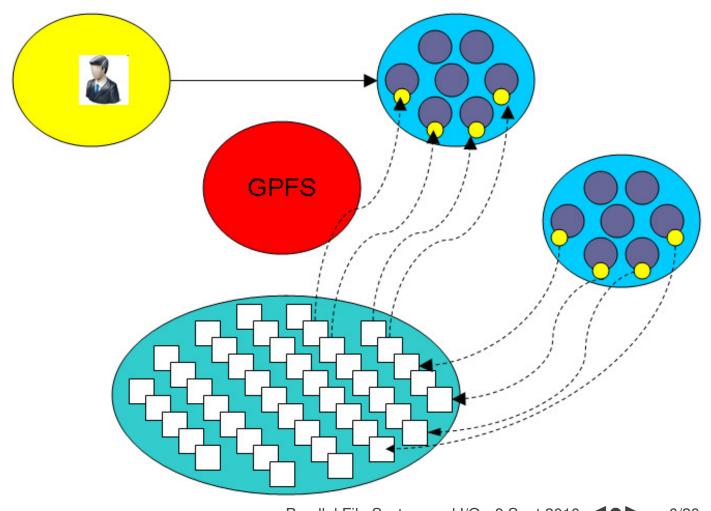



Basic Components

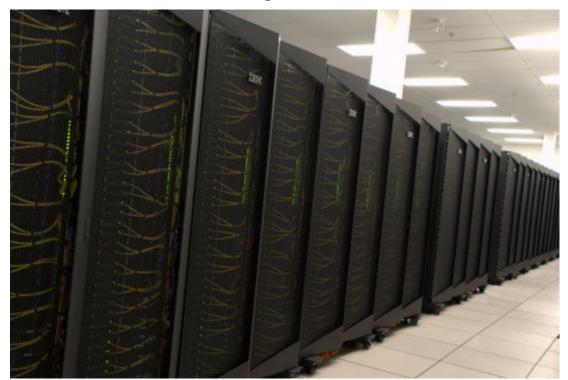


General Parallel File System





How can we push the limit?



How can we BREAK the limit?

- Optimal for large shared files.
- Behaves poorly under many small reads and writes.
- Your use of it affects everybody! (Different from case with CPU and RAM which are not shared.)
- How you read and write, your file format, the number of files in a directory, and how often you ls, can all affect every other user!
- The file system is shared over the ethernet network on GPC: Hammering the file system can hurt process communications.
- File systems are not infinite! Bandwidth, metadata, IOPS, number of files, space, ...

- Think of your laptop/desktop with several people simultaneously doing I/O, doing ls on directories with thousands of files . . .
- 2 jobs doing simultaneous I/O can take much longer than twice a single job duration due to disk contention and directory locking.
- SciNet: 500 users doing I/O from 4000 nodes. That's a lot of sharing and contention!

Some Numbers

- 466 TB on scratch
- Over 500 users you do the math!
- Want >25% free at any given time (systems can write 0.5 PB per day!)
- 100 MB/s: maximum possible read/write speed from a node if there is nothing else running on system

When system is fully utilized:

- 1 MB/s: average expected read/write speed from a node
- 10 IOP/s: average expected iops from a node So can't open more than 10 files in a second!

How to make the file system work <u>for</u> rather than against you

Make a Plan!

- Make a plan for your data needs:
 - How much will you generate,
 - How much do you need to save,
 - And where will you keep it?
- Note that /scratch is temporary storage for 3 months or less.
- Options?
 - Save on your departmental/local server/workstation (it is possible to transfer TBs per day on a gigabit link);
 - 2. Apply for a project space allocation at next RAC call (but space is very limited);
 - 3. Buy tapes through us (\$100/TB) and we can archive your data to tape; HSM possibility within next 6 months;
 - 4. Change storage format.

Monitor and control usage

- Minimize use of filesystem commands like ls and du.
- Regularly check your disk usage using /scinet/gpc/bin/diskUsage.
- Warning signs which should prompt careful consideration:
 - More than 100,000 files in your space
 - Average file size less than 100 MB
- Monitor disk actions with top and strace
- RAM is always faster than disk; think about using ramdisk.
- Use gzip and tar to compress files to bundle many files into one
- Try gziping your data files. 30% not atypical!
- Delete files that are no longer needed
- Do "housekeeping" (gzip, tar, delete) regularly.

Change storage format

- Write binary format files Faster I/O and less space than ASCII files.
- Use parallel I/O if writing from many nodes NetCDF, HDF5, MPI-IO
- Maximize size of files. Large block I/O optimal!
- Minimize number of files. Makes filesystem more responsive!
- Attend the parallel I/O course coming soon! https://support.scinet.utoronto.ca/courses

Don'ts:

- Don't write lots of ASCII files. Lazy, slow, and wastes space!
- Don't write many hundreds of files in a 1 directory. Hurts responsiveness!
- Don't write many small files (< 10MB).</p>
 System is optimized for large-block I/O!

Summary

- Make a data plan.
- Regularly check disk usage with /scinet/gpc/bin/diskUsage.
- RAM is always faster than disk: ramdisk.
- Write binary files.
- Use parallel I/O if writing from dozens of nodes.
- Use gzip and tar.
- Delete unneeded files.
- Maximize size of files.
- Do housekeeping regularly.
- Monitor disk actions with top and strace.
- Visit parallel I/O course coming soon!
- Make an appt to talk with our analysts about your I/O.

Don'ts

- Do not write lots of ASCII files.
- Do not write many hundreds of files in a single directory.
- Do not write many small files.
- Minimize use of file system commands like Is and du.

Extras slides: examples

Ramdisk example

```
northrup@aries:pts/11:~
File Edit View Terminal Tabs Help
#!/bin/bash
#PBS -l nodes=1:ppn=8,walltime=24:00:00
#PBS -N ramdisk-test
cd $PBS 0 WORKDIR
mpirun -np 8 ./mycode
                                            northrup@aries:pts/1:~
File Edit View Terminal Tabs Help
#!/bin/bash
#MOAB/Torque submission script for SciNet GPC
#PBS -l nodes=1:ppn=8,walltime=24:00:00
#PBS -N ramdisk-test
nkdir -p /dev/shm/$USER
cp -a $PBS 0 WORKDIR/ /dev/shm/$USER
cd /dev/shm/$USER
#run code
mpirun -np 8 ./mycode
tar -czf $PBS_0_WORKDIR/output.tar.gz /dev/shm/$USER
rm -Rf /dev/shm/$USER
```

Top example

```
northrup@gpc-logindm01/~
     Edit View
              Terminal Tabs Help
top - 10:31:47 up 25 days, 20:47, 11 users, load average: 1.23, 1.54, 1.55
Tasks: 184 total, 1 running, 183 sleeping,
                                               0 stopped,
                                                             0 zombie
Cpu(s): 0.7%us, 0.9%sy, 0.0%ni, 98.1%id, 0.0%wa, 0.0%hi, 0.2%si, 0.0%st
       8174984k total, 6708804k used, 1466180k free,
                                                          163188k buffers
      2096472k total,
                              0k used,
                                        2096472k free,
                                                          732128k cached
Swap:
 PID USER
                       VIRT
                                   SHR S %CPU %MEM
                                                       TIME+ COMMAND
                PR NI
                              RES
3470 root
                 0 -20 2453m 1.1q
                                   21m S 8.3 14.0
                                                      2664:48 mmfsd
23606 nolta
                        4528 1312
                                   508 D
                                          6.0
                                                      0:02.30 zip
                18
                                               0.0
                15
                              708
                                   592 S
                                               0.0
                                                      0:04.50 init
   1 root
                     0 10348
                                          0.0
                                     0 S
                                               0.0
                                                      0:03.60 migration/0
                RT
                           Θ
                                Θ
                                          0.0
   2 root
                                                      0:00.30 ksoftirgd/0
   3 root
                34
                    19
                                     0 S
                                          0.0
                                               0.0
                                     0 S
                                          0.0
                                                      0:00.00 watchdog/0
   4 root
                RT
                           0
                                Θ
                                               0.0
   5 root
                RT
                           Θ
                                Θ
                                     0 S
                                          0.0
                                               0.0
                                                      0:07.54 migration/1
                34
                    19
                                     0 S
                                          0.0
                                               0.0
                                                      0:00.73 ksoftirgd/1
   6 root
                           Θ
                                Θ
                                     0 S
                                          0.0
                                                      0:00.00 watchdog/1
   7 root
                RT
                           Θ
                                0
                                               0.0
                                     0 S
                                          0.0
                                                      0:04.60 migration/2
                RT
                                               0.0
   8 root
                           Θ
                                Θ
                    19
                                     0 S
                                               0.0
                                                      0:02.13 ksoftirgd/2
   9 root
                34
                           Θ
                                Θ
                                          0.0
                                     0 S
                                          0.0
                                               0.0
                                                      0:00.00 watchdog/2
   10 root
                RT
                                          0.0
                                                      0:06.93 migration/3
   11 root
                RT
                           Θ
                                0
                                     0 S
                                               0.0
                    19
                                     0 S
   12 root
                34
                           Θ
                                Θ
                                          0.0
                                               Θ.Θ
                                                      0:08.96 ksoftirgd/3
                                     0 S
                RT
                                          0.0
                                                      0:00.00 watchdog/3
   13 root
                           Θ
                                Θ
                                               0.0
   14 root
                RT
                           Θ
                                     0 S
                                          0.0
                                               0.0
                                                      0:04.00 migration/4
                                Θ
                    19
                                     0 S
   15 root
                34
                           Θ
                                Θ
                                          0.0
                                               0.0
                                                      0:00.28 ksoftirqd/4
                                     0 S
                                          Θ.Θ
                                                      0:00.00 watchdog/4
                RT
                                               0.0
   16 root
                           Θ
                                Θ
                                     0 S
                                                      0:06.26 migration/5
   17 root
                RT
                                          0.0
                                               0.0
                                     0 S
                                          0.0
                                               0.0
                                                      0:09.94 ksoftirgd/5
   18 root
                34
                    19
                           0
                                0
                                                      0:00.00 watchdog/5
                    -5
                                     0 S
                                          0.0
                                               0.0
   19 root
                RT
                           Θ
                                Θ
                           Θ
                                     0 S
                                          0.0
                                               0.0
                                                      0:04.22 migration/6
   20 root
                RT
                                Θ
   21 root
                34
                    19
                           0
                                0
                                     0 S
                                          0.0
                                               0.0
                                                      0:00.42 ksoftirqd/6
                                     0 S
                                          0.0
                                               0.0
                                                      0:00.00 watchdog/6
   22 root
                RT
                           0
                                Θ
   23 root
                RT
                                     0 S
                                          0.0
                                               0.0
                                                      0:07.08 migration/7
                           Θ
                                Θ
```

Tar/gzip example

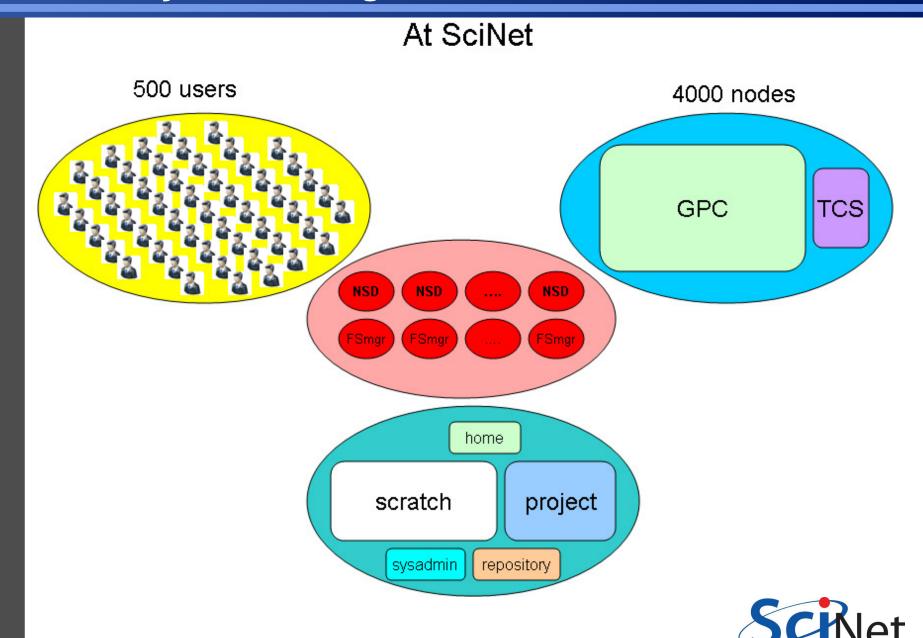
```
northrup@gpc-f101n084//scratch/northrup/temp/osu network
File Edit View Terminal Tabs Help
[northrup@gpc-f101n084 /scratch/northrup/temp]$ tar -czvf file.tar.gz osu network/
osu network/
osu network/osu.h
osu network/osu alltoall.c
osu network/osu bcast.c
osu network/osu bibw.c
osu network/osu bw.c
osu network/osu get bw.c
osu network/osu mbw mr.c
osu network/osu multi lat.c
osu network/osu put bibw.c
osu network/osu put bw.c
[northrup@gpc-f101n084 /scratch/northrup/temp]$ ls
file.tar.gz osu network
[northrup@gpc-f101n084 /scratch/northrup/temp]$ tar -tf file.tar.gz
osu network/
osu network/osu.h
osu network/osu alltoall.c
osu network/osu bcast.c
osu network/osu bibw.c
osu network/osu bw.c
osu network/osu get bw.c
osu network/osu mbw mr.c
osu network/osu multi lat.c
osu network/osu put bibw.c
osu network/osu put bw.c
[northrup@gpc-f101n084 /scratch/northrup/temp]$ tar -xzf file.tar.gz osu network/osu get bw.c
[northrup@gpc-f101n084 /scratch/northrup/temp]$ ls
file.tar.gz osu network
```

I/O speed for ASCII

Writing 128M doubles:

/scratch:

ASCII 173 s binary 6 s


/dev/shm:

ASCII 174 s binary 1s (!)

typical work station:

ASCII 260 s binary 20s

File system at a glance

