HWI - Summing

- le-8 smaller than machine epsilon (float)
- Forward sum fails utterly
- Backward sum does better (why not correctly?)

$$
\begin{array}{|ll|}
\text { \$./part1 } \\
\text { Left sum: } & 1 \\
\text { Right sum: } & 1.25 \\
\hline
\end{array}
$$

HWI - Summing

float pairwisesum(float *list, const int n) \{
if ($n==1$) return list[0];
const int newn $=n / 2+n \% 2$;
float *sums = new float[newn];
for (int $\mathrm{i}=0$; $\mathrm{i}<\mathrm{n} / 2$; $\mathrm{i}++$) sums[i] = list[2*i] + list[2*i+1];
if ($n \% 2==1$)

$$
\operatorname{sums}[n / 2]=\text { list }[n-1] ;
$$

return pairwisesum(sums, newn);

HWI - Summing

- Lots of ways around this:
float kahensum(float *list, const int n) \{

```
float tot = 0.;
    float comp = 0.;
    for (int \(i=0\); \(i<n ; i++\) ) \{
    float \(y=\) list[i] - comp;
    float \(t=\) tot \(+y\);
    comp \(=(\mathrm{t}-\mathrm{tot})-\mathrm{y}\);
    tot \(=t\);
\}
return tot;
```


HWI - Summing

- Lots of ways around this:
double doublesum(float *list, const int n) \{
double tot = 0.;
for (int $\mathbf{i = 0 ; ~} \mathbf{i}<n ; \mathbf{i}++$) tot += list[i];
return tot;
\}

HWI - Summing

- Lots of ways around this:
\$./part1
Left sum: 1
Right sum: 1.25
Pairwise sum:2 Kahen sum: 2 Double precision sum:
- compute \bullet calcul

HWI - Random Walks

LCG dx, dy

Cinet

HWI - Random Walks

HWI - Seed

- Some issues with seeding
- General workflow; seed once, then generate all the random numbers you need.
- Showing how LCG worked may have confused things; seed was just last (integer) random deviate chosen

HWI - Seed

- In general, current state of a PRNG can be quite large.
- Generally explicit functions to query state, set state (so can continue exactly where left off)
- Most PRNGs also have a convenience funciton to set state from small (~ 1 int) seed; bootstrap state from seed + smaller RNG
- Use once; don't keep seeding - don't know how it interacts with the PRNG

Numerical Linear Algebra

Scientific Computing Course Mar 2013
(1) compute•calc

Conclusion

- Linear algebra pops up everywhere, even if you don't notice
- Statistics, data fitting, graph problems, PDE/ coupled ODE solves...
- There exist very highly tuned packages for any sort of problem that can be cast into matricies and vectors - use them
- LAPACK, BLAS
- Exploit structure in your matricies
- Don't ever invert a matrix

Outline

- Reminder of Linear Algebra
- Gaussian Elimination
- BLAS
- Solving $A x=b$
- Sparse matricies
- Iterative solvers
- Eigenproblems

Vector operations

- Geometric Interpretation
- Scaling a vector, adding two vectors together...

- Dot product (or any inner product)

Vector spaces

- A set of vectors x spans a space S iff every vector in
 S can be expressed as a linear combination of x_{i}

Vector orthogonality no overlap

- A set of vectors is said to be orthogonal if

$$
x_{i} \cdot x_{j} \Longleftrightarrow i \neq j
$$

and orthonormal if

$$
x_{i} \cdot x_{j}= \begin{cases}0 & i \neq j \\ 1 & i=j\end{cases}
$$

- A set of n orthogonal vectors necessarily span a subspace of dimension n

Matrix Vector: Change of Basis

$$
A \mathbf{x}=\mathbf{b}
$$

$$
\left[a_{1}\left|a_{2}\right| \ldots \mid a_{n}\right]\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
\vdots \\
x_{n}
\end{array}\right)=x_{1}\left(a_{1}\right)+x_{2}\left(a_{2}\right)+\cdots+x_{n}\left(a_{n}\right)
$$

Matrix Vector: Change of Basis

- $A x=b: x$ is the (unique) vector of coefficients that represents b in the basis of columns of A
- Basis for $b:\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$
- Basis for $\mathrm{x}:\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{n}}\right\}$
(- compute •calcul

Column spaces

- Column space of A - the space spanned by the column vectors a_{i}
- eg, column space is all vectors that can be formed by linear combinations of the a_{i}

Scinare
ANADA

Matrix Vector: Linear mapping

- $A x=b:$ Linear transformation of x.
- $A x_{1}=b_{1} ; A x_{2}=b_{2}$
- $A\left(x_{1}+x_{2}\right)=\left(b_{1}+b_{2}\right)$
- $A\left(\alpha x_{1}\right)=\alpha b_{1}$

Range of A all possible b

- The range of a matrix A is the space of all possible vectors it can map to:

$$
b \in \operatorname{Range}(A) \Longrightarrow \exists x \mid A x=b
$$

eg, column space.
©

Nullspace of A: vectors that map to zero

- The nullspace of a matrix A is the space of all vectors it maps to zero:

$$
\mathbf{x} \in \operatorname{Null}(\mathbf{A}) \Longrightarrow \mathbf{A x}=\mathbf{0}, \mathbf{x} \neq \mathbf{0}
$$

- For matricies A with a non-empty nullspace, there may be no solution to $A x=b$, or infinitely many solutions.

Column Rank:

Dimension of Range

- The Rank of a matrix A is the dimension (eg, minimum number of basis vectors) of it's column space.
- For square ($\mathrm{n} \times \mathrm{n}$) matrix, a Full-Rank matrix has rank n.
- Column rank = Row Rank (not obvious, but true.) So generally just say "Rank"

Rank + Nullity

- Rank of Matrix
- + Nullity (rank of nullspace) of matrix
- = \# of columns ofmatrix

Invertability

- Square, full-rank $n \times n$ matrix A has an inverse, A^{-1}, such that $A A^{-1}=A^{-1} A=1$
- For $\mathrm{n} \times \mathrm{n}$ matrix, following statements are equivalent:
- Has an inverse
- $\operatorname{rank}(\mathrm{A})=\mathrm{n}$
- $\quad \operatorname{range}(A)=R^{n}$
- $\operatorname{null}(A)=\{ \}$
- No eigenvalues are 0
- No singular values are 0
- determinant is non-zero

Solving Linear Systems

$A x=b$, solve for x

Sets of linear

equations: don't invert

- $\mathrm{Ax}=\mathrm{b}$ implies $\mathrm{x}=\mathrm{A}^{-1} \mathrm{~b}$
- Mathematically true, but numerically, inversion:
- is slower than other solution methods
- is numerically much less stable
- ruins sparcity (huge memory disadvantage for, eg, PDEs on meshes)
- loses any special structure of matrix A

Easy systems to solve

- We'll talk about methods to solve linear systems of equations
- Will assume nonsingular matricies (so there exists a unique solution)
- But some systems much easier to solve than others. Be aware of "nice" properties of your matricies!
©

Diagonal Matrices

- (generally called D, or Λ)
- Ridiculously easy

$$
\left(\begin{array}{cccc}
d_{1} & & & \\
& d_{2} & & \\
& & \ldots & \\
& & & d_{n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)
$$

- Matrix multiplication just $\mathrm{d}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$

$$
x_{i}=\frac{b_{i}}{d_{i}}
$$

Compue sata

Upper Triangular Matrices

- Generally called U
- "Back Substition": solve (easy) last one first

$$
\left(\begin{array}{cccc}
u_{1,1} & u_{1,2} & \cdots & u_{1, n} \\
& u_{2,2} & \cdots & u_{2, n} \\
& & \cdots & \vdots \\
& & & u_{n, n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)
$$

- Use that to solve previous one, etc.

$$
\begin{array}{r}
x_{n}=\frac{b_{n}}{u_{n, n}} \\
x_{n-1}=\frac{b_{n}-u_{n-1, n} x_{n}}{u_{n-1, n-1}}
\end{array}
$$

- Lower triangular (L): "Forward substitution", same deal.

Orthogonal matrices

- Generally called Q
- Columns (rows) are orthogonal unit vectors
- Transpose is inverse!

$$
\begin{array}{r}
Q^{T} Q=I \\
Q \mathbf{x}=\mathbf{b} \\
Q^{T} Q \mathbf{x}=Q^{T} \mathbf{b} \\
\mathbf{x}=Q^{T} \mathbf{b}
\end{array}
$$

- That inverse l'll let you compute.
- Orthogonal matrices are numerically very nice - all row, col vectors are same "length".
(1)compute •calcu

Symmetric Matrices

- No special nomenclature

$$
\begin{array}{r}
A^{T}=A \\
a_{i, j}=a_{j, i}
\end{array}
$$

- Half the work; only have to deal with half the matrix
- (I'm assuming real matrices, here; complex: Hermetian)
co

Symmetric Positive Definite

- Very special but common (covariance matricies, some PDEs)
- Always non-singular

$$
\begin{aligned}
A^{T} & =A \\
\mathbf{x}^{T} A \mathbf{x} & >0
\end{aligned}
$$

- All eigenvalues positive
$A=L L^{T}$
- Numerically very nice to work with
(1) compute \bullet calcu

Structure matters

- Find structure in your problems
- If writing equations in slightly different way gives you nice structure, do it
- Preserve structure when possible
(D) compute \bullet calcul

Gaussian Elimination

- For general square matrices (can't exploit above properties)

$$
\left(\begin{array}{ccc}
10 & -7 & 0 \\
5 & -1 & 5 \\
-2 & 2 & 6
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
7 \\
6 \\
4
\end{array}\right)
$$

- We all learned this in high school:

$$
\left(\begin{array}{ccc}
10 & -7 & 0 \\
& 2.5 & 5 \\
& 3.4 & 6
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
7 \\
-0.5 \\
2.6
\end{array}\right)
$$

- Subtract off multiples of previous rows to zero out below-diagonals

$$
\left(\begin{array}{ccc}
10 & -7 & 0 \\
& 2.5 & 5 \\
& & -0.8
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
7 \\
-0.5 \\
3.28
\end{array}\right)
$$

- Back-subsitute when done

Basic Linear Algebra Subroutines

- Linear algebra fairly simple: matricies and vectors
- Row vector operations, column vector operations, matrix-matrix operations
- BLAS: Basic Linear Algebra Subroutines.
- Level I: vector-vector operations
- Level 2: matrix-vector operations
- Level 3: matrix-matrix operations

Compues sata

Basic Linear Algebra Subroutines

- A well defined standard interface for these routines
- Many highly-tuned implementations exist for various platforms. (Atlas, Flame, Goto, PLASMA, cuBLAS...)
- (Interface vs. Implementation! Trick is designing a sufficiently general interface.)
- Higher-order operations (matrix factorizations, like as we'll see, gaussian elimiation) defined in LAPACK, on top of BLAS.

Typical BLAS routines

- Level I:sdot (dot product, single), zaxpy (ax+y,dbl complex)

Prefixes:

S: Single C: Complex
D: Double Z: Double Complex

- Level 2: dgemv (dbl matrix*vec), dsymv (dbl symmetric matrix*vec)
- Level 3: sgemm (general matrix-matrix), ctrmm (triangular matrix-matrix)

Matrix Types:
GE: General SY: Symmetric
GB: General Banded SB: Symmetric Banded
HY: Hermetian
TR:Triangular
TP:Triangular Packed

- Incredibly cryptic names, interfaces.

Why bother?

- Finding, downloading library

$$
\begin{array}{r}
C=A B \\
c_{i, j}=\sum_{k} a_{i, k} b_{k, j}
\end{array}
$$

- Figuring out how to link
- C/Fortran issues

$$
\begin{aligned}
& \text { for }(i=0 ; i<N ; i++) \\
& \text { for }(j=0 ; j<N ; j++) \\
& \quad \text { for }(k=0 ; k<N ; k++) \\
& \quad c[i][j]=a[i][k] * b[k][j] ;
\end{aligned}
$$

- Just write it - it's not rocket science.
semes

Never, ever, write your own

Matrix-Matrix Multiplication (MMM) on $2 \times$ Core 2 Extreme 3 GHz Performance [Gflop/s]

"How to Write Fast Numerical Code:A Small Introduction", Chellappa et al www.ece.cmu.edu/~franzf/papers/gttse07.pdf

Division of Labour

```
(4) Eww.netlib.org/lapack/
```


- Focus on the science you need to do
- Write code for your problem - stuff that you know best
- Let people who enjoy making fast linear algebra software for a living do that.

LAPACK — Linear Algebra PA

Menu
Presentation
Software

Licensing

LAPACK, version 3.4.0
Standard C language APIs for LAPACK
LAPACK for Windows
SVN Access
Support
Contributors
Documentation
Release Notes
Improvements and Bugs
FAQ
Browse, Download LAPACK routines with on-line documentation b
Users' Guide
Manpages
LAWNS: LAPACK Working Notes
Release History
Previous Release
LAPACK, version 3.4.0
LAPACK, version 3.3.1

Gaussian Elimiation $=$

 LU Decomposition- With each stage of the elimination, we were subtracting off some multiple of a previous row

$$
\begin{aligned}
& \left(\begin{array}{ccc}
10 & -7 & 0 \\
5 & -1 & 5 \\
-2 & 2 & 6
\end{array}\right)=\left(\begin{array}{lll}
1 & & \\
& 1 & \\
& & 1
\end{array}\right)\left(\begin{array}{ccc}
10 & -7 & 0 \\
5 & -1 & 5 \\
-2 & 2 & 6
\end{array}\right) \\
& \left(\begin{array}{ccc}
10 & -7 & 0 \\
5 & -1 & 5 \\
-2 & 2 & 6
\end{array}\right)=\left(\begin{array}{ccc}
1 & & \\
+\frac{1}{2} & 1 & \\
-\frac{1}{5} & & 1
\end{array}\right)\left(\begin{array}{ccc}
10 & -7 & 0 \\
& 2.5 & 5 \\
& 0.6 & 6
\end{array}\right)
\end{aligned}
$$

- That means the factored U can have the same multiple of the row added to it to get back to A
- Decomposing to give us

$$
\begin{aligned}
\left(\begin{array}{ccc}
10 & -7 & 0 \\
5 & -1 & 5 \\
-2 & 2 & 6
\end{array}\right) & =\left(\begin{array}{ccc}
1 & & \\
-\frac{1}{2} & 1 & \\
+\frac{1}{5} & +\frac{6}{25} & 1
\end{array}\right)\left(\begin{array}{ccc}
10 & -7 & 0 \\
& 2.5 & 5 \\
& & 4.8
\end{array}\right) \\
A & =L U
\end{aligned}
$$

$$
A=L U
$$

Solving is fast with LU

- Once have A = LU ($\mathrm{O}\left(\mathrm{n}^{3}\right)$ steps) can solve for x quickly ($\mathrm{O}\left(\mathrm{n}^{2}\right)$ steps)

$$
\begin{aligned}
A \mathbf{x} & =\mathbf{b} \\
L U \mathbf{x} & =\mathbf{b} \\
L(\mathbf{y}) & =\mathbf{b} \\
y & =\operatorname{Backsubst}(L, \mathbf{b}) \\
U \mathbf{x} & =\mathbf{y} \\
x & =\operatorname{Forwardsubst}(U, \mathbf{y})
\end{aligned}
$$

- Backsubstitute, then forward substitute
compute •calcu
CANADA

Conditioning

- A problem is said to be inherently ill-conditioned if any small perturbation in the initial conditions generates huge changes in the results
- Say, calculating $f(x)$: if

$$
\frac{\|f(x+\delta x)\|}{\|f(x)\|} \gg \frac{\|\delta x\|}{\|x\|}
$$

then the problem is inherently hard to do numerically (or with any sort of approximate method)
(compute •calcul canad

Conditioning

- In matrix problems, this can happen in nearly singular matricies nearly linearly dependant columns.
- Carve out strongly overlapping subspaces
- Very small changes in b (say) can result in hugely different change in x

$$
\left(\begin{array}{cc}
1 & 1 \\
1 & 1.05
\end{array}\right)\binom{x}{y}=\binom{2}{2}
$$

Try it

- Order unity change in answer with I/2 part in 10^{-4} change in input.
- Would be true with infinite-precision arithmetic.
- Inherently a tough problem.

```
$ ipython --pylab
In [1]: a = numpy.array([[1,1],
    [1,1.0001]])
In [2]: b = numpy.array([2,2])
In [3]: scipy.linalg.solve(a,b)
Out[3]: array([ 2., 0.])
In [4]: scipy.linalg.solve(a,
    b+numpy.array([0,0.0001]))
Out[4]: ??
```


Condition number

- Condition number can be estimated using "sizes" (matrix norms) of A, inverse of A.
- Lapack routines exist:

$$
\kappa(A)=\|A\| \cdot\left\|A^{-1}\right\|
$$

$$
\frac{\|\delta x\|}{\|x\|}<\kappa(A) \frac{\|\delta b\|}{\|b\|}
$$

$$
\ldots \mathrm{CON}
$$

- Relative error in x can't be less than condition number * machine epsilon.

Residuals

- Computational scientists have over 20 words for "numerical error"
- Absolute, relative error - error in x.
- Residual: answer in result provided by erroneous x error in b.
- Which is more important is entirely problem dependant
(compute •calcu

Pivoting

- The diagonal elements we use to "zero out" lower elements are called pivots.
- May need to change pivots, if for instance

$$
A=\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & c \\
d & e & f
\end{array}\right)
$$

zeros appear in wrong place

- Matrix might be singular, or fixed by reordering
- PLU factorization
- compute • calcu

Pivoting

- Important numerically, too - avoid catastrophic loss of precision.
- Consider 3 digits of decimal precision.
Problem nowhere near singular

$$
\begin{aligned}
\left(\begin{array}{cc}
10^{-4} & 1 \\
1 & 1
\end{array}\right)\binom{x}{y} & =\binom{1}{2} \\
\left(\begin{array}{cc}
10^{-4} & 1 \\
1+10^{4}
\end{array}\right)\binom{x}{y} & =\binom{1}{2+10^{4}} \\
\left(\begin{array}{cc}
10^{-4} & 1 \\
10^{4}
\end{array}\right)\binom{x}{y} & =\binom{1}{10^{4}} \\
\binom{x}{y} & =\binom{0}{1}
\end{aligned}
$$

- What does scipy say?

Residuals

- Good linear algebra algorithms (and implementations) should give residuals no more than (some function of size of matrix) \times (machine epsilon)
- And errors in \times no more than condition number times that.
- An exact solution to a nearby problem
- Bad algorithms/implementations will depend on sqrt(machine epsilon) or worse, and/or will be matrix dependant (eg, LU without pivoting).
compue sata
C ANADA

Cholesky Factorization

- For symmetric, positive definite matrices (surpisingly common), use Cholesky factorization instead.
- $A=L L^{T}$
- No pivoting; more numerically stable; faster.

```
In [10]: a =
```

In [10]: a =
numpy.array([[25,15,-5],
numpy.array([[25,15,-5],
[15,18,0],[-5,0,11]])
[15,18,0],[-5,0,11]])
In [11]:
In [11]:
scipy.linalg.cholesky(a)
scipy.linalg.cholesky(a)
Out[11]:
Out[11]:
array([[5., 3., -1.],
array([[5., 3., -1.],
[0., 3., 1.],
[0., 3., 1.],
[0., 0., 3.]])

```
    [ 0., 0., 3.]])
```

0
canada

$A x \sim b: Q R$ factorizations

- Not all $A x=b$ s can be solved; consider an overdetermined system (data fitting).
- LU won't even work on

$$
\left(\begin{array}{cccc}
x_{0}^{3} & x_{0}^{2} & x_{0} & 1 \\
x_{1}^{3} & x_{1}^{2} & x_{1} & 1 \\
\cdots & & & \\
x_{n}^{3} & x_{n}^{2} & x_{n} & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{c}
y_{0} \\
y_{1} \\
\cdots \\
y_{n}
\end{array}\right)
$$ non-square systems.

- What to do?
(1) compute \bullet calcul

Minimize residual: Residual not in Range(A)

- Want to project out residual somehow
- Normal equations
- Much of linear algebra is decompositions into useful forms

$$
\begin{aligned}
\mathbf{r}^{2} & =\|\mathbf{b}-A \mathbf{x}\|_{2}^{2} \\
& =(\mathbf{b}-A \mathbf{x})^{T}(\mathbf{b}-A \mathbf{x}) \\
& =\mathbf{b} \cdot \mathbf{b}-2 \mathbf{b}^{T} A \mathbf{x}+\mathbf{x}^{T} A^{T} A \mathbf{x} \\
0 & =-2 \mathbf{b}^{T} A+2 \mathbf{x}^{T} A^{T} A \\
\left(A^{T} A\right) \mathbf{x} & =A^{T} \mathbf{b}
\end{aligned}
$$

C)

QR
 decomposition

- All matricies can be decomposed into QR , even $m \times n, m>n$
- Bottom half of R is necessarily empty (below diagonal)
- All columns in Q are orthogonal bases of m-d
 space, and R is the combination of them that makes up A

Somereata

Orthogonalizing columns of A

- Let's take these n column vectors of length m and make an orthonormal basis.
- Divide a। by its norm; I done. What about rest?

$$
\left[q_{1}\right]=\frac{\mathbf{a}_{\mathbf{1}}}{\left\|\mathbf{a}_{\mathbf{1}}\right\|}
$$

Gram-Schmidt (don't use this)

- Easiest to follow at first isn't numerically stablest (should use Householder transforms).
- Subtract off qı component from a2, take unit vector of that $-\mathrm{q}_{2}$.
- And so on.
- Bit like LU, but instead of making zeros, you're making orthogonality

$$
\begin{aligned}
& {\left[\begin{array}{l}
a_{1}\left|a_{2}\right| \ldots \\
\\
{\left[\begin{array}{l}
\\
q_{2} \\
\end{array}\right]=\frac{a_{\mathbf{2}}-\left(\mathbf{\mathbf { a } _ { \mathbf { 2 } }} \cdot \mathbf{q}_{\mathbf{1}}\right) \mathbf{q}_{\mathbf{1}}}{\left\|\mathbf{a}_{\mathbf{2}}-\mathbf{a}_{\mathbf{2}} \cdot \mathbf{q}_{\mathbf{1}}\right\|}} \\
\text { SCiNet }
\end{array}\right.}
\end{aligned}
$$

©) compue estan

Gram-Schmidt (don't use this)

- Gram-Schmidt handy for generating orthgonal series of basis functions from (say) polynomials, as well.
- Same procedure, just different definition of inner product, norm.

QR Factor a random matrix

```
In [13]: r = numpy.random.random((50,50))
In [14]: for i in xrange(50):
    ....: for j in xrange(i):
    ....: r[i,j] = 0.
    ....:
In [15]: print r[0:3,0:3]
[[[ 0.4147775 0.64843642 0.41133882]}
    [ 0. 0.88592831 0.54711704]
    [ 0. 0. 0.23438925]]
In [16]: q,x = scipy.linalg.qr(numpy.random.random((50,50)))
In [17]: a = numpy.dot(q,r)
In [18]: q2,r2 = scipy.linalg.qr(a)
In [19]: a2 = numpy.dot(q2,r2)
In [20]: print scipy.linalg.norm(a2-a)/scipy.linalg.norm(a)
6.60894445883e-16
```


Errors and residuals

- Generate random matrices Q, R; calculate A
- QR factorization of A
- Errors in Q2, R2 ~ sqrt(machine epsilon)
- (Random matrix tends to be illconditioned)
- Residual in A: (machine epsilon). Would be sqrt with classical G-S

Normal equations with QR are easy

- Now this is fairly straightforward

$$
\begin{aligned}
\left(A^{T} A\right) \mathbf{x} & =A^{T} \mathbf{b} \\
R^{T} Q^{T} Q R \mathbf{x} & =R^{T} Q^{T} \mathbf{b} \\
R^{T} R \mathbf{x} & =R^{T} Q^{T} \mathbf{b} \\
R \mathbf{x} & =Q^{T} \mathbf{b}
\end{aligned}
$$

- End up with (Rx) -forward solve -- equal to matrix-vector product.
- Done!

Eigenproblems

- Tells a great deal about

$$
A \mathbf{x}=\lambda \mathbf{x}
$$ the structure of a matrix

- How it will act on a vector: project onto its eigenvectors, mutiply by eigenvalues.

- Goal is a complete decomposition:

Eigenvalue Decomposition

- For square matrix
- "Similarity Transform"
- No restrictions on the structure of X
- Can only happen if there are a full set of eigenvectors.

$$
\begin{aligned}
A X & =X \Lambda \\
A & =X \Lambda X^{-1}
\end{aligned}
$$

- Diagonalizability: N non-null eigenvectors;
- Invertability: N non-zero eigenvalues

Defective Matrices

- Both these matrices have eigenvalue 2, with multiplicity 3
- But A has full set of eigenvectors ($\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}$)
- B has only one eigevector; e_{I}

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
2 & & \\
& 2 & \\
& & 2
\end{array}\right) \\
& B=\left(\begin{array}{lll}
2 & 1 & \\
& 2 & 1 \\
& & 2
\end{array}\right)
\end{aligned}
$$

- Not diagonalizable

Iterative Methods

- So far, have dealt solely with direct methods.
- Solution takes one (long) step, then answer is complete, as exact as matrix/method allows.
- Other approach; take successive approximations, get closer.
- Typically converge to machine accuracy in much less time than direct, esp for large matricies

Krylov Subspaces

- Krylov subspace:
repeated action on by A.

$$
A \mathbf{x}=\mathbf{b}
$$

- For sufficiently large n, final term should

$$
\mathcal{K}=\left[\mathbf{b}, A \mathbf{b}, A^{2} \mathbf{b}, \cdots, A^{n-1} \mathbf{b}\right]
$$ converge to eigenvector with largest eigenvalue

- But slow, and only one eigenvalue?

Krylov Subspaces

- Can orthogonalize (Gram Schmidt, Householder) to project out other components
- Should give

$$
A \mathbf{x}=\mathbf{b}
$$

$\mathcal{K}=\left[\mathbf{b}, A \mathbf{b}, A^{2} \mathbf{b}, \cdots, A^{n-1} \mathbf{b}\right]$ approximations to eigenvectors (random b)

- But not numerically stable

Arnoldi Iteration

- Stabilized orthogonalization
- Becomes Lanczos iteration for symmetric A
- Orthogonal projection of A onto the Krylov subspace, H
- H is of modest size, can have eigenvalues calculated
- Note: Only requires matrixvector, vector-vector products
- GMRES:Arnoldi iteration for solving $A x=b$

$$
\begin{aligned}
& q_{1} \leftarrow e_{1} \\
& \text { for } j \in[1, k-1]: \\
& \quad h_{j, k-1} \leftarrow q_{j}^{T} q_{k} \\
& \quad q_{k} \leftarrow q_{k}-h_{j, k-1} q \\
& h_{k, k-1} \leftarrow\left\|q_{k}\right\| \\
& q_{k} \leftarrow \frac{q_{k}}{h_{k, k-1}}
\end{aligned}
$$

Sparse Matricies

- So far, we've been assuming our matrices are dense; there are numbers stored for every entry in matrix.
- This is indeed often the case, but it's also often that huge numbers of the entries are zero: some roughly constant number of entries per row, much less than n.
- Difference between n^{2} and n can be huge if $\mathrm{n} \sim 10^{6}$; difference between doing and not doing the problem.
- Happens particularly often in discretizing PDEs.
- compute \bullet calcu

C A N A D A

Discretizing Derivatives

- Done by finite differencing the discretized values
- Implicitly or explicitly involves interpolating data and taking derivative of the interpolant

$$
\begin{aligned}
& \frac{d \mathbf{q}}{d t}=\sigma\left(\begin{array}{cccccc}
-2 & 1 & & & & \\
& 1 & -2 & 1 & & \\
& & & \cdots & & \\
& & & 1 & -2 & 1 \\
& & & & 1 & -2
\end{array}\right) \mathbf{q} \\
& \frac{d \mathbf{q}}{d t} \approx \frac{\mathbf{q}^{\mathbf{n + 1}}-\mathbf{q}^{\mathbf{n}}}{\Delta t} \\
& \mathbf{q}^{\mathbf{n + 1}}=\mathbf{q}^{\mathbf{n}}+\sigma \boldsymbol{\Delta} \mathbf{t} \mathbf{A q}^{\mathbf{n}} \\
& \mathbf{q}^{\mathbf{n + 1}}=(\mathbf{I}+\sigma \boldsymbol{\Delta} \mathbf{t} \mathbf{A}) \mathbf{q}^{\mathbf{n}} \\
& \mathbf{q}^{\mathbf{n + 1}}=\sigma \boldsymbol{\Delta} \mathbf{t}\left(\begin{array}{cccccc}
\frac{1}{\sigma \Delta t}-2 & 1 & & & & \\
& 1 & \frac{1}{\sigma \Delta t}-2 & 1 & & \\
& & & \cdots & & \\
& & & 1 & \frac{1}{\sigma \Delta t}-2 & 1 \\
& & & & 1 & \frac{1}{\sigma \Delta t}-2
\end{array}\right) \mathbf{q}^{\mathbf{n}}
\end{aligned}
$$

Boundary Conditions

$\left.\frac{d^{2} q}{d x^{2}}\right|_{i} \approx \frac{q_{i+1}-2 q_{i}+q_{i-1}}{\Delta x^{2}}$

- What happens when stencil goes off of the end of the box?

- Depends on how you want to handle boundary conditions.
- Typically easiest to have extra points on end, set values to enforce desired BCs.
\int compute •calcu

Boundary Conditions

$\left.\frac{d^{2} q}{d x^{2}}\right|_{i} \approx \frac{q_{i+1}-2 q_{i}+q_{i-1}}{\Delta x^{2}}$

- Dirichlet (fixed value) boundary conditions: just have
 I on diagonal, 0 elsewhere, keeps value there constant.
- Neumann (derivitave) bcs: requires more manipulation of the equations.
\int compute •calcu

Inverses destroy

sparsity

- For sparse matrices like above, LU decompositions may maintain much sparsity (particularly if banded, etc)

$$
\begin{aligned}
& \left(\begin{array}{ccccc}
1 & -1 & & & \\
-1 & 2 & -1 & & \\
& -1 & 2 & -1 & \\
& & -1 & 2 & -1 \\
& & & -1 & 2
\end{array}\right)=\left(\begin{array}{ccccc}
1 & & & & \\
-1 & 1 & & & \\
& -1 & 1 & & \\
& & -1 & 1 & \\
& & & & -1
\end{array}\right)\left(\begin{array}{ccccc}
1 & -1 & & & \\
& 1 & -1 & & \\
& & 1 & -1 & \\
& & & 1 & -1 \\
& & & & \\
-1 & 2 & -1 & & \\
& -1 & 2 & -1 & \\
& & -1 & 2 & -1 \\
& & & -1 & 2
\end{array}\right) \\
&
\end{aligned}
$$

- Inverses in general are full
- For large n , difference beween cn and n^{2} huge.

Sparse (banded) LU

- If entries only exist within a narrow band around diagonal, then row, column operations fast.

$$
\left(\begin{array}{ccccc}
1 & -1 & & & \\
-1 & 2 & -1 & & \\
& -1 & 2 & -1 & \\
& & -1 & 2 & -1 \\
& & & -1 & 2
\end{array}\right)=
$$

- May get significant "fill in" depending on exact structure of matrix
- (This is artificially good example)
(1)compute •calcul

Sparsity patterns

- Sparse matrices can have arbitray sparsity patterns
- Typically need at less than 10\% nonzeros to make dealing with sparse matricies worth it.
- Half zeros - typically just store full matrix.

http://en.wikipedia.org/wiki/File:Finite_element_sparse_matrix.png
Scinet
(1) compute•calcu

Common Sparse Matrix Formats:

- CSR (Compressed Sparse Row): Just join all the nonzeros in rows together, with pointers to where each starts, and (similar sized) array of column for each value
- CSC (Compressed Sparse Column): Same, but flip row/ column
- Banded: just store diagonals +/- some bandwidth
- Many many more.
(1) compute + calcul

Iterative $\mathrm{Ax}=\mathrm{b}$ solvers: Conjuate Gradient

- SPD matrices, works particularly well on sparse systems
- "Steepest Descent", but only on conjugate (w/rt A) directions: no "doubling back"

http://en.wikipedia.org/wiki/Conjugate_gradient_method

Conjugate Gradient Method

$$
\begin{aligned}
& \mathbf{r}_{0}:=\mathbf{b}-\mathbf{A} \mathbf{x}_{0} \\
& \mathbf{p}_{0}:=\mathbf{r}_{0} \\
& k:=0 \\
& \text { repeat } \\
& \qquad \alpha_{k}:=\frac{\mathbf{r}_{k}^{\mathrm{T}} \mathbf{r}_{k}}{\mathbf{p}_{k}^{\mathrm{T}} \mathbf{A} \mathbf{p}_{k}} \\
& \quad \mathbf{x}_{k+1}:=\mathbf{x}_{k}+\alpha_{k} \mathbf{p}_{k} \\
& \mathbf{r}_{k+1}:=\mathbf{r}_{k}-\alpha_{k} \mathbf{A} \mathbf{p}_{k} \\
& \text { if } \mathbf{r}_{k+1} \text { is sufficiently small then exit loop end if } \\
& \quad \beta_{k}:=\frac{\mathbf{r}_{k+1}^{\mathrm{T}} \mathbf{r}_{k+1}}{\mathbf{r}_{k}^{\mathrm{T}} \mathbf{r}_{k}} \\
& \quad \mathbf{p}_{k+1}:=\mathbf{r}_{k+1}+\beta_{k} \mathbf{p}_{k} \\
& k:=k+1 \\
& \text { end repeat }
\end{aligned}
$$

Resources

- Trefethen \& Bau,"Numerical Linear Algebra" http://people.maths.ox.ac.uk/trefethen/text.html
- Strang on ITunes U:"Mathematical Methods for Engineers" or "Linear Algebra" - excellent lectures by a master.
(- compute •calcu

Homework

Educational and fun.

Homework: Part I

- The time-explicit formulation of the Id heat diffusion equation has a term that looks like this (ignoring boundary conditions)

$$
\frac{D \Delta t}{\Delta x^{2}}\left(\begin{array}{cccccc}
-2 & 1 & & & & \\
1 & -2 & 1 & & & \\
& 1 & -2 & 1 & & \\
& & & \cdots & & \\
& & & 1 & -2 & 1 \\
& & & & 1 & -2
\end{array}\right) x^{n}
$$

- compute \bullet calcu

Homework: Part I

- Ignoring the constants, what are the eigenvalues for this problem - what might we expect to get amplified/damped by this operator? (use 100 points; D__EV)
- Plot the eigenmode with the largest and smallest absolute eigenvalues, and explain them.
- Use the largest abs. eigenvalue to put a constraint on dt given dx, D. This is a stability constraint on the numerical method; for larger timesteps, method blows up.

Lapack Hints

- If you are using an nxn array, the "leading dimension" of the array is n. (This argument is so that you could work on sub-matrices if you wanted)
- Have to make sure the 2 d array is contiguous block of memory
- C vs FORTRAN array orderings
- C bindings for LAPACK - lapacke

Homework: Part 2

- For a Id grid of size 100 (eg, a I00xI00 matrix A), using lapack, evolve this PDE. Plot and explain results.
- Have an initial condition where $x=I$ at the first zone, and zero everywhere else (hot plate "turns on" in a cold domain.
- You'll want to use driver routines for linear solves (http://www.netlib.org/lapack/lug/node26.html). Do solve in double precision (D__SV). Which solver should you use?
- Using a small enough timestep, timestep the temperature evolution by finding dT. Do solution in double precision (D__SV).

