Scientific Computing (PHYS 2109/Ast 3100 H) II. Numerical Tools for Physical Scientists

SciNet HPC Consortium
University of Toronto

Winter 2014

Convereacu

Lecture 13: Numerical Linear Algebra

Part I - Theory

- Solving $\mathrm{Ax}=\mathrm{b}$
- System Properties
- Direct Solvers
- Iterative Solvers
- Dense vs. Sparse matrices
compute \bullet calcul
三 ${ }^{\text {CANADA }}{ }^{\text {A }}$

Lecture 13: Numerical Linear Algebra

Part I - Theory

- Solving $\mathrm{Ax}=\mathrm{b}$
- System Properties
- Direct Solvers
- Iterative Solvers
- Dense vs. Sparse matrices

Part II - Application

- Using packages for Linear Algebra
- BLAS
- LAPACK
- etc...
compute \bullet calcul

How to write numerical linear algebra

As much as possible, rely on existing, mature software libraries for performing numerical linear algebra computations. By doing so...

- Focus on your code details
- Reduce the amout of code to produce/debug
- Libraries are tuned and optimized, ie. your code will run faster
- More options to switch methods if necessary
compute \bullet calcul

Software

Packages

- Netlib (http://www.netlib.org)
- Maintained by UT and ORNL
- Most of the code is public domain or freely licensed
- Mostly written in FORTRAN 77!
- BLAS \& LAPACK

Software

Packages

- Netlib (http://www.netlib.org)
- Maintained by UT and ORNL
- Most of the code is public domain or freely licensed
- Mostly written in FORTRAN 77!
- BLAS \& LAPACK
- PETSc (http://www.mcs.anl.gov/petsc/)
- Argonne National Labs
- Open Source
- C++
- PDE \& Iterative Linear Solvers

Software

Packages

- Netlib (http://www.netlib.org)
- Maintained by UT and ORNL
- Most of the code is public domain or freely licensed
- Mostly written in FORTRAN 77!
- BLAS \& LAPACK
- PETSc (http://www.mcs.anl.gov/petsc/)
- Argonne National Labs
- Open Source
- C++
- PDE \& Iterative Linear Solvers
- Trilinos (http://trilinos.sandia.gov/)
- Sandia National Labs
- Collection of 50+ packages
- Linear Solvers, Preconditioners, etc.

Software

Packages

- Netlib (http://www.netlib.org)
- Maintained by UT and ORNL
- Most of the code is public domain or freely licensed
- Mostly written in FORTRAN 77!
- BLAS \& LAPACK
- PETSc (http://www.mcs.anl.gov/petsc/)
- Argonne National Labs
- Open Source
- C++
- PDE \& Iterative Linear Solvers
- Trilinos (http://trilinos.sandia.gov/)
- Sandia National Labs
- Collection of 50+ packages
- Linear Solvers, Preconditioners, etc.
- Others
- http://www.netlib.org/utk/people/JackDongarra/la-sw.htriNet

BLAS

Basic Linear Algebra Subroutines

- A well defined standard interface for these routines
- Many highly-tuned implementations exist for various platforms. (Atlas, Flame, Goto, PLASMA, cuBLAS...)
- (Interface vs. Implementation! Trick is designing a sufficiently general interface.)
- Higher-order operations (matrix factorizations, like as we'll see, gaussian elimiation) defined in LAPACK, on top of BLAS.

Typical BLAS routines

- Level I:sdot (dot product, single), zaxpy (ax+y, dbl complex)
- Level 2: dgemv (dbl matrix*vec), dsymv (dbl symmetric matrix*vec)
- Level 3: sgemm (general matrix-matrix), ctrmm (triangular matrix-matrix)

Prefixes:
S:Single C:Complex
D: Double Z: Double Complex

Matrix Types:

GE: General SY:Symmetric GB: General Banded SB: Symmetric Banded HY:Hermetian
TR:Triangular
TP:Triangular Packed

HB: Hermetian Banded
TB:Triangular Banded

- Incredibly cryptic names, interfaces.

Why bother?

- Finding, downloading library

$$
\begin{array}{r}
C=A B \\
c_{i, j}=\sum_{k} a_{i, k} b_{k, j}
\end{array}
$$

- Figuring out how to link

$$
\begin{aligned}
& \text { for (i=0; } i<N ; i++ \text {) } \\
& \text { for (} j=0 \text {; } j<N ; ~ j++ \text {) } \\
& \text { for }(k=0 ; k<N ; k++) \\
& \text { c[i][j] = a[i][k]*b[k][j]; }
\end{aligned}
$$

- Just write it - it's not rocket science.

Never, ever,

 write your ownMatrix-Matrix Multiplication (MMM) on $2 \times$ Core 2 Extreme $\mathbf{3}$ GHz Performance [Gflop/s]

"How to Write Fast Numerical Code:A Small Introduction", Chellappa et al www.ece.cmu.edu/~franzf/papers/gttse07.pdf

Using BLAS

BLAS \& LAPACK

- netlib provides "reference" implementation
- Most vendors provide optimized versions
- Commercial: Intel (MKL), AMD (ACML), IBM (ESSL)
- Open Source: ATLAS, GotoBLAS, OpenBLAS
- Fortran functions
- C interface using CBLAS and LAPACKE

Using BLAS

Install OpenBLAS (http://www.openblas.net/)

Sgit clone git://github.com/xianyi/OpenBLAS.git
\$cd OpenBlaS
\$make FC=gfortran
\$make install PREFIX=\$HOME/OpenBLAS/
the following in .bashrc
export BLAS_INC= $\$\{$ HOME $\} / O p e n B L A S / i n c l u d e /$
export BLAS_LIB= $\$\{$ HOME $\} / O p e n B L A S / l i b /$
export LD_LIBRARY_PATH=\$\{LD_LIBRARY PATH $\}: \$\{$ HOME $\} / O p e n B L A S / l i b / ~$
(compute \bullet calcul

BLAS Example: DSCAL $(\mathbf{x} \leftarrow \alpha \mathbf{x})$

```
#include <iostream>
#include 〈cblas.h>
int main(int argc, char **argv) {
    double x[] ={1.0, 2.0, 3.0};
    double coeff = 4.323;
    int one = 1;
    int n = 3;
    //Direct Fortran call
    dscal_(&n, &coeff, &x[0], &one);
    for (int i = 0; i < n; i++)
    std::cout<<" "<<x[i];
    return 0;
}
```

ㅍNADA

BLAS Example: DSCAL $(\mathbf{x} \leftarrow \alpha \mathbf{x})$

```
#include <iostream>
#include 〈cblas.h>
int main(int argc, char **argv) {
    double x[] ={1.0, 2.0, 3.0};
    double coeff = 4.323;
    int one = 1;
    int n = 3;
    //Using CBLAS interface
    cblas_dscal(n,coeff,x,one);
    for (int i = 0; i < n; i++)
    std::cout<<" "<<x[i];
    return 0;
}
```

- compute \cdot calcul

三${ }^{\text {CANADA }}{ }^{\circ}$

BLAS Example: DSCAL $(\mathbf{x} \leftarrow \alpha \mathbf{x})$

\$g++ dscal.cc -o dscal - $\mathbf{I} \$\{$ bLAS_Inc $\}-\mathrm{L} \$\{$ bLAS_LIB $\}-l o p e n b l a s$ \$./dscal
\$4.323 8.64612 .96

BLAS Example: DGEMM $(\mathbf{C} \leftarrow \alpha \mathbf{A B}+\beta \mathbf{C})$

Documentation

- http://www.netlib.org/blas/blast-forum/
- \$ man dgemm

NAME

```
DGEMM - performs one of the matrix-matrix operations C := alpha*op( A )*op( B ) + beta*C,
```

SYNOPSIS
SUBROUTINE DGEMM(TRANSA,TRANSB, M,N,K, ALPHA, A , LDA , B, LDB , BETA , C, LDC)

```
DOUBLE
PRECISION ALPHA,BETA
INTEGER K,LDA,LDB,LDC,M,N
CHARACTER TRANSA,TRANSB
DOUBLE
PRECISION
A(LDA ,*),B(LDB ,*),C(LDC,*)
```

PURPOSE
DGEMM performs one of the matrix-matrix operations
where $o p(X)$ is one of

$$
o p(X)=X \quad \text { or } \quad o p(X)=X^{\prime},
$$

alpha and beta are scalars, and A, B and C are matrices, with op(A) an m by matrix, $\mathrm{op}(\mathrm{B}) \mathrm{a} \mathrm{k}$ by n matrix and C an m by n matrix.
compute \bullet calcul
CANADA
$\equiv^{C A N A D A}$

BLAS

Misc. Details

- LDA - Leading Dimension of " A " used to access subblocks of
- CBLAS additions CblasRowMajor, cblasColMajor
- compute \cdot calcul
$\bar{I}^{C A N A D A}{ }^{\text {C }}$

BLAS Example: DGEMM $(\mathbf{C} \leftarrow \alpha \mathbf{A B}+\beta \mathbf{C})$

```
#include <iostream>
#include <cblas.h>
int main(int argc, char **argv) {
    int m=5,k=5, n = 5;
    double alpha = 1.0, beta = 0.0;
    double *A = new double[m*k];
    double *B = new double[k*n];
    double *C = new double[m*n];
    for (int i=0; i< (m*k); i++) A[i] = (double)(i+1);
    for (int i=0; i<(k*n); i++) B[i] = (double)(-i-1);
    for (int i=0; i<(m*n); i++) C[i] = 0.0;
    cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
    m, n, k, alpha, A, k, B, n, beta, C, n);
}
```


BLAS Example: DGEMM $(\mathbf{C} \leftarrow \alpha \mathbf{A B}+\beta \mathbf{C})$

$$
\begin{aligned}
& \text { Matrix A : } 5 \text { by } 5 \\
& 1 \begin{array}{llllllll}
& 2 & 3 & 4 & 5
\end{array} \\
& 6 \\
& 7
\end{aligned} 8
$$

LAPACK

C) compure eatal

The Linear Algebra PACKage (LAPACK)

LAPACK contains a variety of subroutines for solving linear systems, matrix decompositions, and factorizations.

- Intermally uses BLAS calls
- Supports the same data types (single/double precision, real/complex and matrix structure types (symmetric, banded, etc.) as BLAS
- Three categories: auxiliary routines, computational routines, and driver routines
- C interface with prefix lapacke_
- http://www.netlib.org/lapack/lapacke.html

The Linear Algebra PACKage (LAPACK)

Computational routines are designed to perform single, specific computational tasks:

- factorizations: $L U, L L^{T} / L L^{H}, L D L^{T} / L D L^{H}, Q R, L Q$, $Q R Z$ generalized $Q R$ and $R Q$
- symmetric/Hermitian and nonsymmetric eigenvalue decompositions
- singular value decompositions
- generalized eigenvalue and singular value decompositions

LAPACK Example: DGESV (Solve $\mathbf{A x}=\mathbf{b})$

NAME
DGESV - computes the solution to a real system of linear equations $\mathrm{A} * \mathrm{X}=\mathrm{B}$, SYNOPSIS

SUBROUTINE DGESV(N, NRHS, A, LDA, IPIV, B, LDB, INFO)

INTEGER	INFO, LDA, LDB , N, NRHS
INTEGER	$\operatorname{IPIV}(*)$
DOUBLE	PRECISION A(LDA $*), \mathrm{B}($ LDB,$*)$

PURPOSE
DGESV computes the solution to a real system of linear equations
A * $X=B$, where A is an $N-b y-N$ matrix and X and B are N-by-NRHS matrices.
The LU decomposition with partial pivoting and row interchanges is used to factor A as $\mathrm{A}=\mathrm{P} * \mathrm{~L} * \mathrm{U}$,
where P is a permutation matrix, L is unit lower triangular, and U is upper triangular.
The factored form of A is then used to solve the system of equations $A * X=B$.
(compute \cdot calcul
$\bar{E}^{\text {CANADAAC }}$

LAPACK Example: DGESV (Solve $\mathbf{A x}=\mathbf{b})$

```
#include <iostream>
#include <lapacke.h>
const int N=3, NRHS=2, LDA=N, LDB=N;
int main(int argc, char **argv) {
    int ipiv[N], info;
    double a[LDA*N] = {
        6.80, -2.11, 5.66,
        -6.05, -3.30, 5.36,
        -0.45, 2.58, -2.70
    };
    double b[LDB*NRHS] = {
        4.02, 6.19, -8.22,
        -1.56, 4.00, -8.67
    };
    info = LAPACKE_dgesv( LAPACK_COL_MAJOR, N, NRHS,
    a, LDA, ipiv, b, LDB );
}
```


LAPACK Example: DGESV (Solve $\mathbf{A x}=\mathbf{b})$

\$./dgesv

```
Solution ''x',
-0.0517981 -0.892398
    -0.819976 -0.736171
    1.30806 -0.121056
Details of LU factorization
6.8 -6.05 -0.45
0.832353 10.3957 -2.32544
-0.310294 -0.49802 1.28225
Pivot indices
13}
```

compute \bullet calcul三 CANADA A

What about non-dense martices?

$$
\left(\begin{array}{ccccccc}
-2 & 1 & & & & & \\
1 & -2 & 4 & & & & \\
& 4 & -2 & 4 & & & \\
& & 4 & -2 & 4 & & \\
& & & 4 & -2 & 4 & \\
& & & & & \ddots & \\
& & & & 4 & -2 & 1 \\
& & & & & 1 & -2
\end{array}\right)
$$

Types

- Banded: dgbsv
- Tri-Diagonal: dgtsv
- Symmetric Positivve Def. dposv

LAPACK Example: DGTSV (Solve $\mathbf{A x}=\mathbf{b}$)

```
#include <iostream>
#include <lapacke.h>
const int N=5, NRHS=2;
int main(int argc, char **argv) {
    int ldb=N, info;
    double dl[N-1] = { 1, 4, 4, 1};
    double d[N] ={ -2, -2, -2, -2, -2 };
    double du[N-1] = {1, 4, 4, 1 };
    double b[N*NRHS] = {
        3, 5, 5, 5, 3,
        -1.56, 4.00, -8.67, 1.75, 2.86,
        9.81, -4.09, -4.57, -8.61, 8.99
        };
        info = LAPACKE_dgtsv(LAPACK_COL_MAJOR, N, NRHS,
    dl, d, du, b, ldb );

\section*{LAPACK Example: DGTSV (Solve \(\mathbf{A x}=\mathbf{b}\) )}
\$g++ dgesv.cc -o dgtsv - \(\mathbf{I} \$\{\) bLAS_Inc \(\}-\mathrm{L} \$\{\) bLAS_LIB \(\}-1\) openblas
\$./dgtsv
\[

\]

\section*{Sparse Matrices}


\section*{Sparse BLAS ?}

Unfortunately there is not a mature, de facto standard sparse matrix BLAS library. Three potential options:
- Official Sparse BLAS: a reference implementation is not yet available http://www.netlib.org/blas/blast-forum
- NIST Sparse BLAS: An alternative BLAS system; a reference implementation is available http://math.nist.gov/spblas
- The Matrix Template Library : The C++ library mentioned above also provides support for sparse matrices http://www.osl.iu.edu/research/mtl/intro.php3

\section*{Conclusions}

\section*{Conclusions}
- Linear algebra pops up everywhere
- Statistics, data fitting, graph problems, PDE/coupled ODE solves, signal processing...
- Exploit structure in your matrices
- Chose best method based on system properties (condition number, sparsity, etc..)
- Many very highly tuned packages for any sort of problem that can be cast into matrices
- LAPACK, BLAS, etc..

\section*{Assignment}
\(4 \square>4\) 司 \(>4\) 方 \(>\)

\section*{Assignment \#7}

The implicit Euler time discretization applied to the 1d heat/diffusion equation with 2nd order finite difference spatial discretization has the form:
\[
\frac{u_{j}^{n+1}-u_{j}^{n}}{\Delta t}-D \frac{u_{j+1}^{n+1}-2 u_{j}^{n+1}+u_{j-1}^{n+1}}{(\Delta x)^{2}}=0
\]

\section*{Assignment \#7}

When rearranged to solve for \(\mathbf{u}^{n+1}\) and ignoring \(B C\) 's it has the form:

1) compute - calcul
\(\bar{I}^{C A N A D A}{ }^{A}\)

\section*{Assignment \#7}
- Ignoring the constants, use the D_EEV Lapack routines and 100 points to determine the eigenvalues for this problem. What might we expect to get amplified/damped? How does this affect our choice of time-step.
- For a 1d grid of size 100 (eg, a \(100 \times 100\) matrix A), use the most appropriate D__SV Lapack routine(s) to evolve this PDE.
- Start with initial conditions with \(u=1\) at the first point, and zero everywhere else (hot plate turns on in a cold domain).
- Use \(D=1, \Delta x=1 / N\), and Dirchlet BC's \(u(0)=1\) and \(u(N-1)=0\).
- Using a small enough timestep, timestep the temperature evolution, plot the final solution, and explain the results.
- Submit code, makefile, git-log, plot and text file with comments.```

