
Introduction to Unix Shell Programming

Erik Spence

SciNet HPC Consortium

9 June 2014

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 1 / 40

The Truth about interfaces

Nobody. Nobody. Nobody, uses a Graphical User Interface (GUI) for
HPC. Nobody.

Why? Because HPC is Unix/Linux based, without a GUI.

Why?
I Because the earliest mainframe computers were Unix based, and it’s

always been that way.
I You can’t have hundreds of people logged into a node, and run GUIs

for all of them (but you can run a command line interface).
I GUIs are slow over networks.

Who cares? Well, if you’re going to do real HPC then you’re going to
need to interface with these computers, and that means learning how
to use the command line.

This is not to suggest that Linux machines don’t have GUIs. They do.
It’s just the HPC machines that don’t.

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 2 / 40

GUIs versus the command line

Graphical User Interfaces (GUIs) have many strengths.
I Very good at operating an existing system.
I Very good at using existing functionality, existing controls.
I Programs tend to have lots of functionality built into them, but can

only do what they’ve been programmed to do.
I Can’t save a series of commands to replicate functionality.
I Easy to learn. Hard to use for big tasks.

The Command Line Interface (CLI) has a different approach.
I A blank canvas; you get to program what you want to do.
I Good at creating new things.
I Commands that do already exist are very good at doing one thing.
I Commands that you create can be saved and re-used.
I Hard to learn. Easy to use for big tasks.

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 3 / 40

“The” shell
Open a Terminal:

Windows: start up MobaXterm.

Mac: Applications/Utilities/Terminal (drag this to the dock).

Linux: xterm, eterm, ...

The terminal launches a shell. The shell is what you are actually
interacting with when you type commands.

The shell provides access to files, the network, and other programs.
I You type in commands.
I The shell interprets them.
I Performs actions on its own, or launches other programs.

The most commonly used shell in Linux is bash.

There are others; mostly the same but some syntax is different.

Those of you using MobaXterm: go to Settings > Configuration and
change your “persistent HOME directory” to a permanent
location.

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 4 / 40

The command line prompt
Now that we’ve got a terminal open, what do we see? We see the
command line prompt!

On MobaXterm, the prompt looks something like this:

[ejspence.mycomp]

Where ’ejspence’ is my username, and ’mycomp’ is the name of my
computer. On a Mac my prompt might look like this:

mycomp:~ ejspence$

On a Linux machine, my prompt might look like this:

[ejspence@mycomp ~]$

All of these are customizable, which we won’t be covering today. It
doesn’t matter what it looks like, so long as you’re comfortable
with the prompt.

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 5 / 40

~
~

Our first shell script
We will be using the ’bash’ shell for this class. It is the most commonly
used on Linux systems, is widely available, and is the default on SciNet.

[ejspence.mycomp]

[ejspence.mycomp] hello="world"

[ejspence.mycomp] echo Hello, world

Hello, world

[ejspence.mycomp] echo Hello, $hello

Hello, world

Don’t forget to hit ’Enter’ at the end of each line.

The ’=’ sign tells the shell to create a variable called ’hello’ and assign it
the value “world”. The value of the variable is accessed using the $.

The ’echo’ command prints out whatever the shell gives it.

If you get an error message, it’s likely you’re running a different shell (csh,
tcsh, zsh). Type ’bash’ to start a bash shell, and try again.

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 6 / 40

Basics: home sweet home

When you launch a shell, you start in your home directory, this is the
top directory of all of your stuff.

The home directory is /home/mobaxterm for MobaXterm,
/Users/username on Macs, /home/username on Unix/Linux systems.

The home directory is universally represented by the ~ symbol.

Directories are sometimes called folders because of how they are
represented in GUIs. We will call them directories.

On Unix systems directories are listings of files, including other
directories.

If you are using MobaXterm your home directory will be put in your
“persistent HOME directory” location, as set in Settings
> Configuration.

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 7 / 40

~

A typical Linux directory tree

The top directory is ’/’; under that are home and other
directories, under home are the user home
directories, etc. You can always specify a
file or directory by its full ’path’:
/home/ejspence/work/README.

/

home

ejspence brelier

Desktop Downloads firstMPI.c work

code README

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 8 / 40

Basics: the file system
I will be assuming I am on a MobaXterm terminal. Your output will likely
differ somewhat if you are on a different system.

[ejspence.mycomp]

[ejspence.mycomp] pwd

/home/mobaxterm

[ejspence.mycomp] ls

Desktop LauncherFolder MyDocuments

[ejspence.mycomp] ls /home

ejspence mobaxterm

Our commands
echo arg echo the argument
pwd present working directory
ls [dir] list the directory contents

arg mandatory argument
[arg] optional argument

’pwd’ stands for ’present working directory’. It will print the directory
you are currently in. As mentioned on the last slide, you begin in your
home directory.

’ls’ stands for ’list’. If no argument is given it lists the contents of the
current directory, otherwise it lists the contents of the
argument. Some implementations of ls include colour.

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 9 / 40

Creating directories
[ejspence.mycomp] pwd

/home/mobaxterm

[ejspence.mycomp] ls

Desktop LauncherFolder MyDocuments

[ejspence.mycomp] mkdir firstdir

[ejspence.mycomp] ls -F

Desktop@ LauncherFolder@ MyDocuments@

firstdir/

[ejspence.mycomp] mkdir /home/mobaxterm/2ndir

[ejspence.mycomp] ls -F

2ndir/ Desktop@ LauncherFolder@ MyDocuments@

firstdir/

Our commands
echo arg echo the argument
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory

arg mandatory argument
[arg] optional argument

’mkdir’ stands for ’make directory’, it creates a new directory. It puts
the directory in the current directory, unless a different path is
specified.

’ls -F’ lists the directory, as before, but labels directories
with a ’/’, and links with a ’@’.

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 10 / 40

Moving between directories
[ejspence.mycomp] ls

2ndir Desktop LauncherFolder MyDocuments

firstdir

[ejspence.mycomp] mkdir firstdir/temp

[ejspence.mycomp] cd firstdir

[ejspence.mycomp] pwd

/home/mobaxterm/firstdir

[ejspence.mycomp] ls

temp

[ejspence.mycomp] cd temp

[ejspence.mycomp] pwd

/home/mobaxterm/firstdir/temp

[ejspence.mycomp] cd ..

[ejspence.mycomp] pwd

/home/mobaxterm/firstdir

[ejspence.mycomp] cd ~
[ejspence.mycomp] pwd

/home/mobaxterm

Our commands
echo arg echo the argument
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory

arg mandatory argument
[arg] optional argument

’cd’ stands for ’change
directory’. It moves you to the
directory you specify. With no
argument it moves you to the
home directory.

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 11 / 40

~

Tips for getting around
Some common commands for moving around your directories:

The directory above is represented by the ’..’ symbol; the current
directory is represented by the ’.’ symbol:

I ’cd ..’ goes up a directory.
I ’cd ../..’ goes up two directories.
I ’cd ../otherdir’ goes up one directory and then down into ’otherdir’.
I ’cd firstdir/seconddir/../..’ goes nowhere.
I ’cd ./././.’ also goes nowhere.

You can use absolute paths: ’cd /home/mobaxterm/firstdir/temp’.

~ is the symbol for your home directory, on whatever system you are
using. ’cd ~/work’ goes to my ~/work directory
(/home/mobaxterm/work).

’cd’ without any arguments goes to your home directory (~), from no
matter where you are.

’cd -’ goes back to the directory you were in previously.

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 12 / 40

~
~
~
~

Tips for using the command line

Some more helpful tips for using the command line:

Use the ’tab’ key, it will ’auto-complete’ the available options based
on what you’ve already typed,

I start typing your command, and then hit ’tab’
I the shell will fill in the rest, if there is only one option.
I if nothing happens, there is either no option or more than one option.
I hit the tab key twice, this will list all available options
I continue typing to reduce the number of options, then hit tab again to

fill in the rest.

Use ’Ctrl-a’ to go to the beginning of the command line, ’Ctrl-e’ to
go to the end of the line.

Use the up arrow. This scrolls through the shell’s ’history’.

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 13 / 40

History
[ejspence.mycomp] history

.

.

14 [2014-06-05 11:23:42] mkdir firstdir/temp

15 [2014-06-05 11:23:47] cd firstdir

16 [2014-06-05 11:23:49] pwd

17 [2014-06-05 11:23:50] ls

18 [2014-06-05 11:23:53] cd temp

19 [2014-06-05 11:23:55] pwd

20 [2014-06-05 11:23:58] cd ..

21 [2014-06-05 11:23:59] pwd

22 [2014-06-05 11:24:03] cd

23 [2014-06-05 11:24:05] pwd

24 [2014-06-05 11:24:11] history

[ejspence.mycomp]

Our commands
echo arg echo the argument
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history

arg mandatory argument
[arg] optional argument

The history command prints the commands that you’ve typed at the
command line. ”history 10” prints the last 10 commands.

Use the up arrow to access the entries.

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 14 / 40

Our commands so far
There are a couple of things to observe
about the commands we’ve seen so far:

The commands are designed to be
fast and easy to use.

The commands do, essentially,
only one specific thing.

The commands are pretty cryptic.
Either you know them or you
don’t.

Commands can take options.
These are usually indicated with a
’-something’ flag (such as ’ls -F’).

Our commands
echo arg echo the argument
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history

arg mandatory argument
[arg] optional argument

As you may have hoped, the purpose of this class is to teach you enough
commands that you will be able to survive the Unix command
line.

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 15 / 40

Man pages

Know a command but aren’t sure how to use the options? Use the man
(manual) page!

Most programs have a man page describing its use and all available
options.

These pages are good for finding out more about a command you
already use, but are less good for learning new commands.

Many programs have gazillions of options.

No human being who has ever lived has know all the options for ’ls’.

Over time you will find a few that you find useful for your favourite
commands.

Unfortunately, MobaXterm dumps all man pages together, so you
need to scroll down to find the entry you want.

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 16 / 40

Man pages: help!
Use the man (manual) page for a list of all flags for a command.

[ejspence.mycomp] man ls

NAME

ls - list directory contents

SYNOPSIS

ls [OPTION]... [FILE]...

DESCRIPTION

List information about the FILEs (the

current directory by default). Sort

entries alphabetically if none of -

cftuvSUX nor --sort.

Mandatory arguments to long options are

mandatory for short options too.

-a, --all

do not ignore entries starting with .

-A, --almost-all

do not list implied . and ..

...

Our commands
echo arg echo the argument
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
man cmd command’s man page

arg mandatory argument
[arg] optional argument

Not sure how to use the
command? Not sure what
options there are? Check the
man page!

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 17 / 40

Where is my USB stick?
[ejspence.mycomp] pwd

/home/mobaxterm

[ejspence.mycomp] df -h

Filesystem Size Used Available Use% Mounted on

C:/Users/IBM AD~1/AppData/Local/Temp/MOBAXT~1.1/bin
29.9G 16.8G 13.1G 56% /usr/bin

C:/Users/IBM AD~1/AppData/Local/Temp/MOBAXT~1.1/lib
29.9G 16.8G 13.1G 56% /usr/lib

C:/Users/IBM AD~1/AppData/Local/Temp/MobaXterm7.1
29.9G 16.8G 13.1G 56% /

C:/Users/IBM AD~1/DOCUME~1/FakeHome
29.9G 16.8G 13.1G 56% /home/mobaxterm

C: 29.9G 16.8G 13.1G 56% /drives/c

E: 7.2G 736.2M 6.5G 10% /drives/e

[ejspence.mycomp] cd /drives/e

[ejspence.mycomp] pwd

/drives/e

You’ll need to use the ’df -h’ command to find it.

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 18 / 40

~
~
~
~
~
~
~

Wildcards
Wildcards (*) capture all possible combinations that fit a given description.

[ejspence.mycomp] pwd

/drives/e

[ejspence.mycomp] cd software/mobaxterm

[ejspence.mycomp] ls

Development.mxt3 Emacs.mxt3 Git.mxt3

NEdit.mxt3 MobaXterm Personal 7.1.exe

.

[ejspence.mycomp] ls G*

Git.mxt3 Gvim.mxt3

[ejspence.mycomp] ls *.mxt3

Development.mxt3 Git.mxt3 NEdit.mxt3

Subversion.mxt3 Emacs.mxt3 Gvim.mxt3

Python.mxt3

[ejspence.mycomp] cd /drives/e

[ejspence.mycomp] cd SCMP101 shell/data

[ejspence.mycomp] pwd

/drives/e/SCMP101 shell/data

Our commands
echo arg echo the argument
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
man cmd command’s man page

arg mandatory argument
[arg] optional argument

The shell expands the wildcard
into a list of all possible
matches, and passes the list to
the command.

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 19 / 40

Manipulating files: copying
[ejspence.mycomp] ls

Bert Lawrence alexander jamesm

Frank Richard THOMAS gerdal

[ejspence.mycomp] cd gerdal

[ejspence.mycomp] ls

.

Data0413 Data0468 Data0528 Data0558

[ejspence.mycomp] ls *27*

Data0227 Data0279

[ejspence.mycomp] cp Data0227 Data0227-new

[ejspence.mycomp] ls *27*

Data0227 Data0227-new Data0279

[ejspence.mycomp] cp Data0227 ..

[ejspence.mycomp] ls ..

Bert Frank Richard THOMAS gerdal

Data0227 Lawrence alexander jamesm

Our commands
echo arg echo the argument
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
man cmd command’s man page
cp file1 file2 copy a file

arg mandatory argument
[arg] optional argument

Wildcards can appear
anywhere in the variable you
are searching for. They don’t
need to come at the end.

’cp’ stands for ’copy’; it copies a file.

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 20 / 40

Manipulating files: moving
[ejspence.mycomp] pwd

/drives/e/SCMP101 shell/data/gerdal

[ejspence.mycomp] ls *27*

Data0227 Data0227-new Data0279

[ejspence.mycomp] mv Data0227-new new.txt

[ejspence.mycomp] ls *27*

Data0227 Data0279

[ejspence.mycomp] ls *txt

new.txt

[ejspence.mycomp] mv new.txt ../Data0227

[ejspence.mycomp] ls *txt

ls: *txt: No such file or directory

[ejspence.mycomp] cd ..

[ejspence.mycomp] ls *27*

Data0227

Our commands
echo arg echo the argument
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
man cmd command’s man page
cp file1 file2 copy a file
mv file1 file2 move/rename a file

arg mandatory argument
[arg] optional argument

’mv’ stands for ’move’; it moves a file and/or renames it.

mv can overwrite a file, so be careful when moving things!

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 21 / 40

Manipulating files: deleting

[ejspence.mycomp] pwd

/drives/e/SCMP101 shell/data

[ejspence.mycomp] cd ..

[ejspence.mycomp] ls

Bert Frank Richard THOMAS gerdal

Data0227 Lawrence alexander jamesm

[ejspence.mycomp] ls *27*

Data0227

[ejspence.mycomp] rm Data0227

[ejspence.mycomp] ls *227*

ls: *227*: No such file or directory

Our commands
echo arg echo the argument
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
man cmd command’s man page
cp file1 file2 copy a file
mv file1 file2 move/rename a file
rm file delete a file

arg mandatory argument
[arg] optional argument

’rm’ stands for ’remove’; it deletes a file. It does not delete
directories, by default.

rm does not ’move the file to the Trash’. It deletes it; it’s gone; it’s
not recoverable. Be sure before you use rm.

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 22 / 40

Copying directories
[ejspence.mycomp] pwd

/drives/e/SCMP101 shell/data

[ejspence.mycomp] mkdir temp

[ejspence.mycomp] cp gerdal/Data0227 temp

[ejspence.mycomp] ls temp

Data0227

[ejspence.mycomp] cp temp temp2

cp: omitting directory ‘temp’

[ejspence.mycomp] cp -r temp temp2

[ejspence.mycomp] ls

Bert Lawrence alexander jamesm

Frank Richard THOMAS gerdal temp

temp2

[ejspence.mycomp] ls temp2

Data0227

Our commands
echo arg echo the argument
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
man cmd command’s man page
cp file1 file2 copy a file
mv file1 file2 move/rename a file
rm file delete a file
rmdir dir delete a directory

arg mandatory argument
[arg] optional argument

’cp’ will only copy files by default. To copy directories, including
everything within them, use ’cp -r’.

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 23 / 40

Deleting directories
[ejspence.mycomp] pwd

/drives/e/SCMP101 shell/data

[ejspence.mycomp] ls temp

Data0227

[ejspence.mycomp] rm temp

rm: temp: is a directory

[ejspence.mycomp] rmdir temp

rmdir: ’temp’: Directory not empty

[ejspence.mycomp] rm temp/*

[ejspence.mycomp] ls temp

[ejspence.mycomp] rmdir temp

[ejspence.mycomp] rm temp2/*

[ejspence.mycomp] rmdir temp2

[ejspence.mycomp]

Our commands
echo arg echo the argument
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
man cmd command’s man page
cp file1 file2 copy a file
mv file1 file2 move/rename a file
rm file delete a file
rmdir dir delete a directory

arg mandatory argument
[arg] optional argument

Uncharacteristically for Linux,
rmdir protects you. You can’t
delete a directory with files in
it, you must delete
the files first.

’rmdir’ deletes a directory.

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 24 / 40

Checking file types

[ejspence.mycomp] pwd

/drives/e/SCMP101 shell/data

[ejspence.mycomp] cd alexander

[ejspence.mycomp] ls

.

.

.

data 379.DATA data 434.DATA data 530.DATA

data 420.DATA data 502.DATA data 560.DATA

data 297.DATA data 357.DATA data 421.DATA

[ejspence.mycomp] file data 560.DATA

data 560.DATA: ASCII text

[ejspence.mycomp]

Our commands
echo arg echo the argument
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
man cmd command’s man page
cp file1 file2 copy a file
mv file1 file2 move/rename a file
rm file delete a file
rmdir dir delete a directory
file file type of file

arg mandatory argument
[arg] optional argument

The ’file’ command tells you what type of file it is.

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 25 / 40

Looking inside files

[ejspence.mycomp] pwd

/drives/e/SCMP101 shell/data/alexander

[ejspence.mycomp] more data 560.DATA

#

Reported: Sat May 7 10:50:03 2011

Subject: georgeSpice437

Year/month of birth: 1997/12

Sex: M

CI type: 20

Volume: 3

Range: 5

Discrimination:

[ejspence.mycomp]

Our commands
echo arg echo the argument
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
man cmd command’s man page
cp file1 file2 copy a file
mv file1 file2 move/rename a file
rm file delete a file
rmdir dir delete a directory
file file type of file
more file scroll through file

arg mandatory argument
[arg] optional argument

’more’ lists the contents of the file.

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 26 / 40

Looking inside files, continued

[ejspence.mycomp] cat data 560.DATA

#

Reported: Sat May 7 10:50:03 2011

Subject: georgeSpice437

.

.

[ejspence.mycomp] less data 560.DATA

#

Reported: Sat May 7 10:50:03 2011

Subject: georgeSpice437

.

.

’more’, ’cat’, and ’less’ all output the
contents of the file, but in different
ways. Can you tell the differences?
Type ’q’ to get out of ’more’ or ’less’.

Our commands
echo arg echo the argument
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
man cmd command’s man page
cp file1 file2 copy a file
mv file1 file2 move/rename a file
rm file delete a file
rmdir dir delete a directory
file file type of file
more file scroll through file
less file scroll through file
cat file print the file contents

arg mandatory argument
[arg] optional argument

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 27 / 40

cat’ing files together
[ejspence.mycomp] ls *DATA

.

.

data 379.DATA data 434.DATA data 530.DATA

data 420.DATA data 502.DATA data 560.DATA

data 297.DATA data 357.DATA data 421.DATA

[ejspence.mycomp] cat *DATA > all-DATA

[ejspence.mycomp] ls *DATA

all-DATA data 297.DATA data 357.DATA

.

.

data 346.DATA data 415.DATA data 498.DATA

data 550.DATA data 292.DATA data 347.DATA

data 420.DATA data 502.DATA data 560.DATA

[ejspence.mycomp]

Our commands
echo arg echo the argument
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
man cmd command’s man page
cp file1 file2 copy a file
mv file1 file2 move/rename a file
rm file delete a file
rmdir dir delete a directory
file file type of file
more file scroll through file
less file scroll through file
cat file print the file contents
cmd > file redirect output to file

arg mandatory argument
[arg] optional argument

’cat’ dumps the input (whatever it is) to the screen.

’>’ redirects the input to a file, instead of the screen.

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 28 / 40

cat’ing files together, continued
[ejspence.mycomp] less all-DATA

#

Reported: Wed Aug 17 13:56:38 2011

Subject: madonnaStarr178

Year/month of birth: 1995/02

Sex: N

CI type: 8

Volume: 7

Range: 3

Discrimination: 5

#

Reported: Thu May 19 09:08:14 2011

Subject: paulSpice199

Year/month of birth: 1994/01

Sex: M

CI type: 24

Volume: 4

Range: 9

.

.

Our commands
echo arg echo the argument
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
man cmd command’s man page
cp file1 file2 copy a file
mv file1 file2 move/rename a file
rm file delete a file
rmdir dir delete a directory
file file type of file
more file scroll through file
less file scroll through file
cat file print the file contents
cmd > file redirect output to file

arg mandatory argument
[arg] optional argument

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 29 / 40

Redirection fun
cmd > file takes the output that
would have gone to the screeen,
creates a new file called file, and
redirects (dumps) the output to the
file. If the file already exists the
previous content of the file is
overwritten.

cmd >> file takes the output that
would have gone to the screen, and
appends it to file. If the file doesn’t
already exist then it is created.

cmd < file takes file and uses it as
input to cmd.

Our commands
echo arg echo the argument
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
man cmd command’s man page
cp file1 file2 copy a file
mv file1 file2 move/rename a file
rm file delete a file
rmdir dir delete a directory
file file type of file
more file scroll through file
less file scroll through file
cat file print the file contents
cmd > file redirect output to file
cmd >> file append output to file
cmd < file use file as input to cmd

arg mandatory argument
[arg] optional argument

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 30 / 40

More redirection fun
[ejspence.mycomp] cat < all-DATA

#

Reported: Wed Aug 17 13:56:38 2011

Subject: madonnaStarr178

Year/month of birth: 1995/02

Sex: N

CI type: 8

Volume: 7

Range: 3

Discrimination: 5

#

Reported: Thu May 19 09:08:14 2011

Subject: paulSpice199

Year/month of birth: 1994/01

Sex: M

CI type: 24

Volume: 4

Range: 9

.

.

Our commands
echo arg echo the argument
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
man cmd command’s man page
cp file1 file2 copy a file
mv file1 file2 move/rename a file
rm file delete a file
rmdir dir delete a directory
file file type of file
more file scroll through file
less file scroll through file
cat file print the file contents
cmd > file redirect output to file
cmd >> file append output to file
cmd < file use file as input to cmd

arg mandatory argument
[arg] optional argument

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 31 / 40

Head/Tail

[ejspence.mycomp] pwd

/drives/e/SCMP101 shell/data/alexander

[ejspence.mycomp] head -4 all-DATA

#

Reported: Wed Aug 17 13:56:38 2011

Subject: madonnaStarr178

Year/month of birth: 1995/02

[ejspence.mycomp] echo "nice" >> all-DATA

[ejspence.mycomp] tail -5 all-DATA

CI type: 20

Volume: 3

Range: 5

Discrimination:

nice

[ejspence.mycomp]

’head’/’tail’ prints the first/last 10 lines
of the input.

Our commands
echo arg echo the argument
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
man cmd command’s man page
cp file1 file2 copy a file
mv file1 file2 move/rename a file
rm file delete a file
rmdir dir delete a directory
file file type of file
more file scroll through file
less file scroll through file
cat file print the file contents
cmd > file redirect output to file
cmd >> file append output to file
cmd < file use file as input to cmd
head file print first 10 lines of file
tail file print last 10 lines of file

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 32 / 40

Word count
[ejspence.mycomp] pwd

/drives/e/SCMP101 shell/data/alexander

[ejspence.mycomp] wc all-DATA

441 1173 7184 all-DATA

[ejspence.mycomp] wc -l all-DATA

441 all-DATA

[ejspence.mycomp] wc -w all-DATA

1173 all-DATA

[ejspence.mycomp] wc -c all-DATA

7184 all-DATA

[ejspence.mycomp] wc -w *DATA

.

.

24 data 550.DATA

23 data 560.DATA

2346 total

’wc’ stands for ’word count’. It counts
the number of words/lines/characters in
the input.

Our commands
echo arg echo the argument
pwd present working directory
ls [dir] list the directory contents
mkdir dir create a directory
cd [dir] change directory
history [num] print the shell history
man cmd command’s man page
cp file1 file2 copy a file
mv file1 file2 move/rename a file
rm file delete a file
rmdir dir delete a directory
file file type of file
more file scroll through file
less file scroll through file
cat file print the file contents
cmd > file redirect output to file
cmd >> file append output to file
cmd < file use file as input to cmd
head file print first 10 lines of file
tail file print last 10 lines of file
wc file word count data of file

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 33 / 40

find
Wildcards are very powerful.

from the data directory, type ’ls */*00*’.

[ejspence.mycomp] pwd

/drives/e/SCMP101 shell/data/alexander

[ejspence.mycomp] cd ..

[ejspence.mycomp] ls */*00*

.

.

Bert/audioresult-00330.txt Bert/audioresult-00460.txt Frank Richard/data 500

Bert/audioresult-00332.txt Bert/audioresult-00466.txt Lawrence/Data0300

Bert/audioresult-00350.txt Bert/audioresult-00470.txt Lawrence/Data0400

This finds files which contain ’00’ in the name, in any subdirectory
one level below this one.

Similarly for ’echo */*00*’.

But it can only match the specified levels of directories.

’find’ is a tool which lets you find files anywhere below a
given directory, based on arbitrary criteria.

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 34 / 40

find, continued
[ejspence.mycomp] pwd

/drives/e/SCMP101 shell/data

[ejspence.mycomp] find . -print

.

.

./jamesm/data 553.txt

./jamesm/NOTES

./jamesm/data 374.txt

./jamesm/data 280.txt

./jamesm/data 375.txt

./jamesm/data 476.txt

./jamesm/data 264.txt

[ejspence.mycomp]

’find . -print’ tells find to look for files
starting in the directory ’.’, and to print
the results.

Our commands
echo arg echo the argument
pwd present working directory
ls [dir] list the directory contents
cd [dir] change directory
history [num] print the shell history
man cmd command’s man page
cp file1 file2 copy a file
mv file1 file2 move/rename a file
rm file delete a file
mkdir dir create a directory
rmdir dir delete a directory
file file type of file
more file scroll through file
less file scroll through file
cat file print the file contents
cmd > file redirect output to file
cmd >> file append output to file
cmd < file use file as input to cmd
head file print first 10 lines of file
tail file print last 10 lines of file
wc file word count data of file
find dir find files

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 35 / 40

Feeding find commands
[ejspence.mycomp] pwd

/drives/e/SCMP101 shell/data

[ejspence.mycomp] find . -exec echo {} \;
.

.

./jamesm/data 553.txt

./jamesm/NOTES

./jamesm/data 374.txt

./jamesm/data 280.txt

./jamesm/data 375.txt

./jamesm/data 476.txt

./jamesm/data 264.txt

’find . -exec echo {} \;’ tells find to
execute the ’echo’ command on
everything which gets put in {}, which
are the filenames. The command ends
with ’\;’.

Our commands
echo arg echo the argument
pwd present working directory
ls [dir] list the directory contents
cd [dir] change directory
history [num] print the shell history
man cmd command’s man page
cp file1 file2 copy a file
mv file1 file2 move/rename a file
rm file delete a file
mkdir dir create a directory
rmdir dir delete a directory
file file type of file
more file scroll through file
less file scroll through file
cat file print the file contents
cmd > file redirect output to file
cmd >> file append output to file
cmd < file use file as input to cmd
head file print first 10 lines of file
tail file print last 10 lines of file
wc file word count data of file
find dir find files

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 36 / 40

More find options
[ejspence.mycomp] pwd

/drives/e/SCMP101 shell/data

[ejspence.mycomp] find . -type d

.

./Lawrence

./Frank Richard

./gerdal

./Bert

./alexander

./THOMAS

./jamesm

[ejspence.mycomp]

The ’-type’ argument specifies the type
of file that you’re looking for. ’d’ and
’f’, directories and regular files, are the
two most commonly used options.

Our commands
echo arg echo the argument
pwd present working directory
ls [dir] list the directory contents
cd [dir] change directory
history [num] print the shell history
man cmd command’s man page
cp file1 file2 copy a file
mv file1 file2 move/rename a file
rm file delete a file
mkdir dir create a directory
rmdir dir delete a directory
file file type of file
more file scroll through file
less file scroll through file
cat file print the file contents
cmd > file redirect output to file
cmd >> file append output to file
cmd < file use file as input to cmd
head file print first 10 lines of file
tail file print last 10 lines of file
wc file word count data of file
find dir find files

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 37 / 40

More find options, continued
[ejspence.mycomp] find . -type f -name "*09*"

./gerdal/Data0409

./alexander/data 309.DATA

./jamesm/data 509.txt

[ejspence.mycomp]

The ’-name’ argument specifies the
characteristics of the name of the file to
be found.

Our commands
echo arg echo the argument
pwd present working directory
ls [dir] list the directory contents
cd [dir] change directory
history [num] print the shell history
man cmd command’s man page
cp file1 file2 copy a file
mv file1 file2 move/rename a file
rm file delete a file
mkdir dir create a directory
rmdir dir delete a directory
file file type of file
more file scroll through file
less file scroll through file
cat file print the file contents
cmd > file redirect output to file
cmd >> file append output to file
cmd < file use file as input to cmd
head file print first 10 lines of file
tail file print last 10 lines of file
wc file word count data of file
find dir find files

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 38 / 40

Logout
[ejspence.mycomp] logout

What to do when you’re finished? Use
the ’logout’ command to exit the
terminal session cleanly (you don’t need
to do this now). Ctrl-d also works.

Our commands
echo arg echo the argument
pwd present working directory
ls [dir] list the directory contents
cd [dir] change directory
history [num] print the shell history
man cmd command’s man page
cp file1 file2 copy a file
mv file1 file2 move/rename a file
rm file delete a file
mkdir dir create a directory
rmdir dir delete a directory
file file type of file
more file scroll through file
less file scroll through file
cat file print the file contents
cmd > file redirect output to file
cmd >> file append output to file
cmd < file use file as input to cmd
head file print first 10 lines of file
tail file print last 10 lines of file
wc file word count data of file
logout close the terminal session

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 39 / 40

Enough to get started

These commands, and a few more
we’ll learn after the break, are
enough to get started with using
the command line.

As you have seen, Unix commands
are simple, and are designed to do
one specific thing.

By combining these commands
together we will be able to do more
interesting things.

If there is functionality that you
think ought to exist, it probably
does. Ask someone what the
command is, or google it.

Our commands
echo arg echo the argument
pwd present working directory
ls [dir] list the directory contents
cd [dir] change directory
history [num] print the shell history
man cmd command’s man page
cp file1 file2 copy a file
mv file1 file2 move/rename a file
rm file delete a file
mkdir dir create a directory
rmdir dir delete a directory
file file type of file
more file scroll through file
less file scroll through file
cat file print the file contents
cmd > file redirect output to file
cmd >> file append output to file
cmd < file use file as input to cmd
head file print first 10 lines of file
tail file print last 10 lines of file
wc file word count data of file
logout close the terminal session

Erik Spence (SciNet HPC Consortium) Unix Shell Programming 9 June 2014 40 / 40

	Interfaces
	The shell
	Our first script

	The File System
	The home directory
	Creating directories
	Tips for getting around

	Misc. Commands
	Man pages
	Wildcards

	Dealing with files
	Manipulating files
	Manipulating directories
	Looking inside files
	Redirection
	find

