
Scientific Computing (PHYS 2109/Ast 3100 H)
I. Scientific Software Development

SciNet HPC Consortium
University of Toronto

Winter 2014

Lecture 6

I Debugging Basics

I Debugging with the command line: GDB

I Memory Checking: Valgrind

Debugging basics

Debugging basics

Help, my program doesn’t work!
$ gcc -O3 answer.c
$./a.out
Segmentation fault↓

a miracle occurs
↓

My program works brilliantly!
$ gcc -O3 answer.c
$./a.out
42

I Unfortunately, “miracles” are not typically deterministic.

Debugging:

Methodical process of finding and fixing flaws in software

Debugging basics

Help, my program doesn’t work!

$ gcc -O3 answer.c
$./a.out
Segmentation fault↓

a miracle occurs
↓

My program works brilliantly!
$ gcc -O3 answer.c
$./a.out
42

I Unfortunately, “miracles” are not typically deterministic.

Debugging:

Methodical process of finding and fixing flaws in software

Debugging basics

Help, my program doesn’t work!
$ gcc -O3 answer.c
$./a.out
Segmentation fault

↓
a miracle occurs

↓
My program works brilliantly!

$ gcc -O3 answer.c
$./a.out
42

I Unfortunately, “miracles” are not typically deterministic.

Debugging:

Methodical process of finding and fixing flaws in software

Debugging basics

Help, my program doesn’t work!
$ gcc -O3 answer.c
$./a.out
Segmentation fault↓

a miracle occurs
↓

My program works brilliantly!
$ gcc -O3 answer.c
$./a.out
42

I Unfortunately, “miracles” are not typically deterministic.

Debugging:

Methodical process of finding and fixing flaws in software

Debugging basics

Help, my program doesn’t work!
$ gcc -O3 answer.c
$./a.out
Segmentation fault↓

a miracle occurs
↓

My program works brilliantly!

$ gcc -O3 answer.c
$./a.out
42

I Unfortunately, “miracles” are not typically deterministic.

Debugging:

Methodical process of finding and fixing flaws in software

Debugging basics

Help, my program doesn’t work!
$ gcc -O3 answer.c
$./a.out
Segmentation fault↓

a miracle occurs
↓

My program works brilliantly!
$ gcc -O3 answer.c
$./a.out
42

I Unfortunately, “miracles” are not typically deterministic.

Debugging:

Methodical process of finding and fixing flaws in software

Debugging basics

Help, my program doesn’t work!
$ gcc -O3 answer.c
$./a.out
Segmentation fault↓

a miracle occurs
↓

My program works brilliantly!
$ gcc -O3 answer.c
$./a.out
42

I Unfortunately, “miracles” are not typically deterministic.

Debugging:

Methodical process of finding and fixing flaws in software

Debugging basics

Help, my program doesn’t work!
$ gcc -O3 answer.c
$./a.out
Segmentation fault↓

a miracle occurs
↓

My program works brilliantly!
$ gcc -O3 answer.c
$./a.out
42

I Unfortunately, “miracles” are not typically deterministic.

Debugging:

Methodical process of finding and fixing flaws in software

What is going on?

I All programs execute correclty.

I We just told it to do the wrong thing.

I Debugging is the art of reconciling your mental model of what
the code is doing with what you actually told it to do.

I Debugger: program to help detect errors in other programs.

I You are the real debugger.

Debugging

http://imgs.xkcd.com/comics/debugger.png

Tips to avoid debugging

I Write better code.
I simple, clear, straightfoward code.
I modularity (avoid global variables and 10,000 line functions).
I avoid “cute tricks”, (no obfuscated C code winners).

I Don’t write code, use existing libraries

I Write tests (simple) for each part

Debugging Workflow

I As soon as you are convinced there is a real problem, create
the simplest situation in which it repeatedly occurs.

I This is science: model, hypothesis, experiment, conclusion.

I Try a smaller problem size, turning off different physical
effects with options, etc, until you have a simple, fast,
repeatable example.

I Try to narrow it down to a particular module/function/class.

I Integrated calculation: Write out intermediate results, inspect
them.

Common symptoms

Errors at compile time

I Syntax errors: easy to fix

I Library issues

I Cross-compiling

I Compiler warnings
Always switch this on, and fix or understand them!

But just because it compiles does not mean it is correct!

Runtime errors

I Floating point exceptions

I Segmentation fault

I Aborted

I Incorrect output (nans)

Common symptoms

Errors at compile time

I Syntax errors: easy to fix

I Library issues

I Cross-compiling

I Compiler warnings

Always switch this on, and fix or understand them!

But just because it compiles does not mean it is correct!

Runtime errors

I Floating point exceptions

I Segmentation fault

I Aborted

I Incorrect output (nans)

Common symptoms

Errors at compile time

I Syntax errors: easy to fix

I Library issues

I Cross-compiling

I Compiler warnings
Always switch this on, and fix or understand them!

But just because it compiles does not mean it is correct!

Runtime errors

I Floating point exceptions

I Segmentation fault

I Aborted

I Incorrect output (nans)

Common symptoms

Errors at compile time

I Syntax errors: easy to fix

I Library issues

I Cross-compiling

I Compiler warnings
Always switch this on, and fix or understand them!

But just because it compiles does not mean it is correct!

Runtime errors

I Floating point exceptions

I Segmentation fault

I Aborted

I Incorrect output (nans)

Common symptoms

Errors at compile time

I Syntax errors: easy to fix

I Library issues

I Cross-compiling

I Compiler warnings
Always switch this on, and fix or understand them!

But just because it compiles does not mean it is correct!

Runtime errors

I Floating point exceptions

I Segmentation fault

I Aborted

I Incorrect output (nans)

Common symptoms

Errors at compile time

I Syntax errors: easy to fix

I Library issues

I Cross-compiling

I Compiler warnings
Always switch this on, and fix or understand them!

But just because it compiles does not mean it is correct!

Runtime errors

I Floating point exceptions

I Segmentation fault

I Aborted

I Incorrect output (nans)

Common issues

Arithmetic corner cases (sqrt(-0.0)), infinities

Memory access Index out of range, uninitialized pointers.

Logic Infinite loop, corner cases

Misuse wrong input, ignored error, no initialization

Syntax wrong operators/arguments

Resource starvation memory leak, quota overflow

Parallel race conditions, deadlock

Ways to debug

I Preemptive:
I Turn on compiler warnings: fix or understand them!

$ gcc/g++ -Wall

I Check your assumptions (e.g. use assert).

I Inspect the exit code and read the error messages!

I Use a debugger

I Add print statements←No way to debug!

Ways to debug

I Preemptive:
I Turn on compiler warnings: fix or understand them!

$ gcc/g++ -Wall

I Check your assumptions (e.g. use assert).

I Inspect the exit code and read the error messages!

I Use a debugger

I Add print statements←No way to debug!

Ways to debug

I Preemptive:
I Turn on compiler warnings: fix or understand them!

$ gcc/g++ -Wall

I Check your assumptions (e.g. use assert).

I Inspect the exit code and read the error messages!

I Use a debugger

I Add print statements

←No way to debug!

Ways to debug

I Preemptive:
I Turn on compiler warnings: fix or understand them!

$ gcc/g++ -Wall

I Check your assumptions (e.g. use assert).

I Inspect the exit code and read the error messages!

I Use a debugger

I Add print statements←No way to debug!

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements
2. compile
3. run
4. analyze output bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . . There’s a better way!

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements
2. compile
3. run
4. analyze output bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . . There’s a better way!

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements

2. compile
3. run
4. analyze output bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . . There’s a better way!

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements
2. compile

3. run
4. analyze output bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . . There’s a better way!

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements
2. compile
3. run

4. analyze output bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . . There’s a better way!

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements
2. compile
3. run
4. analyze output

bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . . There’s a better way!

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements
2. compile
3. run
4. analyze output bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . . There’s a better way!

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements
2. compile
3. run
4. analyze output bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . . There’s a better way!

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements
2. compile
3. run
4. analyze output bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . . There’s a better way!

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements
2. compile
3. run
4. analyze output bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . . There’s a better way!

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements
2. compile
3. run
4. analyze output bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . . There’s a better way!

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements
2. compile
3. run
4. analyze output bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . .

There’s a better way!

What’s wrong with using print statements?

Strategy

I Constant cycle:

1. strategically add print statements
2. compile
3. run
4. analyze output bug not found?

�

I Removing the extra code after the bug is fixed

I Repeat for each bug

Problems with this approach

I Time consuming

I Error prone

I Changes memory, timing. . . There’s a better way!

Symbolic debuggers

Symbolic debuggers

Features

1. Crash inspection

2. Function call stack

3. Step through code

4. Automated interruption

5. Variable checking and setting

Use a graphical debugger or not?

I Local work station: graphical is convenient

I Remotely (SciNet): can be slow

In any case, graphical and text-based debuggers use the same
concepts.

Symbolic debuggers

Features

1. Crash inspection

2. Function call stack

3. Step through code

4. Automated interruption

5. Variable checking and setting

Use a graphical debugger or not?

I Local work station: graphical is convenient

I Remotely (SciNet): can be slow

In any case, graphical and text-based debuggers use the same
concepts.

Symbolic debuggers

Features

1. Crash inspection

2. Function call stack

3. Step through code

4. Automated interruption

5. Variable checking and setting

Use a graphical debugger or not?

I Local work station: graphical is convenient

I Remotely (SciNet): can be slow

In any case, graphical and text-based debuggers use the same
concepts.

Symbolic debuggers

Features

1. Crash inspection

2. Function call stack

3. Step through code

4. Automated interruption

5. Variable checking and setting

Use a graphical debugger or not?

I Local work station: graphical is convenient

I Remotely (SciNet): can be slow

In any case, graphical and text-based debuggers use the same
concepts.

Symbolic debuggers

Preparing the executable

I Add required compilination flags:
$ gcc/g++/gfortran -g -gstabs

$ icc/icpc/ifort -g -debug all

$ nvcc -g -G

I Optional: switch off optimization -O0

Command-line based symbolic debuggers: gdb

Symbolic debuggers

Preparing the executable

I Add required compilination flags:
$ gcc/g++/gfortran -g -gstabs

$ icc/icpc/ifort -g -debug all

$ nvcc -g -G

I Optional: switch off optimization -O0

Command-line based symbolic debuggers: gdb

GDB

What is GDB?

I Free, GNU license, symbolic debugger.

I Available on many systems.

I Been around for a while, but still developed and up-to-date

I Text based, but has a ’-tui’ option.

$ module load gcc

$ gcc -g -O0 example.c -o example

$ module load gdb

$ gdb -tui example

...

(gdb)

GDB command summary

help h print description of
run r run from the start (+args)
backtrace/where ba function call stack
break b set breakpoint
delete d delete breakpoint
continue c continue
step s step into function
next n continue until next line
print p print variable
quit q quit

finish fin continue until function end
set variable set var change variable
down do go to called function
tbreak tb set temporary breakpoint
until unt continue until line/function
up up go to caller
watch wa stop if variable changes
quit q quit gdb

GDB basic building blocks

GDB building block #1: Inspect crashes

Inspecting core files

Core = file containing state of program after a crash

I NOTE: needs max core size set (ulimit -c <number>)

I gdb reads with gdb <executable> <corefile>

I it will show you where the program crashed

No core file?

I can start gdb as gdb <executable>

I type run to start program

I gdb will show you where the program crashed if it does.

GDB building block #1: Inspect crashes

Inspecting core files

Core = file containing state of program after a crash

I NOTE: needs max core size set (ulimit -c <number>)

I gdb reads with gdb <executable> <corefile>

I it will show you where the program crashed

No core file?

I can start gdb as gdb <executable>

I type run to start program

I gdb will show you where the program crashed if it does.

GDB building block #1: Inspect crashes

Inspecting core files

Core = file containing state of program after a crash

I NOTE: needs max core size set (ulimit -c <number>)

I gdb reads with gdb <executable> <corefile>

I it will show you where the program crashed

No core file?

I can start gdb as gdb <executable>

I type run to start program

I gdb will show you where the program crashed if it does.

GDB building block #1: Inspect crashes

Inspecting core files

Core = file containing state of program after a crash

I NOTE: needs max core size set (ulimit -c <number>)

I gdb reads with gdb <executable> <corefile>

I it will show you where the program crashed

No core file?

I can start gdb as gdb <executable>

I type run to start program

I gdb will show you where the program crashed if it does.

GDB building block #1: Inspect crashes

Inspecting core files

Core = file containing state of program after a crash

I NOTE: needs max core size set (ulimit -c <number>)

I gdb reads with gdb <executable> <corefile>

I it will show you where the program crashed

No core file?

I can start gdb as gdb <executable>

I type run to start program

I gdb will show you where the program crashed if it does.

GDB Exampe: Code

#include <iostream>

#include <cmath>

int main(int argc, char **argv) {

int nmax; float *squares, sum;

std::cin >> nmax;

for (int i=1; i<=nmax; i++) {

squares[i] = sqrt(i-2);

sum += squares[i];

}

std::cout << sum;

return 0;

}

GDB Example #1

$g++ -g -o square square.c

$./square

5000

Segmentation fault

$gdb ./square core.12345

Program terminated with signal 11, Segmentation fault.

#0 0x0000000000400855 in main (argc=2,

argv=0x7fff6db1ac18) at square.c:12

12 squares[i] = sqrt((i-2));

(gdb)

GDB Example #1

$g++ -g -o square square.c

$./square

5000

Segmentation fault

$gdb ./square core.12345

Program terminated with signal 11, Segmentation fault.

#0 0x0000000000400855 in main (argc=2,

argv=0x7fff6db1ac18) at square.c:12

12 squares[i] = sqrt((i-2));

(gdb)

GDB building block #2: Function call stack

Interrupting program

I Press Crtl-C while program is running in gdb

I gdb will show you where the program was.

Stack trace

I From what functions was this line reached?

I What were the arguments of those function calls?

gdb commands

backtrace function call stack
continue continue
down go to called function
up go to caller

GDB building block #2: Function call stack

Interrupting program

I Press Crtl-C while program is running in gdb

I gdb will show you where the program was.

Stack trace

I From what functions was this line reached?

I What were the arguments of those function calls?

gdb commands

backtrace function call stack
continue continue
down go to called function
up go to caller

GDB building block #2: Function call stack

Interrupting program

I Press Crtl-C while program is running in gdb

I gdb will show you where the program was.

Stack trace

I From what functions was this line reached?

I What were the arguments of those function calls?

gdb commands

backtrace function call stack
continue continue
down go to called function
up go to caller

GDB building block #3: Step through code

Stepping through code

I Line-by-line

I Choose to step into or over functions

I Can show surrounding lines or use -tui

gdb commands

list list part of code
next continue until next line
step step into function
finish continue until function end
until continue until line/function

GDB building block #3: Step through code

Stepping through code

I Line-by-line

I Choose to step into or over functions

I Can show surrounding lines or use -tui

gdb commands

list list part of code
next continue until next line
step step into function
finish continue until function end
until continue until line/function

GDB building block #4: Automatic interruption

Breakpoints

I break [file:]<line>|<function>

I each breakpoint gets a number

I when run, automatically stops there

I can add conditions, temporarily remote breaks, etc.

Related gdb commands

delete unset breakpoint
condition break if condition met
disable disable breakpoint
enable enable breakpoint
info breakpoints list breakpoints
tbreak temporary breakpoint

GDB building block #4: Automatic interruption

Breakpoints

I break [file:]<line>|<function>

I each breakpoint gets a number

I when run, automatically stops there

I can add conditions, temporarily remote breaks, etc.

Related gdb commands

delete unset breakpoint
condition break if condition met
disable disable breakpoint
enable enable breakpoint
info breakpoints list breakpoints
tbreak temporary breakpoint

GDB building block #5: Variables

Checking a variable

I Can print the value of a variable

I Can keep track of variable (print at prompt)

I Can stop the program when variable changes

I Can change a variable (“what if . . . ”)

gdb commands

print print variable
display print at every prompt
set variable change variable
watch stop if variable changes

GDB building block #5: Variables

Checking a variable

I Can print the value of a variable

I Can keep track of variable (print at prompt)

I Can stop the program when variable changes

I Can change a variable (“what if . . . ”)

gdb commands

print print variable
display print at every prompt
set variable change variable
watch stop if variable changes

GDB Exampe: Code (fixed)

#include <iostream>

#include <cmath>

int main(int argc, char **argv) {

int nmax; float *squares, sum;

std::cin >> nmax;

squares = new float [nmax]; //allocate memory

for (int i=1; i<=nmax; i++) {

squares[i] = sqrt(i-2);

sum += squares[i];

}

std::cout << sum;

return 0;

}

GDB : Example #2

$gdb ./square

(gdb)

(gdb) list 15

10

11 for (int i=1; i<=nmax; i++) {
12 squares[i] = sqrt((i-2));

13 sum += squares[i];

14 }
15

16 std::cout << sum;

17 return 0;

18 }
19

(gdb) break 13

Breakpoint 1 at 0x4008ae: file square.2.c, line 13.

GDB : Example #2 - continued

(gdb) run

Starting program: ./square

20

Breakpoint 1, main (argc=1, argv=0x7fffffffdc48) at

square.2.c:13

13 sum += squares[i];

(gdb) print sum

$1 = 5.88011741e-39

(gdb) step

11 for (int i=0; i<nmax; i++) {
(gdb) print sum

$2 = -nan(0x400000)

(gdb) print squares[0]

$3 = -nan(0x400000)

(gdb) quit

Graphical symbolic debuggers

Graphical symbolic debuggers

Features

I Nice, more intuitive graphical user interface

I Front to command-line based tools: Same concepts

I Need graphics support: X forwarding (or VNC)

Available on SciNet: ddd and ddt

I ddd

$ module load gcc ddd

$ ddd <executable compiled with -g flag>

I ddt

$ module load ddt

$ ddt <executable compiled with -g flag>

(more later)

Graphical symbolic debuggers

Features

I Nice, more intuitive graphical user interface

I Front to command-line based tools: Same concepts

I Need graphics support: X forwarding (or VNC)

Available on SciNet: ddd and ddt

I ddd

$ module load gcc ddd

$ ddd <executable compiled with -g flag>

I ddt

$ module load ddt

$ ddt <executable compiled with -g flag>

(more later)

Graphical symbolic debuggers - ddd

Graphical symbolic debuggers - ddt

Memory Checking: Valgrind

I Memory errors do not always give segfaults

I Commonly have to go *way* out of bounds to get a segfault.

I Write into other variables - hard to find problem.

I Valgrind - intercepts each memory call and checks them (very
thorough but slow).

I Finds illegal accesses, uninitialized values, memory leaks.

I Is typically very verbose.

I If you use external libraries, sometimes false positive

GDB Exampe: Code (fixed?)

#include <iostream>

#include <cmath>

int main(int argc, char **argv) {

int nmax; float *squares, sum;

std::cin >> nmax;

squares = new float [nmax]; //allocate memory

for (int i=1; i<=nmax; i++) {

squares[i] = sqrt(i); //fixed nan's

sum += squares[i];

}

std::cout << sum;

return 0;

}

Memory Checking: Valgrind

valgrind --tool=memcheck ./square

==31550== Invalid write of size 4

==31550== at 0x4008A5: main (square.c:8)

==31550== Address 0x4c3b090 is 0 bytes after a block of size 80 alloc’d

==31550== at 0x4A07152: operator new[](unsigned long) (vg_replace_malloc.c:363)

==31550== by 0x400875: main (square..c:6)

==31550==

==31550== Invalid read of size 4

==31550== at 0x4008B6: main (square.c:9)

==31550== Address 0x4c3b090 is 0 bytes after a block of size 80 alloc’d

==31550== at 0x4A07152: operator new[](unsigned long) (vg_replace_malloc.c:363)

==31550== by 0x400875: main (square.c:6)

Error:
i index from 1 to nmax

Memory Checking: Valgrind

valgrind --tool=memcheck ./square

==31550== Invalid write of size 4

==31550== at 0x4008A5: main (square.c:8)

==31550== Address 0x4c3b090 is 0 bytes after a block of size 80 alloc’d

==31550== at 0x4A07152: operator new[](unsigned long) (vg_replace_malloc.c:363)

==31550== by 0x400875: main (square..c:6)

==31550==

==31550== Invalid read of size 4

==31550== at 0x4008B6: main (square.c:9)

==31550== Address 0x4c3b090 is 0 bytes after a block of size 80 alloc’d

==31550== at 0x4A07152: operator new[](unsigned long) (vg_replace_malloc.c:363)

==31550== by 0x400875: main (square.c:6)

Error:
i index from 1 to nmax

GDB Exampe: Code (fixed?)

#include <iostream>

#include <cmath>

int main(int argc, char **argv) {

int nmax; float *squares, sum;

std::cin >> nmax;

squares = new float [nmax]; //allocate memory

for (int i=0; i<nmax; i++) //fixed i index {

squares[i] = sqrt(i); //fixed nan's

sum += squares[i];

}

std::cout << sum;

return 0;

}

Memory Checking: Valgrind

==31550== Conditional jump or move depends on uninitialised value(s)

==31550== at 0x3A41243696: __mpn_extract_double (in /lib64/libc-2.12.so)

==31550== by 0x3A4124A4BD: __printf_fp (in /lib64/libc-2.12.so)

==31550== by 0x3A41245B9F: vfprintf (in /lib64/libc-2.12.so)

==31550== by 0x3A4126FA51: vsnprintf (in /lib64/libc-2.12.so)

==31550== by 0x3A47E7EB4E: ??? (in /usr/lib64/libstdc++.so.6.0.13)

==31550== by 0x3A47E80F22: std::ostreambuf_iterator<char, std::char_traits<char> > std::num_put<char, std::ostreambuf_iterator<char, std::char_traits<char> > >::_M_insert_float<double>(std::ostreambuf_iterator<char, std::char_traits<char> >, std::ios_base&, char, char, double) const (in /usr/lib64/libstdc++.so.6.0.13)

==31550== by 0x3A47E81248: std::num_put<char, std::ostreambuf_iterator<char, std::char_traits<char> > >::do_put(std::ostreambuf_iterator<char, std::char_traits<char> >, std::ios_base&, char, double) const (in /usr/lib64/libstdc++.so.6.0.13)

==31550== by 0x3A47E9487E: std::ostream& std::ostream::_M_insert<double>(double) (in /usr/lib64/libstdc++.so.6.0.13)

==31550== by 0x4008E7: main (square.c:11)

==31550== Use of uninitialised value of size 8

Error:
variable “sum” never initialized

Memory Checking: Valgrind

==31550== Conditional jump or move depends on uninitialised value(s)

==31550== at 0x3A41243696: __mpn_extract_double (in /lib64/libc-2.12.so)

==31550== by 0x3A4124A4BD: __printf_fp (in /lib64/libc-2.12.so)

==31550== by 0x3A41245B9F: vfprintf (in /lib64/libc-2.12.so)

==31550== by 0x3A4126FA51: vsnprintf (in /lib64/libc-2.12.so)

==31550== by 0x3A47E7EB4E: ??? (in /usr/lib64/libstdc++.so.6.0.13)

==31550== by 0x3A47E80F22: std::ostreambuf_iterator<char, std::char_traits<char> > std::num_put<char, std::ostreambuf_iterator<char, std::char_traits<char> > >::_M_insert_float<double>(std::ostreambuf_iterator<char, std::char_traits<char> >, std::ios_base&, char, char, double) const (in /usr/lib64/libstdc++.so.6.0.13)

==31550== by 0x3A47E81248: std::num_put<char, std::ostreambuf_iterator<char, std::char_traits<char> > >::do_put(std::ostreambuf_iterator<char, std::char_traits<char> >, std::ios_base&, char, double) const (in /usr/lib64/libstdc++.so.6.0.13)

==31550== by 0x3A47E9487E: std::ostream& std::ostream::_M_insert<double>(double) (in /usr/lib64/libstdc++.so.6.0.13)

==31550== by 0x4008E7: main (square.c:11)

==31550== Use of uninitialised value of size 8

Error:
variable “sum” never initialized

GDB Exampe: Code (fixed?)

#include <iostream>

#include <cmath>

int main(int argc, char **argv) {

int nmax; float *squares, sum(0); //init sum

std::cin >> nmax;

squares = new float [nmax]; //allocate memory

for (int i=0; i<nmax; i++)//fixed i index {

squares[i] = sqrt(i); //fixed nan's

sum += squares[i];

}

std::cout << sum;

return 0;

}

Memory Checking: Valgrind

==31550== HEAP SUMMARY:

==31550== in use at exit: 80 bytes in 1 blocks

==31550== total heap usage: 1 allocs, 0 frees, 80 bytes allocated

==31550==

==31550== LEAK SUMMARY:

==31550== definitely lost: 80 bytes in 1 blocks

==31550== indirectly lost: 0 bytes in 0 blocks

==31550== possibly lost: 0 bytes in 0 blocks

==31550== still reachable: 0 bytes in 0 blocks

==31550== suppressed: 0 bytes in 0 blocks

==31550== ERROR SUMMARY: 204 errors from 113 contexts (suppressed: 6 from 6)

Error:
forgot to free dynamic memory squares

Memory Checking: Valgrind

==31550== HEAP SUMMARY:

==31550== in use at exit: 80 bytes in 1 blocks

==31550== total heap usage: 1 allocs, 0 frees, 80 bytes allocated

==31550==

==31550== LEAK SUMMARY:

==31550== definitely lost: 80 bytes in 1 blocks

==31550== indirectly lost: 0 bytes in 0 blocks

==31550== possibly lost: 0 bytes in 0 blocks

==31550== still reachable: 0 bytes in 0 blocks

==31550== suppressed: 0 bytes in 0 blocks

==31550== ERROR SUMMARY: 204 errors from 113 contexts (suppressed: 6 from 6)

Error:
forgot to free dynamic memory squares

GDB Exampe: Code (fixed?)

#include <iostream>

#include <cmath>

int main(int argc, char **argv) {

int nmax; float *squares, sum(0); //init sum

std::cin >> nmax;

squares = new float [nmax]; //allocate memory

for (int i=0; i<nmax; i++) //fixed i index{

squares[i] = sqrt(i); //fixed nan's

sum += squares[i];

}

std::cout << sum;

delete [] squares; //deallocate memory

return 0;

}

Memory Checking: Valgrind

$ valgrind --tool=memcheck ./square

==31707== Memcheck, a memory error detector

==31707== Copyright (C) 2002-2012, and GNU GPL’d, by Julian Seward et al.

==31707== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info

==31707== Command: ./square

==31707==

20

57.1938

==31707==

==31707== HEAP SUMMARY:

==31707== in use at exit: 0 bytes in 0 blocks

==31707== total heap usage: 1 allocs, 1 frees, 80 bytes allocated

==31707==

==31707== All heap blocks were freed -- no leaks are possible

==31707==

==31707== For counts of detected and suppressed errors, rerun with: -v

==31707== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 6 from 6)

