
Scenes From the
Language Struggle in

Toronto, Ontario
Mike Nolta

Friday, September 4, 2009

Ch-Ch-Changes

• OpenMP & MPI are fine for now, but we
need language support for parallelism.

• Corbato’s Law: “The number of lines of
code a programmer can write in a fixed
amount of time is the same independent of
the language used.”

Friday, September 4, 2009

Two roads diverged

• C & Fortran were designed decades ago.

- They’re going to have to adapt, or be
replaced by new languages.

• Example of adaptation: C-blocks

• Example new language: Erlang

Friday, September 4, 2009

C-blocks

Friday, September 4, 2009

What are blocks?

• Developed by Apple as part of Snow
Leopard.

• Called “closures” in most other languages.

• Can think of them as improved function
pointers.

Friday, September 4, 2009

Similar to function ptr...

// function pointer
int (*fptr)(int i);

int j = fptr(3);

// block
int (^blck)(int i);

int j = blck(3);

Friday, September 4, 2009

...but defined inline

// function pointer
int (*fptr)(int i);
fptr = &function_name;
int j = fptr(3);

// block
int (^blck)(int i);
blck = ^(int i) { return i+2; };
int j = blck(3);

Friday, September 4, 2009

Blocks are functions w/
bound variables

blck = ^(int i) { return i+2; };
int j = blck(3); // 5

int n = 30;
blck = ^(int i) { return i+n; };
int j = blck(3); // 33

Friday, September 4, 2009

Bound variables are
constant

int n = 30;
blck = ^(int i) { return i+n; };

int j = blck(3); // 33
n = -789;
int k = blck(3); // 33

Friday, September 4, 2009

Bound variables are
constant (2)

int n = 30;
blck = ^(int i) {
 n = 4; // illegal
 return i+n;
};

Friday, September 4, 2009

What does this have to
do w/ parallelism?

for (i = 0; i < N; i++) {
 result[i] = do_work(data, i);
}

Friday, September 4, 2009

Grand Central

dispatch_apply(N, queue,
 ^(size_t i) {
 result[i] = do_work(data, i);
 }
);

Friday, September 4, 2009

Erlang

Friday, September 4, 2009

What is Erlang?

• Erlang is a “new” computer language
created by Ericsson ~20 yrs ago.

- It’s new in the sense that it hasn’t
received a lot of attention until recently.

• Originally designed for telephony hardware.

• Open sourced in 1998.

Friday, September 4, 2009

Who uses it?

• Ericsson, of course, in their telephony
equipment.

- Systems have achieved 99.9999999%
uptime (0.03 sec downtime per year).

• Facebook’s chat servers are partially
written in Erlang; handles 70 million users.

• Amazon’s “SimpleDB” service; rumored
that IMdb is going to use Erlang.

Friday, September 4, 2009

Why use it?

• Designed to build massively concurrent,
distributed, fault-tolerant systems.

Friday, September 4, 2009

Why I’m interested

Friday, September 4, 2009

ACT control software

Friday, September 4, 2009

Basic syntax

Friday, September 4, 2009

Types

• Atoms: purely symbolic, have no value

- examples: true, ok, not_ready

• Integers, doubles

- integers are unbounded

• Binaries

Friday, September 4, 2009

Collections

• Tuples

- e.g.: {error, badarg}

• Linked lists

- e.g.: [1,2,3,4]

• Strings (e.g., “hello”) are really just lists of
integers

Friday, September 4, 2009

Naming conventions

• Variables have to start with an uppercase
letter.

• If it starts with a lowercase letter it’s an
atom.

• Example: true is an atom, True is a variable.

Friday, September 4, 2009

Erlang is Functional

Friday, September 4, 2009

“Functional”

• A “functional” language treats computation
as the evaluation of functions, and doesn’t
have mutable state.

• Other functional languages: Lisp, ML,
Mathematica.

• The are no loops in Erlang, just recursive
functions.

Friday, September 4, 2009

Simple functions

function_name(arg1, arg2, …) ->
 statement1,
 statement2,
 …
 statementN.

Friday, September 4, 2009

Example

area_of_rect(Width, Height) ->
 Width*Height.

Friday, September 4, 2009

Single assignment

[nolta@richelieu pca]$ erl
1> X = 3.
3
2> X = 4.
** exception error: no match of
right hand side value 4

Friday, September 4, 2009

Erlang is Declarative

Friday, September 4, 2009

Pattern-matching

• “=” in Erlang is not an assignment
operator, but a pattern matching operator.

1> {X,Y} = {ok,56}.
{ok,56}
2> X.
ok
3> Y.
56

Friday, September 4, 2009

Pattern-matching

• “=” in Erlang is not an assignment
operator, but a pattern matching operator.

1> [Head|Tail] = [1,2,3,4].
[1,2,3,4]
2> Head.
1
3> Tail.
[2,3,4]

Friday, September 4, 2009

Functions, too

fibonacci(0) ->
 0;
fibonacci(1) ->
 1;
fibonacci(N) ->
 fibonacci(N-1)*fibonacci(N-2).

Friday, September 4, 2009

Functions, too

fibonacci(0) ->
 0;
fibonacci(1) ->
 1;
fibonacci(N) when is_integer(N) and N>1 ->
 fibonacci(N-1)*fibonacci(N-2).

Friday, September 4, 2009

Example: summation

sum(List) ->
 sum(List, 0).

sum([], N) ->
 N;
sum([H|T], N) ->
 sum(T, N+H).

Friday, September 4, 2009

Example: building a list

range(N) ->
 range(N, []).

range(0, R) ->
 R;
range(I, R) ->
 range(I-1, [I|R]).

1> range(5).
[1,2,3,4,5]

Friday, September 4, 2009

Erlang is Concurrent

Friday, September 4, 2009

Actor model

• Actors can:

- create new actors,

- send messages to other actors,

- receive messages.

• All communication is asynchronous.

Friday, September 4, 2009

Creating processes

Pid = spawn(function).
Pid = spawn(node, function).

• function runs concurrently in its own
process.

• Shares no state with parent (or any other)
process.

• Pid is unique process ID.

Friday, September 4, 2009

Sending messages

Pid ! {list_sum,[1,4,5]}.

• Sends the message “{list_sum,
[1,4,5]}” asynchronously to the process
Pid.

• Messages can be anything.

• Doesn’t matter if Pid is local or
remote process.

Friday, September 4, 2009

Receiving messages
receive
 {list_sum,List} ->
 X = sum(List);
 {list_mult,List} ->
 X = mult(List)
end.

• Every process has its own mailbox queue of
messages.

• receive blocks until a message arrives
matching one of its pattern.

Friday, September 4, 2009

Example: RPC

Pid ! {rpc,method,Args},
receive
 {reply,Pid,Reply} ->
 io:format(“~p~n”, [Reply])
end.

Friday, September 4, 2009

Best of both worlds

• Erlang processes are similar to MPI
processes: no shared state, pass messages
back and forth.

• But Erlang processes are lightweight like
OpenMP threads; only costs ~300 bytes to
create one.

Friday, September 4, 2009

1000’s of processes

• Random blog quote: “The best I got on my
MacBook Pro after numerous runs was
0.301 seconds with 2400 processes.”

Friday, September 4, 2009

“Process oriented”

• Languages like C++/Python are object-
oriented: state is encapsulated in classes.

• Erlang is process-oriented: state is
encapsulated in processes.

Friday, September 4, 2009

Full example

Friday, September 4, 2009

Wikipedia
MPI “hello world”

/*
 "Hello World" Type MPI Test Program
 */
 #include <mpi.h>
 #include <stdio.h>
 #include <string.h>

 #define BUFSIZE 128
 #define TAG 0

 int main(int argc, char *argv[])
 {
 char idstr[32];
 char buff[BUFSIZE];
 int numprocs;
 int myid;
 int i;
 MPI_Status stat;

 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD,&myid);

if(myid == 0)
 {
 printf("%d: We have %d processors\n", myid, numprocs);
 for(i=1;i<numprocs;i++)

 {
 sprintf(buff, "Hello %d! ", i);
 MPI_Send(buff, BUFSIZE, MPI_CHAR, i, TAG, MPI_COMM_WORLD);
 }
 for(i=1;i<numprocs;i++)
 {
 MPI_Recv(buff, BUFSIZE, MPI_CHAR, i, TAG, MPI_COMM_WORLD, &stat);
 printf("%d: %s\n", myid, buff);
 }
 }
 else
 {
 /* receive from rank 0: */
 MPI_Recv(buff, BUFSIZE, MPI_CHAR, 0, TAG, MPI_COMM_WORLD, &stat);
 sprintf(idstr, "Process %d ", myid);
 strcat(buff, idstr);
 strcat(buff, "reporting for duty");
 /* send to rank 0: */
 MPI_Send(buff, BUFSIZE, MPI_CHAR, 0, TAG, MPI_COMM_WORLD);
 }

 MPI_Finalize();
 return 0;
 }

Friday, September 4, 2009

[nolta@tpb5 pca]$ mpirun C ./a.out
0: We have 8 processors
0: Hello 1! Process 1 reporting for duty
0: Hello 2! Process 2 reporting for duty
0: Hello 3! Process 3 reporting for duty
0: Hello 4! Process 4 reporting for duty
0: Hello 5! Process 5 reporting for duty
0: Hello 6! Process 6 reporting for duty
0: Hello 7! Process 7 reporting for duty
[nolta@tpb5 pca]$

Output

Friday, September 4, 2009

-module(hello_world).
-compile(export_all).

main(N) ->
 Slaves = make_slaves(N),
 collect_replies(Slaves).

Master process

Friday, September 4, 2009

make_slave(N)->
 Slave = spawn(fun() -> slave(N) end),
 Slave ! { hi, self(),
 io_lib:format("Hello ~w!",[N]) },
 {Slave,N}.

make_slaves(N) ->
 lists:map(fun(I) -> make_slave(I) end, range(N)).

Making the slaves

Friday, September 4, 2009

slave(I) ->
 receive
 {hi, From, Message} ->
 Response = io_lib:format(
 "~s Process ~w reporting for duty",
 [Message,I]),
 From ! { howdy, self(), Response }
 end.

Slave process

Friday, September 4, 2009

collect_replies([{Pid,N}|T]) ->
 receive
 { howdy, Pid, Message } ->
 io:format("0: ~s~n", [Message]),
 collect_replies(T);
 end;
collect_replies([]) ->
 done.

Collecting the replies

Friday, September 4, 2009

Eshell V5.6.2 (abort with ^G)
1> hello_world:main(7).
0: Hello 1! Process 1 reporting for duty
0: Hello 2! Process 2 reporting for duty
0: Hello 3! Process 3 reporting for duty
0: Hello 4! Process 4 reporting for duty
0: Hello 5! Process 5 reporting for duty
0: Hello 6! Process 6 reporting for duty
0: Hello 7! Process 7 reporting for duty
done

Friday, September 4, 2009

-module(hello_world).
-compile(export_all).

main(N) ->
 Slaves = make_slaves(N),
 {ThirdPid,_} = lists:nth(3,Slaves),
 exit(ThirdPid, bye_bye),
 collect_replies(Slaves).

What happens if a slave
dies?

Friday, September 4, 2009

Eshell V5.6.2 (abort with ^G)
1> hello_world2:main(7).
0: Hello 1! Process 1 reporting for duty
0: Hello 2! Process 2 reporting for duty

BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded
 (v)ersion (k)ill (D)b-tables (d)istribution
a

Friday, September 4, 2009

collect_replies([{Pid,N}|T]) ->
 receive
 { howdy, Pid, Message } ->
 io:format("0: ~s~n", [Message]),
 collect_replies(T);
 after 5000 ->
 io:format("restarting slave~w~n", [N]),
 exit(Pid, too_late),
 NewSlave = make_slave(N),
 collect_replies([NewSlave|T])
 end;
collect_replies([]) ->
 done.

Restarting the slave

Friday, September 4, 2009

Eshell V5.6.2 (abort with ^G)
1> hello_world3:main(7).
0: Hello 1! Process 1 reporting for duty
0: Hello 2! Process 2 reporting for duty
restarting slave3
0: Hello 3! Process 3 reporting for duty
0: Hello 4! Process 4 reporting for duty
0: Hello 5! Process 5 reporting for duty
0: Hello 6! Process 6 reporting for duty
0: Hello 7! Process 7 reporting for duty
done

Friday, September 4, 2009

collect_replies([{Pid,N}|T]) ->
 receive
 { howdy, Pid, Message } ->
 io:format("0: ~s~n", [Message]),
 collect_replies(T);
 {'DOWN',_,process,Pid,Reason} ->
 io:format("restarting slave~w because ~w~n",
 [N,Reason]),
 NewSlave = make_slave(N),
 collect_replies([NewSlave|T])
 end;
collect_replies([]) ->
 done.

Restarting the slave

Friday, September 4, 2009

Eshell V5.6.2 (abort with ^G)
1> hello_world4:main(7).
0: Hello 1! Process 1 reporting for duty
0: Hello 2! Process 2 reporting for duty
restarting slave3 because bye_bye
0: Hello 3! Process 3 reporting for duty
0: Hello 4! Process 4 reporting for duty
0: Hello 5! Process 5 reporting for duty
0: Hello 6! Process 6 reporting for duty
0: Hello 7! Process 7 reporting for duty
done

Friday, September 4, 2009

Only scratched the
surface

Friday, September 4, 2009

server(Module) ->
 receive
 { apply, From, Args } ->
 From ! Module:handle(Args),
 server(Module);
 { hotswap, NewModule } ->
 server(NewModule)
 end.

Hot code swapping

Friday, September 4, 2009

“Batteries included”

• Comes with a bunch of useful stuff:

- debuggers, profilers, tracers, coverage,
process monitors, …

- Mnesia: a distributed parallel database

- OTP: standard library for building fault-
tolerant applications

Friday, September 4, 2009

Numerical Work

Friday, September 4, 2009

Erlang is not ready for
numerical work

• Numerical libraries are essentially non-
existent.

• But this will change in the next few years.

• It will be a lot easier to add BLAS/LAPACK/
FFT/etc to Erlang than to make other
languages concurrent.

Friday, September 4, 2009

Summary

• Erlang: functional, declarative, concurrent,
fault-tolerant.

• Worth keeping an eye on.

Friday, September 4, 2009

• http://erlang.org/ for the source code.

• “Progamming Erlang” book by Joe
Armstrong (one of the original creators).

• Google “erlang movie” -- hilarious.

More information

Friday, September 4, 2009

http://erlang.org
http://erlang.org

