
Hybrid OpenMP+MPI

Scientific Computing Lecture 24

SciNet, University of Toronto

Ramses van Zon

April 3, 2014

Shared and distributed memory

Modern clusters have a hybrid architecture.

I Multicore machines linked
together with an
interconnect

I Machines with GPU or
other coprocessors: GPU is
multi-core, but the amount
of shared memory is limited.

MPI vs OpenMP

We have OpenMP for shared memory programming.

We have MPI to program distributed memory machines

model memory latency mem.overhead scalable incremental

OpenMP shared mem low low limited yes
MPI distributed high(er) higher yes no

I Could we have the best of both worlds?

MPI and OpenMP

Hybrid programming model of using MPI and OpenMP:

I MPI across nodes

I OpenMP within nodes

I Minimizes communication

I Scalable

I Not much more complicated than pure MPI

Hybrid Programming

Pros

I No decomposition on node

I Lower latency, less communication

I Less duplication of data (and perhaps computation)

I OpenMP has load balance capabilities

Cons

I One more layer to maintain

I OpenMP has more hidden side effects

I May have to worry about NUMA (later)

Hybrid Programming

Example

#include <mpi.h>
#include <omp.h>
#include <iostream>
int main(int argc, char ** argv)
{

int size,rank;
MPI Init(&argc,&argv);
MPI Comm get rank(MPI COMM WORLD,&rank);
MPI Comm get size(MPI COMM WORLD,&size);
#pragma omp parallel for
for (int i=0;i<4;i++)
std::cout << "Hello world from thread "

<< omp get thread num() << std::endl;
MPI Finalize();

}

Hybrid Programming

OMP_NUM_THREADS

N

p
r
o
c
e
s
s
e
s

I Memory shared among threads of same process

I Memory not shared among threads of different processes

Hybrid Programming

I Note: OpenMP inside MPI

I Often, one starts with an MPI code and adds in OpenMP.

I Compilation:
mpic++ -fopenmp [filename] -o [executable]

I Run:
export OMP NUM THREADS=M

mpirun -np N --bynode [executable]

I This starts N processes, spread out over the nodes.

I Between MPI Init and MPI Finalize, each process spawns
OMP NUM THREADS threads in #pragma omp parallel

blocks.

Thread Safety

I Some implementations are limited and do not have support
for MPI calls within OpenMP parallel blocks

I Thus, may need to do MPI in serial regions

I Not necessarily bad:

Less communication channels
Bigger messages

MPI Init thread

. . . is an MPI Init replacement that can check for thread support of
the MPI implementation.

int MPI Init thread(int *argc, char ***argv,

int required,

int *provided);

required and *provided can take values:

MPI THREAD SINGLE Only 1 thread will execute.
MPI THREAD FUNNELED 1 thread calls MPI.
MPI THREAD SERIALIZED 1 thread calls MPI at one time.
MPI THREAD MULTIPLE Multiple threads may call MPI at once

Hybrid Programming

Example

#include <mpi.h>
#include <omp.h>
#include <iostream>
int main(int argc, char ** argv)
{

int size,rank,thread;
MPI Init thread(&argc,&argv,MPI THREAD FUNNELED,&thread);
if (thread>=MPI THREAD FUNNELED) {

MPI Comm get rank(MPI COMM WORLD,&rank);
MPI Comm get size(MPI COMM WORLD,&size);
#pragma omp parallel for
for (int i=0;i<4;i++)
std::cout << "Hello world from thread "

<< omp get thread num() << std::endl;
}

MPI Finalize();
}

Common useful cases

I Memory bound applications
- each mpi process is a full application
- openmp requires less memory

I To fit NUMA (later)

I Overlap comm/comp
- 1 thread for communication, i/o, services
- rest for work

Common useful cases

I Overlap IO/comp
- 1 thread for IO
- rest for work

Shared Memory: NUMA

NUMA = Non-Uniform Memory Access

I Multiple cores, but often
multiple chips (aka
sockets).

I Each chip may have some
memory nearby, but can
also access the memory of
the other chip, at a slower
rate.

I Each core typically has
some memory/cache of its
own.

I Memory locality matters
even on a node.

~ ~

~

~�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Memoryn n

n

n

Affinity

Where do processes, threads and memory go?

I Operating system distributes threads and processes over cores,
and may migrate them from one core to another.

I Typically, one would want the threads of a process to be on
the same core (but not always).

I One would want the memory used by a thread to be close to
the core on which it runs.

I In Linux, memory is not physically allocated until used.

I Memory is owned by the first thread that uses it: ’first access’.

I Data initialized in a serial section may be ’far’ for some
threads.

On most systems, these defaults make sense.

Tuning the process/thread affinity

Process/thread affinity:

I Command-line tools like numactl.

I Calls to sched setaffinity.

I Flags to mpirun.
E.g. OpenMPI has -bind-to-core and -bind-to-socket.

I OMP PROC BIND=true and implementation specific environment
variables.

This does prevent the OS from load balancing.
Not an issue if you’re using all resources of a node.

Tuning the memory affinity

I If a process does not get migrated by OS, memory will remain
close to process.

I For threads, in coding, use thread-local variables if you can.

(sometimes copying into a thread-local variable can help)

I When a part of the data is mainly used by a specific thread,
initialize it in that thread (i.e. not in a serial section).

Homework

I Take your mpi’ed code of last week, and ensure that each
processes writes to their own file in binary.

I Change output to MPI-IO so you’d get only one file per run.

I Add OpenMP to the loops where it makes sense.

I Set the ‘plotEvery’ parameter in the diffusion.ini file to 500.

I Time the 16 cases that you get taking values for
OMP NUM THREADS and the number of MPI processes
from the values 1,2,4, and 8.
Be sure to adjust the number of cores in your submission
script to avoid overloading cores.

I Plot the timings as a function of OMP NUM THREADS, one
plot for each value of the number of MPI processes.

I Compare cases using the same number of overall cores, too.

I Plot the timing results and explain what you see.

Submit code, makefile, git log, plots, explanations by April 10.

