
GPU minicourse

Jonathan Dursi & Harald Pfeiffer

Fall 2012

Friday, October 12, 12

Harald Pfeiffer GPU-minicourse Fall 2012

Welcome!
❖ Goal: PRACTICAL skills

❖ Outline
• Today: general overview (HP)
• Oct 19 -- More details on CUDA (JD)
• Oct 26 -- CUDA devel tools: SDK examples, debugger, libraries,

profiler (HP)
• Nov 2 -- Memory access & coalescing (JD)
• Nov 9 -- Occupancy & latency (HP)
• Nov 16 -- Introduction to OpenCL (JD)
• Nov 23 -- Using Multiple GPUs

2
Friday, October 12, 12

Harald Pfeiffer GPU-minicourse Fall 2012 3

(CUDA C Programming Guide)

Friday, October 12, 12

Harald Pfeiffer GPU-minicourse Fall 2012

Short history
❖ 1980s, 1990s:

• fixed-function graphics processing pipelines
• development of APIs (e.g. OpenGL) to use graphics cards

❖ early 2000’s (GeForce 3, Radeon 9700)
• make vertex (and later shader) somewhat programmable
• Data independence encourages many-core design

❖ late 2000’s
• GPUs more easily programmable
• CUDA C/C++ compiler and OpenCL to ease programming

❖ 2010 Fermi
• high double-precision performance

❖ 2012/13 Kepler, Intel MIC

4
Friday, October 12, 12

Harald Pfeiffer GPU-minicourse Fall 2012

Design choices & implications	

	

 	

❖ CPU

• flexible
• execution of single thread fast

(whatever instructions might
come along)

• large cache, sophisticated
control unit

• very few threads

5
Friday, October 12, 12

Harald Pfeiffer GPU-minicourse Fall 2012

GPU
❖ Maximize fraction of chip dedicated to floating point units

❖ Key design decision: Tuned for massively parallel programs
with regular execution patterns.

❖ GPUs amazingly fast, if one works with their design decisions.

6
Friday, October 12, 12

Harald Pfeiffer GPU-minicourse Fall 2012

Consequences
❖ Tuned for massively parallel programs with regular execution

patterns.
• ~448 compute cores (~4 on CPU-cores)
• packaged into ~14 streaming

multiprocessors (SM, ~32cores/SM)
• one control unit per SM

- threads execute ~32-at-once (warp)
- identical instructions or idle

• small but fast cache
- at most ~48KB per SM
- each SM can only access its cache

❖ “~NNN”: numerical value depends on hardware (given specs
for GTX470, M2050/M2070.)

❖ This slide just first taste - in-depth explanations in later lectures

7
Friday, October 12, 12

Harald Pfeiffer GPU-minicourse Fall 2012

Consequences cont’d
❖ Tuned for massively parallel programs with regular execution

patterns.
• Data fetched in contiguous ~128byte blocks

- regular data-access fast
- random data-access inefficient

• Starting new threads is slow, but
switching between threads is fast
- Run >>32 threads per SM
- Threads start while other threads

execute
• Initiating memory-transfers from

GPU-DRAM slow, but aggregate band-
width large
- Run >>32 threads per SM to hide latency (occupancy)

8
Friday, October 12, 12

Harald Pfeiffer GPU-minicourse Fall 2012

Literature
❖ NVIDIA docs

• http://developer.nvidia.com/category/zone/cuda-zone
• http://developer.nvidia.com/cuda/nvidia-gpu-computing-

documentation
- CUDA C Programming Guide
- CUDA C Best Practices Guide

❖ Further useful NVIDIA docs
• CUDA Reference Manual
• cuda-gdb user manual

❖ Books
• Kirk+Hwu “Programming Massively Parallel Processors”
• Sanders+Kandrot “CUDA by Example”

9
Friday, October 12, 12

http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/category/zone/cuda-zone
http://developer.nvidia.com/object/cuda_3_2_toolkit_rc.html
http://developer.nvidia.com/object/cuda_3_2_toolkit_rc.html
http://developer.nvidia.com/object/cuda_3_2_toolkit_rc.html
http://developer.nvidia.com/object/cuda_3_2_toolkit_rc.html

Harald Pfeiffer GPU-minicourse Fall 2012

Code example (CPU version)

10
Friday, October 12, 12

Harald Pfeiffer GPU-minicourse Fall 2012

CUDA example: main()

11
Friday, October 12, 12

Harald Pfeiffer GPU-minicourse Fall 2012

CUDA example: MultAddCuda(...)

12

•GPUs have separate RAM

•User handles memory
 allocation & copy

Friday, October 12, 12

Harald Pfeiffer GPU-minicourse Fall 2012

CUDA example: Kernel
❖ CUDA kernel

• Each call to MultAddKernel computes only one single element
• special variable ‘‘threadIdx” tells us which element
• Launch as many kernel-threads as there are elements

❖ Launch kernel:

• <<<1, N>>> determines how many threads are launched (here N)
• the N threads will be processed in parallel

13
Friday, October 12, 12

Harald Pfeiffer GPU-minicourse Fall 2012

SciNet ARC Cluster
❖ If you already have a SciNet account

• email support@scinet to request access to the ARC Cluster

❖ Otherwise:
• Get a temporary account today

• https://support.scinet.utoronto.ca/wiki/index.php/
GPU_Devel_Nodes

14
Friday, October 12, 12

https://support.scinet.utoronto.ca/wiki/index.php/GPU_Devel_Nodes
https://support.scinet.utoronto.ca/wiki/index.php/GPU_Devel_Nodes
https://support.scinet.utoronto.ca/wiki/index.php/GPU_Devel_Nodes
https://support.scinet.utoronto.ca/wiki/index.php/GPU_Devel_Nodes

Harald Pfeiffer GPU-minicourse Fall 2012

CITA GPU environment	

❖ GPU machines

- marten.cita.utoronto.ca 2x GTX470
- bee.cita.utoronto.ca 1x Tesla C2050

(used by Abdul, if he’s logged in CUDA won’t work)
- tpb1, tpb2 on sunnyvale 2xTesla C1050 (each)

(ssh ricky.cita.utoronto.ca, then ssh tpb{1,2})

❖ Use “modules” to configure environment

15
Friday, October 12, 12

Harald Pfeiffer GPU-minicourse Fall 2012

Compiling + Running
❖ nvcc = Nvidia CUDA compiler

• -arch=sm_20 chooses “Compute Capability” version 2.0
- Compute capability 2.0 -- Fermi architecture (marten + bee)
- Compute capability 1.3 -- Tesla architecture (tpb1, tpb2)

16
Friday, October 12, 12

Harald Pfeiffer GPU-minicourse Fall 2012

Critique (or: How the real world
 differs from the example)

❖ of course, EVERYTHING will be different!

❖ Allocating/deallocating device-memory SLOW. Reuse memory

❖ Copy host-device and device-host SLOW. Minimize!

❖ In practice:
• Copy data once to device
• Do many calculations on device
• Only copy end-result back

17
Friday, October 12, 12

Harald Pfeiffer GPU-minicourse Fall 2012

Critique cont’d
❖ <<<1, N>>>MultAddKernel(...)

• 2nd number (block-size) has MAXIMUM dependent on GPU
hardware (1024 for Fermi, 512 for Tesla).
- example fails for N above this maximum

• 1st number gives number of independent blocks (grid size)
- all threads within a block execute on the same SM (to allow

access to shared memory).
- With grid-size=1, only one SM will be used, and the other 13 will

be idle.

❖ GPUs have excessive floating-point performance, relative to
their memory bandwidth. Example does only two FLOP (one
*, one +) per two doubles of data u[idx], v[idx].
• Performance will be bandwidth limited

18
Friday, October 12, 12

Harald Pfeiffer GPU-minicourse Fall 2012

beyond NVIDIA/CUDA
❖ AMD/ATI

• GPU’s reasonably similar to NVIDIA
• separate GPU-memory, ~1000 compute-cores
• Slightly less “general purpose” (e.g. may need to use 3-vectors for

top-performance)
• Program via OpenCL (slightly more cumbersome)

❖ Intel Phi (aka MIC -- Many Intel Cores)
• Separate PCIe card, separate memory, >=50 “intel cores”
• Program via standard intel compilers (makes coding look simple)
• User must be aware of architecture constraints (e.g. memory

transfer and layout) to get good speed-up.

19
Friday, October 12, 12

Harald Pfeiffer GPU-minicourse Fall 2012

beyond NVIDIA/CUDA
❖ IBM BlueGene/Q

• Very basic/lightweight compute-nodes
• 16 cores/node, recommended to use 64 threads/node
• Each job should use 32*n nodes (i.e. 1024*n threads).

❖ Regular CPUs
• Last Intel generation: 4 cores/chip (typically 8cores/node)
• Current generation:

- Intel Sandybridge 6, 8 cores/chip (typically 12, 16 cores/node)
- AMD 12 cores/chip (typically 24 cores/node)

20
Friday, October 12, 12

Harald Pfeiffer GPU-minicourse Fall 2012

Power & Bandwidth
❖ Power consumption rises fast with clock-speed

• Best FLOPS/watts achieved for many, slow compute-cores

❖ Communication bandwidth rises slower than FLOPS

❖ You will face massively parallel, bandwidth constrained
environments
• CUDA as good a learning ground as anything else

21
Friday, October 12, 12

Harald Pfeiffer GPU-minicourse Fall 2012

Homework

1. Code the example v[i] = a*u[i]+b
1.1.Write code that computes this on GPU and on CPU, and

compares the results.
1.2.Run with increasing thread-counts N (<<<1,N>>>). How does

CUDA tell you (or not) when things break?

2. Write a second CUDA program, evaluating a function of your
choice.

3. By Thursday, 2pm:
3.1.Email code, output and answer to question1.2. to HP & JD.

22
Friday, October 12, 12

