
Debuggers and Parallel Debugging

HPC Best Practices

SciNet, Toronto

Parallel Programming Intensive p. 1/29

Debugging basics

Parallel Programming Intensive p. 2/29

Debugging basics

Help, my program doesn’t work!
$ icc -O3 answer.c
$./a.out
Segmentation fault

↓
a miracle occurs

↓

My program works brilliantly!
$ icc -O3 answer.c
$./a.out
42

• Unfortunately, “miracles” are not yet supported by SciNet.

Debugging:

Methodical process of finding and fixing flaws in software

Parallel Programming Intensive p. 3/29

Debugging basics

Ways to debug

• Don’t write buggy code. YEAH, RIGHT.

• Add print statements NO WAY TO DEBUG!

• Command-based, symbolic debuggers

• GNU debugger: gdb

• Intel debugger command-line: idbc

• Symbolic debuggers with Graphical User Interface

• GNU data display debugger: ddd

• Intel debugger: idb

• IDEs: Eclipse, NetBeans (neither on SciNet),
emacs/gdb

• Allinea DDT: ddt
Excellent for parallel debugging, and available at
SciNet!

Parallel Programming Intensive p. 4/29

What’s wrong with using print statements?

Print debugging

• Constant cycle:

1. strategically add print statements

2. compile

3. run
4. analyze output bug not found?

�

• Removing the extra code after the bug is fixed

• Repeat for each bug

Problems

• Time consuming

• Error prone

• Changes memory, timing. . . THERE’S A BETTER WAY!

Parallel Programming Intensive p. 5/29

Symbolic debuggers

Parallel Programming Intensive p. 6/29

Symbolic debuggers

Features

1. Crash inspection

2. Function call stack

3. Step through code

4. Automated interruption

5. Variable checking and setting

Use a graphical debugger or not?

• Local work station: graphical is convenient

• Remotely (SciNet):

• Graphical debuggers slow

• Graphics may not be available

• Command-based debuggers fast (esp. gdb).

• Graphical debuggers still have command prompt.

Parallel Programming Intensive p. 7/29

Symbolic debuggers

Preparing the executable

• Required: compile with -g.

• Optional: switch off optimization -O0

Command-based symbolic debuggers

• gdb← FOCUS ON THIS ONE

• idbc← HAS GDB MODE

$ module load intel
$ icc -g -O0 example.c -o example
$ module load gdb
$ gdb example
...
(gdb)

Parallel Programming Intensive p. 8/29

gdb building blocks

Parallel Programming Intensive p. 9/29

GDB basics - 1 Inspect crashes

Inspecting core files

Core = file containing state of program after a crash

• needs max core size set (ulimit -c <number>)

• gdb reads with gdb <executable> <corefile>

• it will show you where the program crashed

No core file?

• can start gdb as gdb <executable>

• type run to start program

• gdb will show you where the program crashed if it does.

Parallel Programming Intensive p. 10/29

GDB basics - 2 Function call stack

Interrupting program

• Press Crtl-C while program is running in gdb

• gdb will show you where the program was.

Stack trace

• From what functions was this line reached?

• What were the arguments of those function calls?

gdb commands

backtrace function call stack
continue continue
down go to called function
up go to caller

Parallel Programming Intensive p. 11/29

GDB basics - 3 Step through code

Stepping through code

• Line-by-line

• Choose to step into or over functions

• Can show surrounding lines or use -tui

gdb commands

list list part of code
next continue until next line
step step into function
finish continue until function end
until continue until line/function

Parallel Programming Intensive p. 12/29

GDB basics - 4 Automatic interruption

Breakpoints

• break [file:]<line>|<function>

• each breakpoint gets a number

• when run, automatically stops there

• can add conditions, temporarily remote breaks, etc.

related gdb commands

delete unset breakpoint
condition break if condition met
disable disable breakpoint
enable enable breakpoint
info breakpoints list breakpoints
tbreak temporary breakpoint

Parallel Programming Intensive p. 13/29

GDB basics - 5 Variables

Checking a variable

• Can print the value of a variable

• Can keep track of variable (print at prompt)

• Can stop the program when variable changes

• Can change a variable (“what if . . . ”)

gdb commands

print print variable
display print at every prompt
set variable change variable
watch stop if variable changes

Parallel Programming Intensive p. 14/29

Demonstration gdb

Parallel Programming Intensive p. 15/29

Graphical symbolic debuggers

Parallel Programming Intensive p. 16/29

Graphical symbolic debuggers

Features

• Nice, more intuitive graphical user interface

• Front to command-based tools: Same concepts

• Need graphics support. Requires tricks for compute
nodes:
$ qsub
$ checkjob <job-id>
$ ssh -X -l <user> <your-node>

Available on SciNet

• ddd
$ module load gcc ddd
$ ddd <executable compiled with -g flag>

• idb
$ module load intel java
$ idb <executable compiled with -g flag>

• ddt
$ module load ddt
(more later)

Parallel Programming Intensive p. 17/29

Graphical symbolic debuggers - ddd

Parallel Programming Intensive p. 18/29

Graphical symbolic debuggers - idb

Parallel Programming Intensive p. 19/29

Parallel debugging

Parallel Programming Intensive p. 20/29

Parallel debugging

• Challenge: Simultaneous execution

• Shared memory:
OpenMP (Open Multi-Processing)
pthreads (POSIX threads)

• Private/shared variables

Intel compiler extra flag: -debug parallel

• Race conditions

• Distributed memory:
MPI (Message Passing Interface)

• Communication
• Deadlock

• Hard to solve: some commercial debugger do a good
job.
We’ve just obtained ddt licences!
But let’s see how the command line ones handle it.

Parallel Programming Intensive p. 21/29

Parallel debugging - 1 Shared memory
gdb and idbc

• Track each thread’s execution and variables

• OpenMP serialization: p omp_set_num_threads(1)

• Step into OpenMP block: break at first line!

• Thread-specific breakpoint: b <line> thread <n>

idbc only

• Freezing/thawing thread

• Native OpenMP serialization (requires Intel compiler)

• Graphical: ddd --debugger idbc

info threads where is each thread?
thread change thread context
idb freeze/thaw t:[] suspend thread(s)

Parallel Programming Intensive p. 22/29

Parallel debugging - Race conditions

helgrind

To find race conditions:

$ module load valgrind
$ valgrind --tool=helgrind <exe> &> out
$ grep <source> out
where <source> is the name of the source file where you
suspect race conditions (valgrind reports a lot more)

Parallel Programming Intensive p. 23/29

Parallel debugging - 2 Distributed memory

Multiple MPI processes

• Your code is running on different cores!

• Where to run debugger?

• Where to send debugger output?

• No universal (free) solution.

Good approach

1. Write your code so it can run in serial: perfect that first.

2. Deal with communication, synchronization and deadlock
on smaller number of MPI processes.

3. Only then try full size.

Parallel Programming Intensive p. 24/29

Parallel debugging - 2 Distributed memory

padb

• Tool for debugging parallel mpi programs

• Requires openmpi and gdb:

module load gdb openmpi padb

Features

• Stack trace generation

• MPI Message queue display

• Deadlock detection and collective state reporting

• Process interrogation

• Signal forwarding/delivery

• MPI collective reporting

• Job monitoring

Parallel Programming Intensive p. 25/29

Parallel debugging - 2 Distributed memory

$ qsub -l nodes=1:ppn=8,walltime=1:00:00 -q debug -I

$ cd /scratch/where ever

$ mpirun -np 16 whatever

$ padb --all --stack-trace --tree

Stack trace(s) for thread: 1

[0-15] (16 processes)

main() at ?:?

system_run() at ?:?

compute_forces() at ?:?

[8-15] (8 processes)

IdVector_exchange() at ?:?

PMPI_Sendrecv() at ?:?

[8,10] (2 processes)

ompi_request_default_wait() at ?:?

opal_progress() at ?:?

[9,11-15] (6 processes)

mca_pml_ob1_send() at ?:?

opal_progress() at ?:?

Parallel Programming Intensive p. 26/29

Parallel debugging - 2 Distributed memory

Advanced tricks

• You want #proc terminals with gdb for each process?

• Possible, but brace yourself!

• Small number of procs:

• Start terminals: no x forwarding from compute nodes

• Submit your job on scinet

• Make sure its runs: checkjob -v

• From each terminal, ssh into the appropiate nodes

• Do top or ps -C <exe> to find process id (pid)

• Attach debugger with gdb -pid <pid>.

• This will interrupt the process (not for idbc).

Parallel Programming Intensive p. 27/29

Parallel debugging - 2 Distributed memory

Advanced tricks

Wait, so the program started already?

• Yes, and that’s probably not what you want.

• Instead, put infinite loop into your code:
int j=1;
while(j) sleep(5);

• Once attached, go “up” until at while loop.

• do “set var j=0”

• now you can step, continue, etc.

Note: You can use padb to find ranks of process etc.

Now let’s take a look at DDT. . .

Parallel Programming Intensive p. 28/29

Useful references

• G Wilson Software Carpentry
http://software-carpentry.org/3_0/debugging.html

• N Matloff and PJ Salzman

The Art of Debugging with GDB, DDD and Eclipse

• Padb: http://padb.pittman.org.uk

• Wiki: https://support.scinet.utoronto.ca/wiki

• Email: support@scinet.utoronto.ca

Parallel Programming Intensive p. 29/29

	Debugging basics
	continue Debugging basics
	What's wrong with using print statements?
	Symbolic debuggers
	continue Symbolic debuggers
	GDB basics - 1 Inspect crashes
	GDB basics - 2 Function call stack
	GDB basics - 3 Step through code
	GDB basics - 4 Automatic interruption
	GDB basics - 5 Variables
	Demonstration gdb
	Graphical symbolic debuggers
	Graphical symbolic debuggers - ddd
	Graphical symbolic debuggers - idb
	Parallel debugging
	Parallel debugging - 1 Shared memory
	Parallel debugging - Race conditions
	Parallel debugging - 2 Distributed memory
	continue Parallel debugging - 2 Distributed memory
	continue Parallel debugging - 2 Distributed memory
	continue Parallel debugging - 2 Distributed memory
	continue Parallel debugging - 2 Distributed memory
	Useful references

