
HW1 - Summing
• 1e-8 smaller than machine epsilon (float)

• Forward sum fails utterly

• Backward sum does better (why not
correctly?)

$./part1
Left sum: 1
Right sum: 1.25

HW1 - Summing

• Lots of ways
around this:

HW1 - Summing

• Lots of ways
around this:

HW1 - Summing

• Lots of ways
around this:

HW1 - Summing

• Lots of ways
around this:

$./part1
Left sum: 1
Right sum: 1.25
Pairwise sum:2
Kahen sum: 2
Double precision sum: 2

HW1 - Random Walks

HW1 - Random Walks

HW1 - Seed

• Some issues with seeding

• General workflow; seed once, then
generate all the random numbers you need.

• Showing how LCG worked may have
confused things; seed was just last (integer)
random deviate chosen

HW1 - Seed
• In general, current state of a PRNG can be

quite large.

• Generally explicit functions to query state,
set state (so can continue exactly where left
off)

• Most PRNGs also have a convenience
funciton to set state from small (~1 int) seed;
bootstrap state from seed + smaller RNG

• Use once; don’t keep seeding - don’t know
how it interacts with the PRNG

Numerical Linear
Algebra

Scientific Computing Course
Mar 2013

Conclusion
• Linear algebra pops up everywhere, even if you

don’t notice

• Statistics, data fitting, graph problems, PDE/
coupled ODE solves...

• There exist very highly tuned packages for any
sort of problem that can be cast into matricies
and vectors - use them

• LAPACK, BLAS

• Exploit structure in your matricies

• Don’t ever invert a matrix

Outline

• Reminder of Linear Algebra

• Gaussian Elimination

• BLAS

• Solving Ax = b

• Sparse matricies

• Iterative solvers

• Eigenproblems

Vector operations

• Geometric Interpretation

• Scaling a vector, adding two
vectors together...

• Dot product (or any inner
product)

↵x

x

x

y

x + y

x

y

Vector spaces

• A set of vectors x spans a
space S iff every vector in
S can be expressed as a
linear combination of xi

x

y

x + y

Vector orthogonality -
no overlap

• A set of vectors is said to be orthogonal if

and orthonormal if

• A set of n orthogonal vectors necessarily
span a subspace of dimension n

xi · xj =
⇢

0 i 6= j

1 i = j

xi · xj () i 6= j

Matrix . Vector:
Change of Basis

2

66664
a1

����������

a2

����������

. . .

����������

an

3

77775

0

BBBBBB@

x1

x2
...
...

xn

1

CCCCCCA
= x1

0

BBBB@
a1

1

CCCCA
+ x2

0

BBBB@
a2

1

CCCCA
+ · · · + xn

0

BBBB@
an

1

CCCCA

Ax = b

Matrix . Vector:
Change of Basis

• Ax = b: x is the (unique) vector of
coefficients that represents b in the basis of
columns of A

• Basis for b: {e1, e2,... ,en}

• Basis for x: {a1, a2, ..., an}

Column spaces

• Column space of A - the space spanned by
the column vectors ai

• eg, column space is all vectors that can be
formed by linear combinations of the ai

Matrix Vector: Linear
mapping

• Ax = b : Linear transformation of x.

• Ax1 = b1 ; Ax2 = b2

• A(x1 + x2) = (b1 + b2)

• A(αx1) = αb1

Range of A -
all possible b

• The range of a matrix A is the space of all
possible vectors it can map to:

eg, column space.

b 2 Range(A) =) 9x | Ax = b

Nullspace of A: vectors
that map to zero

• The nullspace of a matrix A is the space of
all vectors it maps to zero:

• For matricies A with a non-empty
nullspace, there may be no solution to
Ax=b, or infinitely many solutions.

x 2 Null(A) =) Ax = 0,x 6= 0

Column Rank:
Dimension of Range

• The Rank of a matrix A is the dimension
(eg, minimum number of basis vectors) of
it’s column space.

• For square (nxn) matrix, a Full-Rank matrix
has rank n.

• Column rank = Row Rank (not obvious, but
true.) So generally just say “Rank”

Rank + Nullity

• Rank of Matrix

• + Nullity (rank of nullspace) of matrix

• = # of columns ofmatrix

Invertability

• Square, full-rank nxn matrix A has an inverse,
A-1, such that A A-1 = A-1A = I

• For nxn matrix, following statements are
equivalent:

• Has an inverse

• rank(A) = n

• range(A) = Rn

• null(A) = {}

• No eigenvalues are 0

• No singular values are 0

• determinant is non-zero

Solving Linear Systems
Ax=b, solve for x

Sets of linear
equations: don’t invert
• Ax = b implies x = A-1b

• Mathematically true, but numerically, inversion:

• is slower than other solution methods

• is numerically much less stable

• ruins sparcity (huge memory disadvantage for,
eg, PDEs on meshes)

• loses any special structure of matrix A

Easy systems to solve

• We’ll talk about methods to solve linear
systems of equations

• Will assume nonsingular matricies (so there
exists a unique solution)

• But some systems much easier to solve
than others. Be aware of “nice” properties
of your matricies!

Diagonal Matrices

• (generally called D, or Λ)

• Ridiculously easy

• Matrix multiplication -
just di xi

Upper Triangular
Matrices

• Generally called U

• “Back Substition”: solve
(easy) last one first

• Use that to solve
previous one, etc.

• Lower triangular (L):
“Forward substitution”,
same deal.

Orthogonal matrices
• Generally called Q

• Columns (rows) are orthogonal
unit vectors

• Transpose is inverse!

• That inverse I’ll let you compute.

• Orthogonal matrices are
numerically very nice - all row,
col vectors are same “length”.

Symmetric Matrices

• No special nomenclature

• Half the work; only have
to deal with half the
matrix

• (I’m assuming real
matrices, here; complex:
Hermetian)

Symmetric Positive
Definite

• Very special but
common (covariance
matricies, some PDEs)

• Always non-singular

• All eigenvalues positive

• Numerically very nice to
work with

Structure matters

• Find structure in your problems

• If writing equations in slightly different way gives you
nice structure, do it

• Preserve structure when possible

Gaussian Elimination
• For general square matrices

(can’t exploit above
properties)

• We all learned this in high
school:

• Subtract off multiples of
previous rows to zero
out below-diagonals

• Back-subsitute when
done

Basic Linear Algebra
Subroutines

• Linear algebra fairly simple: matricies and vectors

• Row vector operations, column vector operations,
matrix-matrix operations

• BLAS: Basic Linear Algebra Subroutines.

• Level 1: vector-vector operations

• Level 2: matrix-vector operations

• Level 3: matrix-matrix operations

Basic Linear Algebra
Subroutines

• A well defined standard interface for these routines

• Many highly-tuned implementations exist for various
platforms. (Atlas, Flame, Goto, PLASMA, cuBLAS...)

• (Interface vs. Implementation! Trick is designing a
sufficiently general interface.)

• Higher-order operations (matrix factorizations, like as
we’ll see, gaussian elimiation) defined in LAPACK, on
top of BLAS.

Typical BLAS routines
• Level 1: sdot (dot

product, single), zaxpy
(ax + y, dbl complex)

• Level 2: dgemv (dbl
matrix*vec), dsymv (dbl
symmetric matrix*vec)

• Level 3: sgemm (general
matrix-matrix), ctrmm
(triangular matrix-matrix)

• Incredibly cryptic names,
interfaces.

Prefixes:
S: Single C: Complex
D: Double Z: Double Complex

Matrix Types:
GE: General SY: Symmetric
GB: General Banded SB: Symmetric Banded
HY: Hermetian HB: Hermetian Banded
TR: Triangular TB: Triangular Banded
TP: Triangular Packed

Why bother?

• Finding, downloading
library

• Figuring out how to link

• C/Fortran issues

• Just write it - it’s not
rocket science.

for (i=0; i<N; i++)
 for (j=0; j<N; j++)
 for (k=0; k<N; k++)
 c[i][j] = a[i][k]*b[k][j];

Never, ever,
 write your own

www.ece.cmu.edu/~franzf/papers/gttse07.pdf
“How to Write Fast Numerical Code: A Small Introduction”, Chellappa et al

Division of Labour

• Focus on the science
you need to do

• Write code for your
problem - stuff that you
know best

• Let people who enjoy
making fast linear
algebra software for a
living do that.

Gaussian Elimiation =
LU Decomposition

• With each stage of the
elimination, we were
subtracting off some
multiple of a previous
row

• That means the factored
U can have the same
multiple of the row
added to it to get back
to A

• Decomposing to give us
A = L U

Solving is fast with LU
• Once have A = LU

(O(n3) steps) can solve
for x quickly (O(n2)
steps)

• Can solve for same A
with different b very
cheaply

• Backsubstitute, then
forward substitute

Conditioning

• A problem is said to be inherently ill-conditioned if any
small perturbation in the initial conditions generates
huge changes in the results

• Say, calculating : if

then the problem is inherently hard to do numerically
(or with any sort of approximate method)

Conditioning
• In matrix problems, this

can happen in nearly
singular matricies -
nearly linearly dependant
columns.

• Carve out strongly
overlapping subspaces

• Very small changes in b
(say) can result in hugely
different change in x

large region
where nearly

equal

Try it

• Order unity change in
answer with 1/2 part in
10-4 change in input.

• Would be true with
infinite-precision
arithmetic.

• Inherently a tough
problem.

$ ipython --pylab

In [1]: a = numpy.array([[1,1],
 [1,1.0001]])

In [2]: b = numpy.array([2,2])

In [3]: scipy.linalg.solve(a,b)
Out[3]: array([2., 0.])

In [4]: scipy.linalg.solve(a,
 b+numpy.array([0,0.0001]))
Out[4]: ??

Condition number
• Condition number can

be estimated using
“sizes” (matrix norms)
of A, inverse of A.

• Lapack routines exist:
___CON

• Relative error in x can’t
be less than condition
number * machine
epsilon.

Residuals

• Computational scientists have over 20 words for
“numerical error”

• Absolute, relative error - error in x.

• Residual: answer in result provided by erroneous x -
error in b.

• Which is more important is entirely problem
dependant

Pivoting
• The diagonal elements

we use to “zero out”
lower elements are
called pivots.

• May need to change
pivots, if for instance
zeros appear in wrong
place

• Matrix might be singular,
or fixed by reordering

• PLU factorization

Pivoting

• Important numerically,
too - avoid catastrophic
loss of precision.

• Consider 3 digits of
decimal precision.
Problem nowhere near
singular

• What does scipy say?

Residuals
• Good linear algebra algorithms (and

implementations) should give residuals no more than
(some function of size of matrix) x (machine epsilon)

• And errors in x no more than condition number
times that.

• An exact solution to a nearby problem

• Bad algorithms/implementations will depend on
sqrt(machine epsilon) or worse, and/or will be
matrix dependant (eg, LU without pivoting).

Cholesky Factorization

• For symmetric, positive
definite matrices
(surpisingly common),
use Cholesky
factorization instead.

•

• No pivoting; more
numerically stable; faster.

In [10]: a =
numpy.array([[25,15,-5],
[15,18,0],[-5,0,11]])

In [11]:
scipy.linalg.cholesky(a)
Out[11]:
array([[5., 3., -1.],
 [0., 3., 1.],
 [0., 0., 3.]])

A x ~ b : QR
factorizations

• Not all Ax=b s can be
solved; consider an
overdetermined system
(data fitting).

• LU won’t even work on
non-square systems.

• What to do?

0

BB@

x

3
0 x

2
0 x0 1

x

3
1 x

2
1 x1 1

. . .

x

3
n x

2
n xn 1

1

CCA

0

BB@

a

b

c

d

1

CCA =

0

BB@

y0

y1

. . .

yn

1

CCA

Minimize residual:
Residual not in Range(A)

• Want to project out
residual somehow

• Normal equations

• Much of linear algebra is
decompositions into
useful forms

QR decomposition
• All matricies can be

decomposed into QR,
even mxn, m>n

• Bottom half of R is
necessarily empty
(below diagonal)

• All columns in Q are
orthogonal bases of m-d
space, and R is the
combination of them
that makes up A

= x

Orthogonalizing
columns of A

• Let’s take these n
column vectors of length
m and make an
orthonormal basis.

• Divide a1 by its norm; 1
done. What about rest?

Gram-Schmidt
(don’t use this)

• Easiest to follow at first isn’t
numerically stablest (should
use Householder transforms).

• Subtract off q1 component
from a2, take unit vector of
that - q2.

• And so on.

• Bit like LU, but instead of
making zeros, you’re making
orthogonality

Gram-Schmidt
(don’t use this)

• Gram-Schmidt handy for
generating orthgonal series of
basis functions from (say)
polynomials, as well.

• Same procedure, just different
definition of inner product,
norm.

QR Factor a random
matrix

In [13]: r = numpy.random.random((50,50))

In [14]: for i in xrange(50):
 : for j in xrange(i):
 : r[i,j] = 0.
 :

In [15]: print r[0:3,0:3]
[[0.4147775 0.64843642 0.41133882]
 [0. 0.88592831 0.54711704]
 [0. 0. 0.23438925]]

In [16]: q,x = scipy.linalg.qr(numpy.random.random((50,50)))

In [17]: a = numpy.dot(q,r)

In [18]: q2,r2 = scipy.linalg.qr(a)

In [19]: a2 = numpy.dot(q2,r2)

In [20]: print scipy.linalg.norm(a2-a)/scipy.linalg.norm(a)
6.60894445883e-16

In [21]: print scipy.linalg.norm(q2-q)/scipy.linalg.norm(q)
3.67030163525e-07

In [22]: print scipy.linalg.norm(r2-r)/scipy.linalg.norm(r)
6.36755093518e-08

Errors and residuals
• Generate random matrices Q,R;

calculate A

• QR factorization of A

• Errors in Q2, R2 ~ sqrt(machine
epsilon)

• (Random matrix tends to be ill-
conditioned)

• Residual in A: (machine epsilon).
Would be sqrt with classical G-S

In [18]: q2,r2 = scipy.linalg.qr(a)

In [19]: a2 = numpy.dot(q2,r2)

In [20]: print scipy.linalg.norm(a2-a)/
 scipy.linalg.norm(a)
6.60894445883e-16

In [21]: print scipy.linalg.norm(q2-q)/
 scipy.linalg.norm(q)
3.67030163525e-07

In [22]: print scipy.linalg.norm(r2-r)/
 scipy.linalg.norm(r)
6.36755093518e-08

Normal equations with
QR are easy

• Now this is fairly
straightforward

• End up with (Rx) --
forward solve -- equal to
matrix-vector product.

• Done!

Eigenproblems

• Tells a great deal about
the structure of a matrix

• How it will act on a
vector: project onto its
eigenvectors, mutiply by
eigenvalues.

• Goal is a complete
decomposition:

Eigenvalue
Decomposition

• For square matrix

• “Similarity Transform”

• No restrictions on the structure of X

• Can only happen if there are a full set
of eigenvectors.

• Diagonalizability: N non-null
eigenvectors;

• Invertability: N non-zero eigenvalues

Defective Matrices

• Both these matrices
have eigenvalue 2, with
multiplicity 3

• But A has full set of
eigenvectors (e1,e2,e3)

• B has only one
eigevector; e1

• Not diagonalizable

Iterative Methods

• So far, have dealt solely with direct methods.

• Solution takes one (long) step, then answer is
complete, as exact as matrix/method allows.

• Other approach; take successive approximations, get
closer.

• Typically converge to machine accuracy in much less
time than direct, esp for large matricies

Krylov Subspaces

• Krylov subspace:
repeated action on b by
A.

• For sufficiently large n,
final term should
converge to eigenvector
with largest eigenvalue

• But slow, and only one
eigenvalue?

Krylov Subspaces

• Can orthogonalize
(Gram Schmidt,
Householder) to project
out other components

• Should give
approximations to
eigenvectors (random b)

• But not numerically
stable

Arnoldi Iteration
• Stabilized orthogonalization

• Becomes Lanczos iteration for
symmetric A

• Orthogonal projection of A
onto the Krylov subspace, H

• H is of modest size, can have
eigenvalues calculated

• Note: Only requires matrix-
vector, vector-vector products

• GMRES: Arnoldi iteration for
solving Ax=b

Sparse Matricies

• So far, we’ve been assuming our matrices are dense; there
are numbers stored for every entry in matrix.

• This is indeed often the case, but it’s also often that huge
numbers of the entries are zero: some roughly constant
number of entries per row, much less than n.

• Difference between n2 and n can be huge if n~106;
difference between doing and not doing the problem.

• Happens particularly often in discretizing PDEs.

Discretizing
Derivatives

• Done by finite differencing the
discretized values

• Implicitly or explicitly involves
interpolating data and taking
derivative of the interpolant

i-2 i-1 i i+1 i+2

+1 -2 +1

Boundary
Conditions

• What happens when stencil
goes off of the end of the box?

• Depends on how you want to
handle boundary conditions.

• Typically easiest to have extra
points on end, set values to
enforce desired BCs.

Boundary
Conditions

• Dirichlet (fixed value)
boundary conditions: just have
1 on diagonal, 0 elsewhere,
keeps value there constant.

• Neumann (derivitave) bcs:
requires more manipulation of
the equations.

Inverses destroy
sparsity

• For sparse matrices like
above, LU
decompositions may
maintain much sparsity
(particularly if banded,
etc)

• Inverses in general are
full

• For large n, difference
beween cn and n2 huge.

Sparse (banded) LU
• If entries only exist

within a narrow band
around diagonal, then
row, column operations
fast.

• May get significant “fill
in” depending on exact
structure of matrix

• (This is artificially good
example)

Sparsity patterns

• Sparse matrices can have
arbitray sparsity patterns

• Typically need at less
than 10% nonzeros to
make dealing with sparse
matricies worth it.

• Half zeros - typically just
store full matrix.

http://en.wikipedia.org/wiki/File:Finite_element_sparse_matrix.png

Common Sparse Matrix
Formats:

• CSR (Compressed Sparse Row): Just join all the nonzeros
in rows together, with pointers to where each starts, and
(similar sized) array of column for each value

• CSC (Compressed Sparse Column): Same, but flip row/
column

• Banded: just store diagonals +/- some bandwidth

• Many many more.

Iterative Ax=b solvers:
Conjuate Gradient

• SPD matrices, works
particularly well on
sparse systems

• “Steepest Descent”, but
only on conjugate (w/rt
A) directions: no
“doubling back”

http://en.wikipedia.org/wiki/Conjugate_gradient_method

Conjugate Gradient
Method

http://en.wikipedia.org/wiki/Conjugate_gradient_method

Resources

• Trefethen & Bau, “Numerical Linear Algebra”
 http://people.maths.ox.ac.uk/trefethen/text.html

• Strang on ITunes U: “Mathematical Methods for
Engineers” or “Linear Algebra” - excellent lectures
by a master.

Homework
Educational and fun.

Homework: Part 3
• The time-explicit formulation of the 1d heat

diffusion equation has a term that looks like this
(ignoring boundary conditions)

Homework: Part 1

Homework: Part 3
• Ignoring the constants, what are the eigenvalues

for this problem - what might we expect to get
amplified/damped by this operator? (use 100
points; D__EV)

• Plot the eigenmode with the largest and smallest
absolute eigenvalues, and explain them.

• Use the largest abs. eigenvalue to put a constraint
on dt given dx, D. This is a stability constraint on
the numerical method; for larger timesteps,
method blows up.

Homework: Part 1

Lapack Hints
• If you are using an nxn array, the “leading

dimension” of the array is n. (This
argument is so that you could work on
sub-matrices if you wanted)

• Have to make sure the 2d array is
contiguous block of memory

• C vs FORTRAN array orderings

• C bindings for LAPACK - lapacke

Homework: Part 2
• For a 1d grid of size 100 (eg, a 100x100 matrix A), using

lapack, evolve this PDE. Plot and explain results.

• Have an initial condition where x = 1 at the first zone,
and zero everywhere else (hot plate “turns on” in a cold
domain.

• You’ll want to use driver routines for linear solves
(http://www.netlib.org/lapack/lug/node26.html). Do
solve in double precision (D__SV). Which solver should
you use?

• Using a small enough timestep, timestep the temperature
evolution by finding dT. Do solution in double precision
(D__SV) .

http://www.netlib.org/lapack/lug/node26.html
http://www.netlib.org/lapack/lug/node26.html

