
Numerical Tools for Physical Scientists:
Partial Differential Equations

Erik Spence

SciNet HPC Consortium

6 March 2014

Erik Spence (SciNet HPC Consortium) PDEs 6 March 2014 1 / 24

Today’s class

Today we will discuss the following topics:

Basic approaches to solving PDEs.

How to approach the temporal part of the equations.

How to approach the spatial part of the equations.

Assignment 8.

Erik Spence (SciNet HPC Consortium) PDEs 6 March 2014 2 / 24

Partial Differential Equations

Partial differential equations (PDEs) are differential equations which
contain derivatives of more than one variable.

A
∂2Φ

∂x2
+B

∂2Φ

∂x∂y
+ C

∂2Φ

∂y2
= F

(
x, y,Φ,

∂Φ

∂x
,
∂Φ

∂y

)
For A,B,C constant, three classes of PDEs show up repeatedly in
physical systems.

If B2 − 4AC < 0, the equation is called elliptic.

If B2 − 4AC = 0, the equation is called parabolic (diffusive).

If B2 − 4AC > 0, the equation is called hyperbolic (wavelike).

Erik Spence (SciNet HPC Consortium) PDEs 6 March 2014 3 / 24

How do we solve these problems?

Let’s look at parabolic equations; in particular, let us look at the heat
equation.

∂T

∂t
= D

∂2T

∂x2
,

where T is the temperature and k is the thermal diffusivity.

How do we solve this equation? By discretizing in both space and time,
and marching an initial condition forward in time.

Erik Spence (SciNet HPC Consortium) PDEs 6 March 2014 4 / 24

Dealing with time

Rewrite the right-hand side as an operator:

∂T

∂t
= k

∂2T

∂x2
→

∂T

∂t
= FT

Basic approaches to dealing with the time part of the equation:

Explicit methods, such as forward Euler:

∂Ti+1

∂t
= FTi → Ti+1 = (1 + hF)Ti

Implicit methods, such as backward Euler:

∂Ti+1

∂t
= FTi+1 → (1− hF)Ti+1 = Ti

Where h = ∆t is our timestep.

Erik Spence (SciNet HPC Consortium) PDEs 6 March 2014 5 / 24

Explicit Methods

Methods are called explicit when only Ti is on the right side of the
equation. Explicit methods have some nice features:

They are very easy to implement.

They are usually quick to calculate (no matrix inversions).

Easier to parallelize, since the calculation is inherently local.

There exist more-accurate explicit methods than forward Euler.

∂Ti+1

∂t
= FTi → Ti+1 = (1 + hF)Ti

But there are some serious downsides as well:

They are not very accurate at low order (O(h) for forward Euler).

They can be numerically unstable (though there are exceptions).

Erik Spence (SciNet HPC Consortium) PDEs 6 March 2014 6 / 24

Runge-Kutta methods
A commonly-used class of explicit methods are the Runge-Kutta methods.
Assume we have a differential equation of the form

∂y(t)

∂t
= f(t, y)

Then the fourth-order Runge-Kutta (RK4) method is given by

yi+1 = yi + (k1 + 2k2 + 2k3 + k4)/6

where

k1 = hf(t, yi)

k2 = hf(t+ h/2, yi + k1/2)

k3 = hf(t+ h/2, yi + k2/2)

k4 = hf(t+ h, yi + k3)

Erik Spence (SciNet HPC Consortium) PDEs 6 March 2014 7 / 24

Runge-Kutta methods, continued

Notes about RK4:

yi+1 is yi plus a weighted average of four different estimates of y, at
different intervals.

The terms are derived from repeated Taylor expansions of y.

But the terms themselves do not require calculating the derivatives of
y.

The method is globally accurate to O(h4).

The method was presented as an ODE, but can be generalized to
PDEs.

The method is not necessarily stable, but more stable than
forward-Euler.

Commonly implemented in standard C++ numeric packages
(BOOST, GSL).

Erik Spence (SciNet HPC Consortium) PDEs 6 March 2014 8 / 24

The timestep size
Consider again the heat equation, where the spatial coordinate is given by
the second index, Ti,j = T (ti, xj).

∂Ti,j

∂t
= k

[
Ti,j+1 − 2Ti,j + Ti,j−1

∆x2

]
which then becomes

Ti+1,j = Ti,j +
k∆t

∆x2
[Ti,j+1 − 2Ti,j + Ti,j−1]

what are the conditions for this to be stable? Look at the eigenvalues of
the operator and you’ll find that for |λ| ≤ 1 we require k∆t

∆x2 ≤ 0.5.

∆t ≤
∆x2

2k

If you double the spatial resolution, you need to quadruple
the temporal resolution, for stability.

Erik Spence (SciNet HPC Consortium) PDEs 6 March 2014 9 / 24

The CFL condition

The Courant-Friedrichs-Lewy (CFL) condition is a necessary condition for
numerical stability for hyperbolic PDEs, in explicit timestepping schemes.
Consider the heat equation with advection:

∂T (t)

∂t
+ (v · ∇T) = f(t, T)

where v is a velocity field. Then the CFL condition, in 1D, is given by

C =
u∆t

∆x
≤ Cmax → u ≤

∆x

∆t
Cmax

where u is the speed in the x direction. The value of Cmax depends on
the method, but in general for explicit methods cannot be greater than 1.

Erik Spence (SciNet HPC Consortium) PDEs 6 March 2014 10 / 24

Implicit methods
Methods are called implicit when Ti+1 is on both sides of the equation.
Examples include backward Euler:

∂Ti+1

∂t
= FTi+1 O(h)

and Crank-Nicolson:

∂Ti+1

∂t
= (FTi+1 + FTi)/2 O(h2)

Implicit time stepping methods have some nice features:

They are stable over a wide range of timestep sizes, sometimes
unconditionally (not unconditionally accurate, though).

Excellent for solving steady-state problems.

Downsides include being more difficult to code, and much more difficult to
parallelize (inverting the operator depends upon all grid points).

Erik Spence (SciNet HPC Consortium) PDEs 6 March 2014 11 / 24

Dealing with space

We’ve talked about time. Now, what about space? How can we deal with
the spatial aspects of the problem? How should set up our spatial
discretization?

Let’s consider the usual approaches, when one is dealing with fields.

Finite difference methods.

Finite volume methods.

Spectral methods.

Erik Spence (SciNet HPC Consortium) PDEs 6 March 2014 12 / 24

Finite difference methods

Finite difference methods are the simplest way to deal with your equations.
You’ve seen finite differences before, in assignments 2 & 3.

The simulation domain is discretized.

Derivatives are approximated by linear combinations of function
values at the grid points.

We’ve used ’central differences’ before, to calculate our second derivatives.
Where did that come from?

∂2T

∂x2
=
Ti+1 − 2Ti + Ti−1

∆x2

Erik Spence (SciNet HPC Consortium) PDEs 6 March 2014 13 / 24

Calculating derivatives

We need to calculate the second spatial derivatives. How best to do that?
We discretize the x domain, and examine the Taylor expansion of some
function f , centered around three different points:

j − 2 j − 1 j j + 1 j + 2

f(xj−1) = f(xj)− (∆x)
∂f(xj)

∂x
+

(∆x)2

2!

∂2f(xj)

∂x2
+O(∆x3)

f(xj) = f(xj)

f(xj+1) = f(xj) + (∆x)
∂f(xj)

∂x
+

(∆x)2

2!

∂2f(xj)

∂x2
+O(∆x3)

Where ∆x = xj − xj−1.

Erik Spence (SciNet HPC Consortium) PDEs 6 March 2014 14 / 24

Calculating derivatives, continued
We can write this as a matrix operation:f(xj−1)

f(xj)
f(xj+1)

 =

1 −∆x ∆x2

1 0 0
1 ∆x ∆x2

 f(xj)
f ′(xj)
f ′′(xj)

To get the answer we invert the matrix:

f(xj)

f ′(xj)

f ′′(xj)

 =

0 1 0
−1

2∆x
0 1

2∆x

1
∆x2

−2
∆x2

1
∆x2

f(xj−1)

f(xj)

f(xj+1)

f ′(xj) =

∂f(xj)

∂x
=
f(xj+1)− f(xj−1)

2∆x

f ′′(xj) =
∂2f(xj)

∂x2
=
f(xj+1)− 2f(xj) + f(xj−1)

∆x2

Erik Spence (SciNet HPC Consortium) PDEs 6 March 2014 15 / 24

Finite volume methods

Finite volume methods are based on the discretization of the integral
forms of the equations, rather than the differential form.

Convert all divergences into fluxes through the surfaces of each
volume.

Create a grid on which we will evaluate our fields. ”Finite volume”
refers to the small volume of space which surrounds each grid point.
These are called ”control volumes” (CVs).

Discretize the equations on the CVs.

Solve. Make sure your fluxes balance.

Erik Spence (SciNet HPC Consortium) PDEs 6 March 2014 16 / 24

Finite volume methods, continued

So what have you done to the equations?

∂T

∂t
= k∇2T = k (∇ · ∇T)

∂

∂t

∫
TdV = k

∫
(∇ · ∇T) dV

= k

∫
(∇T · n̂) dS

where we have used the divergence theorem, and n̂ is the unit vector
normal to the CV’s surfaces.

Erik Spence (SciNet HPC Consortium) PDEs 6 March 2014 17 / 24

Finite volume methods, continued

∂

∂t

∫
TdV = k

∫
(∇T · n̂) dS

T is calculated at the center, ∇T at
the surfaces.

Assume that T is constant
throughout the control volume and
∇T constant across the surface.

Dot ∇T with the normal vectors n̂.

(i, j) (i + 1, j)(i − 1, j)

(i, j + 1)

(i, j − 1)

n̂ n̂

n̂

n̂

∆x2∂T

∂t
= k

[(
Ti,j − Ti−1,j

∆x

)
(−1) +

(
Ti+1,j − Ti,j

∆x

)
+(

Ti,j − Ti,j−1

∆x

)
(−1) +

(
Ti,j+1 − Ti,j

∆x

)]
∆x

= k (Ti−1,j + Ti,j−1 + Ti+1,j + Ti,j+1 − 4Ti,j)

Erik Spence (SciNet HPC Consortium) PDEs 6 March 2014 18 / 24

Advantages of finite volume methods

Finite volume methods have a number of advantages:

The methods ensure that all quantities are conserved, both locally
and globally, assuming that all surface fluxes balance.

The methods are easily adapted to irregular meshes, or unstructured
meshes (arbitrary polyhedra or polygons).

The methods can be especially powerful in cases where the mesh
moves or adapts to the simulation.

For the case where the grid is uniform, the finite volume method reduces
to the finite difference method.

Erik Spence (SciNet HPC Consortium) PDEs 6 March 2014 19 / 24

Spectral methods
Spectral methods involve expanding fields in terms of some orthogonal
basis set. Sinusoids are often use in situations which are periodic (periodic
boxes):

T (t, x) =
nmax∑
n=0

an(t) sin
(

2πnx

L

)
+ bn(t) cos

(
2πnx

L

)
For 0 ≤ x ≤ L.

If your geometry is spherical, you might expand in spherical harmonics:

T (t, r, θ, φ) =
∑
l,m

al,m(t, r)Yl,m(θ, φ)

You might also expand your r dependence spectrally:

T (t, r, θ, φ) =
∑
l,m,α

al,m,α(t)Nα(r)Yl,m(θ, φ)

Erik Spence (SciNet HPC Consortium) PDEs 6 March 2014 20 / 24

Why would you do that?
There are a number of reasons why you might solve your equations
spectrally:

The equations may be easier to solve, especially if the operators are
eigenfunctions of the basis in question.

The expansions are global in nature. If your boundary conditions are
global (such as magnetic boundary condtions), this may be the only
way to easily satisfy them.

They can be very accurate, in certain cases converging exponentially
to exact solutions.

Because they are accurate, fewer grid points are needed, resulting in
less memory being needed.

If conversion between real-space and spectral-space is needed to be
regularly performed as part of the algorithm, advanced algorithms
exists for some of these transforms (FFTs).

Erik Spence (SciNet HPC Consortium) PDEs 6 March 2014 21 / 24

Why wouldn’t you do that?

Spectral methods have some downsides as well:

The implementations can be more difficult to code.

Because the expansions are global in nature, the domain needs to
match the expansion basis. Complicated geometries lose accuracy,
since the expansion must be long.

Nonlinear terms can be very slow to be calculated.

Erik Spence (SciNet HPC Consortium) PDEs 6 March 2014 22 / 24

Assignment 8
The Fourier transform of the 1D diffusion equation leads to

∂T

∂t
= D

∂2T

∂x2
→

∂T̂

∂t
= −Dk2T̂

where we are now diffusing heat instead of density. The solution is

T̂ (t, k) = T̂0(k)e−Dk
2t.

Write a program which models the following heating of a 1D ’rod’, and
evolves the temperature profile in Fourier space:

Initialize the temperature profile in real space, with T (0, x) = 0,
except with T (0, L/2) = 1.

Transform the temperature profile to Fourier space.

Step foward in time. Output the real space temperature profile every
timestep.

Every 10 timesteps add 1 to the x = L/2 temperature
gridpoint.

Erik Spence (SciNet HPC Consortium) PDEs 6 March 2014 23 / 24

Assignment 8, continued
Please use the following parameters:

L = 2.0 (length of rod).

n = 40 (number of grid points).

D = 10.0 (coefficient of diffusivity).

dt = 1e− 4 (timestep size).

num = 50 (total number of timesteps).

Also note that, due to the fact the we are not transforming over
(−∞,∞), but rather over [0, L], the values of k must be modified to
account for periodicity:

k[i] =

{
2πi/L, 0 ≤ i < n/2
2π(n− i)/L, n/2 ≤ i < n

Submit your code, Makefile, ’git log’ output. Remember to
comment your code.

Erik Spence (SciNet HPC Consortium) PDEs 6 March 2014 24 / 24

	PDEs
	Timestepping methods
	Runge-Kutta methods
	Timestep size
	Implicit methods

	Dealing with space
	Finite difference methods
	Finite volume methods
	Spectral methods

	Assignment 8

