
HW1 - Summing
• 1e-8 smaller than machine epsilon (float)

• Forward sum fails utterly

• Backward sum does better (why not 
correctly?)

$ ./part1 
Left  sum:   1
Right sum:   1.25
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HW1 - Summing

• Lots of ways 
around this:

$ ./part1 
Left  sum:   1
Right sum:   1.25
Pairwise sum:2
Kahen sum:   2
Double precision sum:   2
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HW1 - Random Walks



HW1 - Seed

• Some issues with seeding

• General workflow; seed once, then 
generate all the random numbers you need.

• Showing how LCG worked may have 
confused things; seed was just last (integer) 
random deviate chosen



HW1 - Seed
• In general, current state of a PRNG can be 

quite large.

• Generally explicit functions to query state, 
set state (so can continue exactly where left 
off)

• Most PRNGs also have a convenience 
funciton to set state from small (~1 int) seed; 
bootstrap state from seed + smaller RNG

• Use once; don’t keep seeding - don’t know 
how it interacts with the PRNG
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Conclusion
• Linear algebra pops up everywhere, even if you 

don’t notice

• Statistics, data fitting, graph problems, PDE/
coupled ODE solves...

• There exist very highly tuned packages for any 
sort of problem that can be cast into matricies 
and vectors - use them

• LAPACK, BLAS

• Exploit structure in your matricies

• Don’t ever invert a matrix



Outline

• Reminder of Linear Algebra

• Gaussian Elimination

• BLAS

• Solving Ax = b

• Sparse matricies

• Iterative solvers

• Eigenproblems



Vector operations

• Geometric Interpretation

• Scaling a vector, adding two 
vectors together...

• Dot product (or any inner 
product)

↵x

x

x

y

x + y

x

y



Vector spaces

• A set of vectors x spans a 
space S iff every vector in 
S can be expressed as a 
linear combination of xi 

x

y

x + y



Vector orthogonality - 
no overlap

• A set of vectors is said to be orthogonal if 

and orthonormal if

• A set of n orthogonal vectors necessarily 
span a subspace of dimension n

xi · xj =
⇢

0 i 6= j

1 i = j

xi · xj () i 6= j



Matrix . Vector:
Change of Basis
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Matrix . Vector:
Change of Basis

• Ax = b: x is the (unique) vector of 
coefficients that represents b in the basis of 
columns of A

• Basis for b: {e1, e2,... ,en}

• Basis for x: {a1, a2, ..., an}



Column spaces

• Column space of A - the space spanned by 
the column vectors ai

• eg, column space is all vectors that can be 
formed by linear combinations of the ai



Matrix Vector: Linear 
mapping

• Ax = b : Linear transformation of x.

• Ax1 = b1 ;  Ax2 = b2

• A(x1 + x2) = (b1 + b2)

• A(αx1) = αb1



Range of A - 
all possible b

• The range of a matrix A is the space of all 
possible vectors it can map to:

eg, column space.

b 2 Range(A) =) 9x | Ax = b



Nullspace of A:  vectors 
that map to zero

• The nullspace of a matrix A is the space of 
all vectors it maps to zero:

• For matricies A with a non-empty 
nullspace, there may be no solution to 
Ax=b, or infinitely many solutions.

x 2 Null(A) =) Ax = 0,x 6= 0



Column Rank:
Dimension of Range

• The Rank of a matrix A is the dimension 
(eg, minimum number of basis vectors) of 
it’s column space.

• For square (nxn) matrix, a Full-Rank matrix 
has rank n.

• Column rank = Row Rank (not obvious, but 
true.)   So generally just say “Rank”



Rank + Nullity

• Rank of Matrix 

•  + Nullity (rank of nullspace) of matrix

•  = # of columns ofmatrix



Invertability

• Square, full-rank nxn matrix A has an inverse, 
A-1, such that A A-1 = A-1A =  I

• For nxn matrix, following statements are 
equivalent:

• Has an inverse

• rank(A) = n

• range(A) = Rn

• null(A) = {}

• No eigenvalues are 0

• No singular values are 0

• determinant is non-zero



Solving Linear Systems
Ax=b, solve for x



Sets of linear 
equations: don’t invert
• Ax = b implies x = A-1b

• Mathematically true, but numerically, inversion:

• is slower than other solution methods

• is numerically much less stable

• ruins sparcity (huge memory disadvantage for, 
eg, PDEs on meshes)

• loses any special structure of matrix A



Easy systems to solve

• We’ll talk about methods to solve linear 
systems of equations

• Will assume nonsingular matricies (so there 
exists a unique solution)

• But some systems much easier to solve 
than others.   Be aware of “nice” properties 
of your matricies!



Diagonal Matrices

• (generally called D, or Λ) 

• Ridiculously easy

• Matrix multiplication - 
just di xi



Upper Triangular 
Matrices

• Generally called U

• “Back Substition”: solve 
(easy) last one first

• Use that to solve 
previous one, etc.

• Lower triangular (L): 
“Forward substitution”, 
same deal.



Orthogonal matrices
• Generally called Q

• Columns (rows) are orthogonal 
unit vectors

• Transpose is inverse!

• That inverse I’ll let you compute.

• Orthogonal matrices are 
numerically very nice - all row, 
col vectors are same “length”.



Symmetric Matrices

• No special nomenclature

• Half the work; only have 
to deal with half the 
matrix

• (I’m assuming real 
matrices, here; complex: 
Hermetian)



Symmetric Positive 
Definite

• Very special but 
common (covariance 
matricies, some PDEs) 

• Always non-singular

• All eigenvalues positive

• Numerically very nice to 
work with



Structure matters

• Find structure in your problems

• If writing equations in slightly different way gives you 
nice structure, do it

• Preserve structure when possible



Gaussian Elimination
• For general square matrices 

(can’t exploit above 
properties)

• We all learned this in high 
school:

• Subtract off multiples of 
previous rows to zero 
out below-diagonals

• Back-subsitute when 
done



Basic Linear Algebra 
Subroutines

• Linear algebra fairly simple:  matricies and vectors

• Row vector operations, column vector operations, 
matrix-matrix operations

• BLAS: Basic Linear Algebra Subroutines.

• Level 1: vector-vector operations

• Level 2: matrix-vector operations

• Level 3: matrix-matrix operations



Basic Linear Algebra 
Subroutines

• A well defined standard interface for these routines

• Many highly-tuned implementations exist for various 
platforms.  (Atlas, Flame, Goto, PLASMA, cuBLAS...)

• (Interface vs. Implementation!  Trick is designing a 
sufficiently general interface.)

• Higher-order operations (matrix factorizations, like as 
we’ll see, gaussian elimiation) defined in LAPACK, on 
top of BLAS.



Typical BLAS routines
• Level 1: sdot (dot 

product, single), zaxpy 
(ax + y, dbl complex)

• Level 2: dgemv (dbl 
matrix*vec), dsymv (dbl 
symmetric matrix*vec)

• Level 3: sgemm (general 
matrix-matrix), ctrmm 
(triangular matrix-matrix)

• Incredibly cryptic names, 
interfaces.

Prefixes:
S: Single   C: Complex
D: Double Z: Double Complex

Matrix Types:
GE: General               SY: Symmetric
GB: General Banded   SB: Symmetric Banded
HY: Hermetian           HB: Hermetian Banded
TR: Triangular             TB: Triangular Banded
TP: Triangular Packed



Why bother?

• Finding, downloading 
library

• Figuring out how to link

• C/Fortran issues

• Just write it - it’s not 
rocket science.

for (i=0; i<N; i++)
    for (j=0; j<N; j++)
        for (k=0; k<N; k++)
            c[i][j] = a[i][k]*b[k][j];



Never, ever,
 write your own

www.ece.cmu.edu/~franzf/papers/gttse07.pdf
“How to Write Fast Numerical Code: A Small Introduction”,  Chellappa et al 



Division of Labour

• Focus on the science 
you need to do

• Write code for your 
problem - stuff that you 
know best

• Let people who enjoy 
making fast linear 
algebra software for a 
living do that.



Gaussian Elimiation = 
LU Decomposition

• With each stage of the 
elimination, we were 
subtracting off some 
multiple of a previous 
row

• That means the factored 
U can have the same 
multiple of the row 
added to it to get back 
to A

• Decomposing to give us 
A = L U



Solving is fast with LU
• Once have A = LU 

(O(n3) steps) can solve 
for x quickly (O(n2) 
steps)

• Can solve for same A 
with different b very 
cheaply

• Backsubstitute, then 
forward substitute



Conditioning

• A problem is said to be inherently ill-conditioned if any 
small perturbation in the initial conditions generates 
huge changes in the results

• Say, calculating        : if

then the problem is inherently hard to do numerically 
(or with any sort of approximate method)



Conditioning
• In matrix problems, this 

can happen in nearly 
singular matricies - 
nearly linearly dependant 
columns.

• Carve out strongly 
overlapping subspaces

• Very small changes in b 
(say) can result in hugely 
different change in x

large region
where nearly 

equal



Try it

• Order unity change in 
answer with 1/2 part in 
10-4 change in input.

• Would be true with 
infinite-precision 
arithmetic.

• Inherently a tough 
problem.

$ ipython --pylab

In [1]: a = numpy.array([[1,1],
            [1,1.0001]])

In [2]: b = numpy.array([2,2])

In [3]: scipy.linalg.solve(a,b)
Out[3]: array([ 2.,  0.])

In [4]: scipy.linalg.solve(a,
      b+numpy.array([0,0.0001]))
Out[4]: ??



Condition number
• Condition number can 

be estimated using 
“sizes” (matrix norms) 
of A, inverse of A.

• Lapack routines exist: 
___CON

• Relative error in x can’t 
be less than condition 
number * machine 
epsilon.



Residuals

• Computational scientists have over 20 words for 
“numerical error”

• Absolute, relative error - error in x.

• Residual: answer in result provided by erroneous x - 
error in b.

• Which is more important is entirely problem 
dependant



Pivoting 
• The diagonal elements 

we use to “zero out” 
lower elements are 
called pivots.

• May need to change 
pivots, if for instance 
zeros appear in wrong 
place

• Matrix might be singular, 
or fixed by reordering

• PLU factorization



Pivoting

• Important numerically, 
too - avoid catastrophic 
loss of precision.

• Consider 3 digits of 
decimal precision.  
Problem nowhere near 
singular

• What does scipy say?



Residuals
• Good linear algebra algorithms (and 

implementations) should give residuals no more than 
(some function of size of matrix) x (machine epsilon)

• And errors in x no more than condition number 
times that.

• An exact solution to a nearby problem

• Bad algorithms/implementations will depend on 
sqrt(machine epsilon) or worse, and/or will be 
matrix dependant (eg, LU without pivoting).



Cholesky Factorization

• For symmetric, positive 
definite matrices 
(surpisingly common), 
use Cholesky 
factorization instead.

•

• No pivoting; more 
numerically stable; faster.

In [10]: a = 
numpy.array([[25,15,-5],
[15,18,0],[-5,0,11]])

In [11]: 
scipy.linalg.cholesky(a)
Out[11]: 
array([[ 5.,  3., -1.],
       [ 0.,  3.,  1.],
       [ 0.,  0.,  3.]])



A x ~ b : QR 
factorizations

• Not all Ax=b s can be 
solved; consider an 
overdetermined system 
(data fitting).

• LU won’t even work on 
non-square systems. 

• What to do?
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Minimize residual:
Residual not in Range(A)

• Want to project out 
residual somehow

• Normal equations

• Much of linear algebra is 
decompositions into 
useful forms 



QR decomposition
• All matricies can be 

decomposed into QR, 
even mxn, m>n

• Bottom half of R is 
necessarily empty 
(below diagonal)

• All columns in Q are 
orthogonal bases of m-d 
space, and R is the 
combination of them 
that makes up A 

= x



Orthogonalizing 
columns of A

• Let’s take these n 
column vectors of length 
m and make an 
orthonormal basis.

• Divide a1 by its norm; 1 
done.  What about rest?



Gram-Schmidt
(don’t use this)

• Easiest to follow at first isn’t 
numerically stablest (should 
use Householder transforms).

• Subtract off q1 component 
from a2, take unit vector of 
that - q2. 

• And so on.

• Bit like LU, but instead of 
making zeros, you’re making 
orthogonality



Gram-Schmidt
(don’t use this)

• Gram-Schmidt handy for 
generating orthgonal series of 
basis functions from (say) 
polynomials, as well.

• Same procedure, just different 
definition of inner product, 
norm.



QR Factor a random 
matrix

In [13]: r = numpy.random.random((50,50))

In [14]: for i in xrange(50):
   ....:     for j in xrange(i):
   ....:         r[i,j] = 0.
   ....:

In [15]: print r[0:3,0:3]
[[ 0.4147775   0.64843642  0.41133882]
 [ 0.          0.88592831  0.54711704]
 [ 0.          0.          0.23438925]]

In [16]: q,x = scipy.linalg.qr(numpy.random.random((50,50)))

In [17]: a = numpy.dot(q,r)

In [18]: q2,r2 = scipy.linalg.qr(a)

In [19]: a2 = numpy.dot(q2,r2)

In [20]: print scipy.linalg.norm(a2-a)/scipy.linalg.norm(a)
6.60894445883e-16

In [21]: print scipy.linalg.norm(q2-q)/scipy.linalg.norm(q)
3.67030163525e-07

In [22]: print scipy.linalg.norm(r2-r)/scipy.linalg.norm(r)
6.36755093518e-08



Errors and residuals
• Generate random matrices Q,R; 

calculate A

• QR factorization of A

• Errors in Q2, R2 ~ sqrt(machine 
epsilon)

• (Random matrix tends to be ill-
conditioned)

• Residual in A: (machine epsilon).  
Would be sqrt with classical G-S

In [18]: q2,r2 = scipy.linalg.qr(a)

In [19]: a2 = numpy.dot(q2,r2)

In [20]: print scipy.linalg.norm(a2-a)/
                scipy.linalg.norm(a)
6.60894445883e-16

In [21]: print scipy.linalg.norm(q2-q)/
                scipy.linalg.norm(q)
3.67030163525e-07

In [22]: print scipy.linalg.norm(r2-r)/
                scipy.linalg.norm(r)
6.36755093518e-08



Normal equations with 
QR are easy

• Now this is fairly 
straightforward

• End up with (Rx) -- 
forward solve -- equal to 
matrix-vector product.

• Done!



Eigenproblems

• Tells a great deal about 
the structure of a matrix

• How it will act on a 
vector: project onto its 
eigenvectors, mutiply by 
eigenvalues.

• Goal is a complete 
decomposition:



Eigenvalue 
Decomposition

• For square matrix

• “Similarity Transform”

• No restrictions on the structure of X

• Can only happen if there are a full set 
of eigenvectors. 

• Diagonalizability: N non-null 
eigenvectors; 

• Invertability: N non-zero eigenvalues



Defective Matrices

• Both these matrices 
have eigenvalue 2, with 
multiplicity 3

• But A has full set of 
eigenvectors (e1,e2,e3)

• B has only one 
eigevector; e1

• Not diagonalizable



Iterative Methods

• So far, have dealt solely with direct methods.

• Solution takes one (long) step, then answer is 
complete, as exact as matrix/method allows.

• Other approach; take successive approximations, get 
closer.

• Typically converge to machine accuracy in much less 
time than direct, esp for large matricies



Krylov Subspaces

• Krylov subspace: 
repeated action on b by 
A.

• For sufficiently large n, 
final term should 
converge to eigenvector 
with largest eigenvalue

• But slow, and only one 
eigenvalue?



Krylov Subspaces

• Can orthogonalize 
(Gram Schmidt, 
Householder) to project 
out other components

• Should give 
approximations to 
eigenvectors (random b)

• But not numerically 
stable



Arnoldi Iteration
• Stabilized orthogonalization

• Becomes Lanczos iteration for 
symmetric A

• Orthogonal projection of A 
onto the Krylov subspace, H

• H is of modest size, can have 
eigenvalues calculated

• Note: Only requires matrix-
vector, vector-vector products

• GMRES: Arnoldi iteration for 
solving Ax=b



Sparse Matricies

• So far, we’ve been assuming our matrices are dense; there 
are numbers stored for every entry in matrix.

• This is indeed often the case, but it’s also often that huge 
numbers of the entries are zero: some roughly constant 
number of entries per row, much less than n.

• Difference between n2 and n can be huge if n~106; 
difference between doing and not doing the problem.

• Happens particularly often in discretizing PDEs.



Discretizing 
Derivatives

• Done by finite differencing the 
discretized values

• Implicitly or explicitly involves 
interpolating data and taking 
derivative of the interpolant

i-2 i-1 i i+1 i+2

+1 -2 +1





Boundary 
Conditions

• What happens when stencil 
goes off of the end of the box?

• Depends on how you want to 
handle boundary conditions.

• Typically easiest to have extra 
points on end, set values to 
enforce desired BCs.



Boundary 
Conditions

• Dirichlet (fixed value) 
boundary conditions: just have 
1 on diagonal, 0 elsewhere, 
keeps value there constant.

• Neumann (derivitave) bcs: 
requires more manipulation of 
the equations.



Inverses destroy 
sparsity

• For sparse matrices like 
above, LU 
decompositions may 
maintain much sparsity 
(particularly if banded, 
etc)

• Inverses in general are 
full

• For large n, difference 
beween cn and n2 huge.



Sparse (banded) LU
• If entries only exist 

within a narrow band 
around diagonal, then 
row, column operations 
fast.

• May get significant “fill 
in” depending on exact 
structure of matrix

• (This is artificially good 
example)



Sparsity patterns

• Sparse matrices can have 
arbitray sparsity patterns

• Typically need at less 
than 10% nonzeros to 
make dealing with sparse 
matricies worth it.

• Half zeros - typically just 
store full matrix.

http://en.wikipedia.org/wiki/File:Finite_element_sparse_matrix.png



Common Sparse Matrix 
Formats:

• CSR (Compressed Sparse Row): Just join all the nonzeros 
in rows together, with pointers to where each starts, and 
(similar sized) array of column for each value

• CSC (Compressed Sparse Column): Same, but flip row/
column

• Banded: just store diagonals +/- some bandwidth

• Many many more.



Iterative Ax=b solvers:
Conjuate Gradient

• SPD matrices, works 
particularly well on 
sparse systems

• “Steepest Descent”, but 
only on conjugate (w/rt 
A) directions: no 
“doubling back”

http://en.wikipedia.org/wiki/Conjugate_gradient_method



Conjugate Gradient 
Method

http://en.wikipedia.org/wiki/Conjugate_gradient_method



Resources

• Trefethen & Bau, “Numerical Linear Algebra”
 http://people.maths.ox.ac.uk/trefethen/text.html 

• Strang on ITunes U: “Mathematical Methods for 
Engineers” or “Linear Algebra” - excellent lectures 
by a master.



Homework
Educational and fun.



Homework: Part 3
• The time-explicit formulation of the 1d heat 

diffusion equation has a term that looks like this 
(ignoring boundary conditions)

Homework: Part 1



Homework: Part 3
• Ignoring the constants, what are the eigenvalues 

for this problem - what might we expect to get 
amplified/damped by this operator?  (use 100 
points; D__EV)

• Plot the eigenmode with the largest and smallest 
absolute eigenvalues, and explain them.

• Use the largest abs. eigenvalue to put a constraint 
on dt given dx, D.   This is a stability constraint on 
the numerical method; for larger timesteps, 
method blows up.

Homework: Part 1



Lapack Hints
• If you are using an nxn array, the “leading 

dimension” of the array is n.   (This 
argument is so that you could work on 
sub-matrices if you wanted)

• Have to make sure the 2d array is 
contiguous block of memory

• C vs FORTRAN array orderings

• C bindings for LAPACK - lapacke 



Homework: Part 2
• For a 1d grid of size 100 (eg, a 100x100 matrix A), using 

lapack, evolve this PDE.  Plot and explain results.

• Have an initial condition where x = 1 at the first zone, 
and zero everywhere else (hot plate “turns on” in a cold 
domain.

• You’ll want to use driver routines for linear solves 
( http://www.netlib.org/lapack/lug/node26.html ).  Do 
solve in double precision (D__SV).   Which solver should 
you use?  

• Using a small enough timestep, timestep the temperature 
evolution by finding dT.  Do solution in double precision 
(D__SV) . 

http://www.netlib.org/lapack/lug/node26.html
http://www.netlib.org/lapack/lug/node26.html

