HWI - Summing

® |e-8 smaller than machine epsilon (float)
® Forward sum fails utterly

® Backward sum does better (why not
correctly?)

S ./partl
Left sum: 1
Right sum: 1.25




HWI - Summing

® |ots of ways
around this:

float pairwisesum(float *1ist, const int n) {
(n = 1) list[@];

const int newn = n/2 + n%Z;
float *sums = float[newn];

(int 1=0; 1<n/2; 1i++)
sums[1] = list[2*1] + list[2*i+1];

(n%2 = 1)
sums[n/2] = list[n-1];

pairwisesum(sums, newn);




HWI - Summing

® |ots of ways
around this:

float kahensum(float *1list, const int n) {

float tot = 0.
float comp = 0.;

(int 1=0; 1i<n; 1++) {
float y = 1list[i] - comp;
float t = tot + y;

comp = (t - tot) - y;

Ot = T}

tot;

I




HWI - Summing

® |ots of ways
around this:

double doublesum(float *1ist, const int n) {

double tot = 0.;

(int 1=0; i<n; 1++)
tot += list[1i];

8 sd

SCiet



HWI - Summing

® |ots of ways
around this:

S ./partl
Left sum:
Right sum:

Pairwise sum:?2

Kahen sum:

Double precision sum: 2

1
1.25

2

(SQE‘N et

(’ compute «calcul
CANADA



HVV | - Random Walks

LCG dx, dy

120

100 i i e o Il A s bR b L
80

60
40

20
—%.10 -0.05 0.00 0.05 0.10
MT dx, dy
140 1
120

1ol 1|1-r'||| d Rt R
> Rl olad o LA L i

60
40
20

CHlet

ompute calcul

—%.10 —0.05 0.00 0.05 0.10



HVV | - Random Walks

LCG angles
1000 ; l , 9 , ] I

800

|
1

600

I
1

400

200

I
1

0—4 -3 -2 -1 0 1 2 3

80 | | | MTanges | | |

70} -
60}
50
401
30}
20}
10}

0—4 -3 -2 -1 0 1 2 3 4

|

| CHet

ompute calcul




HWI - Seed

® Some issues with seeding

® General workflow; seed once, then
generate all the random numbers you need.

® Showing how LCG worked may have
confused things; seed was just last (integer)
random deviate chosen

(ng et

(’ compute «calcul
CANADA



HWI - Seed

In general, current state of a PRNG can be
quite large.

Generally explicit functions to query state,
set state (so can continue exactly where left

off)

Most PRNGs also have a convenience
funciton to set state from small (~| int) seed;
bootstrap state from seed + smaller RNG

Use once; don’t keep seeding - don’t know

how it interacts with the PRNG ‘«’SGH\Iet



Numerical Linear
Algebra

Scientific Computing Course
Mar 2013



Conclusion

Linear algebra pops up everywhere, even if you
don’t notice

Statistics, data fitting, graph problems, PDE/
coupled ODE solves...

There exist very highly tuned packages for any
sort of problem that can be cast into matricies
and vectors - use them

LAPACK, BLAS
Exploit structure in your matricies

Don’t ever invert a matrix |
<SEH\I et
" compufe:gc:lcul



Outline

Reminder of Linear Algebra
Gaussian Elimination

BLAS

Solving Ax = b

Sparse matricies

|terative solvers

Eigenproblems <5€H\'et
(, compgufs: S(::Icul



Vector operations

® Geometric Interpretation

® Scaling a vector, adding two
vectors together...

® Dot product (or any inner
product)

(SQFN et

compute «calcul
CANADA



Vector spaces

® A set of vectors X spans a 2
space S iff every vector in %
S can be expressed as a
linear combination of X

(SQFN et

compute «calcul
CANADA



Vector orthogonality -
no overlap

® A set of vectors is said to be orthogonal if
T T; == LF# ]

and orthonormal if

0 177
5137;‘5133':{1 i:j

® A set of n orthogonal vectors necessarily
span a subspace of dimension n
Scilet

compute «calcul
CANADA



Matrix - Vector:
Change of Basis




Matrix - Vector:
Change of Basis

® Ax = b:x is the (unique) vector of
coefficients that represents b in the basis of
columns of A

® Basis for b: {el, ey,... ,en}

® Basis for x:{a|, ay, ..., an}

Sciet

compute «calcu
CANADA



Column spaces

® Column space of A - the space spanned by
the column vectors a;

® g, column space is all vectors that can be
formed by linear combinations of the a;

(ng et

" compute «calcul
CANADA



Matrix Vector: Linear
mapping

® Ax = b :Linear transformation of x.
® Ax; =b|; Axa = b2
o A(x| +x2) = (bl + by)
® A(Xxi) = &b

ccccccccccc



Range of A -
all possible b

® The range of a matrix A is the space of all
possible vectors it can map to:

b € Range(A) = dz | Ax =0

eg, column space.

Sciet

compute «calcu
CANADA



Nullspace of A: vectors
that map to zero

® The nullspace of a matrix A is the space of
all vectors it maps to zero:

x € NulllA) = Ax=0,x#0

® For matricies A with a non-empty
nullspace, there may be no solution to
Ax=b, or infinitely many solutions.

compute «calcul
CANADA



Column Rank:
Dimension of Range

® [he Rank of a matrix A is the dimension

(eg, minimum number of basis vectors) of
it's column space.

® For square (nxn) matrix, a Full-Rank matrix
has rank n.

® Column rank = Row Rank (not obvious, but
true.) So generally just say “Rank”



Rank + Nullity

® Rank of Matrix
e + Nullity (rank of nullspace) of matrix

® = # of columns ofmatrix

compute «calcul
CANADA



Invertability

® Square, full-rank nxn matrix A has an inverse,
Al such that AA!' =AA= |

® For nxn matrix, following statements are

equivalent:

® Has an inverse ® No eigenvalues are 0

® rank(A) =n ® No singular values are 0
® range(A) =R" ® determinant is non-zero
e null(A) ={}

ScCiet

, compute calcul



Solving Linear Systems

Ax=Db, solve for x



Sets of linear

equations: don’t invert

® Ax =b implies x =A"'b

® Mathematically true, but numerically, inversion:

is slower than other solution methods
is numerically much less stable

ruins sparcity (huge memory disadvantage for,
eg, PDEs on meshes)

loses any special structure of matrix A

(SQE‘N et

(’ compute «calcul
CANADA



Easy systems to solve

® \We'll talk about methods to solve linear
systems of equations

® Will assume nonsingular matricies (so there
exists a unique solution)

® But some systems much easier to solve

than others. Be aware of “nice” properties
of your matricies!

(Sﬁﬁ\l et

(, compute «calcul
CANADA



Diagonal Matrices

® (generally called D, or A\) (@ d ) 2 by

e Ridiculously easy \ dn) \xn/ \bn/

® Matrix multiplication -
just di X

Sciet

(’ compute «calcul
CANADA



Upper Triangular
Matrices

Generally called U

“Back Substition’: solve
(easy) last one first

Use that to solve
previous one, etc.

Lower triangular (L):
“Forward substitution”,
same deal.

(u1,1 Uy2 -
u2,2 o o o

) (2

U2 n 9

BANS

Sciet

compute «calcul
CANADA



Orthogonal matrices

Generally called Q

Columns (rows) are orthogonal 07O =
unit vectors Ox = b
. Q'Qx=Q'b

Transpose is inverse! .
x=0Q b

That inverse I'll let you compute.

Orthogonal matrices are
numerically very nice - all row,
col vectors are same “length”.

Sciet

compute «calcul
CANADA



Symmetric Matrices

® No special nomenclature AT — 4

e Half the work; only have
to deal with half the
matrix

® (’'m assuming real
matrices, here; complex:
Hermetian)

Sciet

compute «calcul
CANADA



Symmetric Positive
Definite

Very special but
common (covariance
matricies, some PDEs)

Al = A
Always non-singular xT Ax > 0
All eigenvalues positive A=LL"

Numerically very nice to
work with

Sciet

(’ compute «calcul
CANADA



Structure matters

® Find structure in your problems

® If writing equations in slightly different way gives you
nice structure, do it

® Preserve structure when possible

Sciet

compute «calcul
CANADA



Gaussian Elimination

® For general square matrices

(can’t exploit above 10 =7 0\ [z 7
properties) 5 —1 5 fx2] =16
—2 2 0 L3 4

® We all learned this in high 10 =7 0\ (& 7
school: 20 9 o | = | —0.9

. 10 -7 0 L1 7

°

Subt.ract off multiples of 0 x v | = [ —05
previous rows to zero 08/ \ay 3 98

out below-diagonals

® Back-subsitute when
done

ScCiet

’ compute calcul



Basic Linear Algebra
Subroutines

® Linear algebra fairly simple: matricies and vectors

® Row vector operations, column vector operations,
matrix-matrix operations

® BLAS: Basic Linear Algebra Subroutines.
® |evel |:vector-vector operations
® Level 2: matrix-vector operations
® Level 3: matrix-matrix operations

Sciet

compute «calcul
CANADA



Basic Linear Algebra
Subroutines

A well defined standard interface for these routines

Many highly-tuned implementations exist for various
platforms. (Atlas, Flame, Goto, PLASMA, cuBLAS...)

(Interface vs. Implementation! Trick is designing a
sufficiently general interface.)

Higher-order operations (matrix factorizations, like as

we’ll see, gaussian elimiation) defined in LAPACK, on
top of BLAS.

(SQH\J et

compute «calcul
CANADA



Typical BLAS routines

Level I:sd.ot (dot Prefixes:

product, single), zaxpy S:Single C: Complex

(ax +y, dbl complex) D: Double Z: Double Complex

Level 2: dgemv (dbl .

matrix*vec), dsymv (dbl Matrix Types:

symmetric matrix*vec) GE: General SY: Symmetric
GB: General Banded SB:Symmetric Banded

Level 3: sgemm (general HY: Hermetian HB: Hermetian Banded
TR:Triangular TB:Triangular Banded

matrix-matrix), ctrmm

- ST TP:Triangular Packed
(triangular matrix-matrix) rlangular Facie

Incredibly cryptic names,

interfaces. nge t

nnnnnnn



Why bother?

Finding, downloading C=AD

library - Zazkbkﬂ

Figuring out how to link
for (1=0; i<N; i++)
for (J=0; Jj<N; Jj++)
for (k=0; k<N; k++)
c[1][J] = al[i]lk]I*b[k]I[]]:

C/Fortran issues

Just write it - it’'s not
rocket science.

ScCiet

’ compute calcul



Never, ever,
write your own

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Extreme 3 GHz
Performance [Gflop/s]

50
45 Best vector and parallel code
40
35
30 -
Multiple threads: 4x
25
20
15 Best vector code
10 —& = = )
Best scalar code Vector instructions: 2x
: .Tri le Ioog‘ - M hi hy: 5-20 e
0 t p . T‘ e?mory |eratr'c ¥ Xr y -
0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

matrix size

SCiet

“How to Write Fast Numerical Code: A Small Introduction”, Chellappa et al Q)P oeu -l
www.ece.cmu.edu/~franzf/papers/gttse07.pdf cANAES




Division of Labour

@) P ] ‘ﬂ www.netlib.org/lapack/

Most Visited v *§ gCal *§ gScholar [ 1 ISI UTLib <~ NA@UofT

® Focus on the science

you need to do LAPACK — Linear Algebra PA

Menu
Presentation

® Write code for your Software

Licensing
P ro b I em - Sthf th at )’O U LAPACIII(. version 3.4.0

I b Standard C language APIs for LAPACK
<NOW Dbest LAPACK for Windows
SVN Access

Support
Contributors

® |et people who enjoy Documenttation

k- f I . Release Notes
Maki ng ast linear Improvements and Bugs
FAQ
alge b ra SOftwa re fo Ira Browse, Download LAPACK routines with on-line documentation k
o« o Users' Guide
living do that. N aciates
LAWNS: LAPACK Working Notes
Release History
Previous Release
LAPACK, version 3.4.0
LAPACK, version 3.3.1




Gaussian Elimiation =
LU Decomposition

® With each stage of the

elimination, we were 10 =7 0 1 10 =7 0
. 5 —1 5| = 1 5 —1 5
SUb|tlja|C:tln§ off some S 9 ¢ B P
multiple of a previous 0 7 o : 0 _7 0
row 5 —1 5| = +% 1 2.5 5
9 9§ -1 1 0.6 6
® That means the factored 10 -7 0 L 10 —=r 0
5 -1 5)=|—3 1 25 5
U can have the same 9 9 6 +1 48 1 4.8
multiple of the row A=LU
added to it to get back
to A
e Decomposing to give us <‘S§ﬁ\|et

A — L U compute «calcul
- CANADA



Solving is fast with LU

® Once have A= LU
(O(n3) steps) can solve
for x quickly (O(n?)
steps)

® Can solve for same A
with different b very
cheaply

® Backsubstitute, then
forward substitute

Ax=Db
LUx=Db
L(y)=b
y = Backsubst(L, b)
Ux =y

x = Forwardsubst(U,y)

Sciet

compute «calcul
CANADA



Conditioning

® A problem is said to be inherently ill-conditioned if any

small perturbation in the initial conditions generates
huge changes in the results

® Say, calculating f(x):if

|f(z+ 82| |Igal

£ ()] ]

then the problem is inherently hard to do numerically
(or with any sort of approximate method)

(ng et

" compute «calcul
CANADA



Conditioning

® In matrix problems, this (1 ! ) (5”) - (2>
. 1 1.05) \y 2
can happen in nearly

singular matricies -
nearly linearly dependant
columns.

® Carve out strongly
overlapping subspaces

. | large region
® Very small changes in b \ ~—  where nearly

(say) can result in hugely equal

different change in x
Sd?\let

nnnnnnn




Try it

® Order unity change in
answer with |/2 part in
10-* change in input.

® Would be true with
infinite-precision
arithmetic.

® Inherently a tough
problem.

S i1python --pylab

In [1]: a

In [2]: b

numpy.array([[1l,1],
[1,1.0001]7])

numpy.array([2,2])

In [3]: scipy.linalg.solve(a,b)
Out[3]: array([ 2., 0.])

In [4]: scipy.linalg.solve(a,
b+numpy.array([0,0.00017]))

Outf[4]: ?27?

ScCiet

’ compute Lalcul




Condition number

® Condition number can
be estimated using
“sizes” (matrix norms)
of A, inverse of A.

k(A) = [|A]] - []A7]

|ox]
® |apack routines exist: |||

___CON

0b
< () ’y|\by’y‘

® Relative error in x can’t
be less than condition
number * machine
epsilon.

ScCiet

’ compute calcul



Residuals

Computational scientists have over 20 words for
“numerical error”

Absolute, relative error - error in x.

Residual: answer in result provided by erroneous x -
error in b.

Which is more important is entirely problem
dependant

ScCiet

’ compute calcul



Pivoting

The diagonal elements
we use to “zero out”
lower elements are
called pivots.

May need to change
pivots, if for instance
Zeros appear in wrong
place

Matrix might be singular,

or fixed by reordering

PLU factorization

ScCiet

’ compute calcul



Pivoting

® |mportant numerically, 104 1\ /=« 1
too - avoid catastrophic ( 1 1> <y> - (2)
loss of precision. (10_4 1 ) (a;) - ( 1 >
1 + 10 —\2+ 10
® Consider 3 digits of _4+ ’ "
decimal precision. (10 14> <x> = ( 14>
Problem nowhere near 10 / 10
singular 7\ _ (Y
y) \1

® What does scipy say!

(ng et

(’ compute «calcul
CANADA



Residuals

Good linear algebra algorithms (and
implementations) should give residuals no more than
(some function of size of matrix) x (machine epsilon)

And errors in X no more than condition number
times that.

An exact solution to a nearby problem
Bad algorithms/implementations will depend on

sgrt(machine epsilon) or worse, and/or will be
matrix dependant (eg, LU without pivoting).

ScCiet

’ compute Lalcul



Cholesky Factorization

® For symmetric, positive
definite matrices
(surpisingly common),
use Cholesky
factorization instead.

o A=1TLL"T

® No pivoting; more

numerically stable; faster.

In [10]: a =

numpy.array([[25,15,
[1511810]1[-510111]])

In [11]:
scipy.linalg.cholesky(a)
Out[1ll]:
array([[ 5., 3., -1
0., 3.,
0., 0.,

_5]1

* 17
* 17

1)

LLLLLLL



Ax~Db:QR
factorizations

Not all Ax=b s can be

solved; consider an 2 9
’ 1
overdetermined system /xg ro o \ (@) ()
. ry x7 x1 1 bl | wn
(data fitting). .| =

et 22w 1) \a) A

LU won’t even work on
non-square systems.

What to do!?

Sciet

compute «calcul
CANADA



Minimize residual:
Residual not in Range(A)

® Want to project out r? =||b — Ax||2
residual somehow — (b — Ax)T (b — Ax)

—b-b—-2blAx + xT AT Ax

0=-2bTA+o2xTATA
(ATA)x = ATb

® Normal equations

® Much of linear algebra is
decompositions into
useful forms

Sciet

(’ compute «calcul
CANADA



® All matricies can be
decomposed into QR,
even mxnh, m=>n

® Bottom half of R is
necessarily empty
(below diagonal)

® All columns in Q are
orthogonal bases of m-d
space, and R is the
combination of them
that makes up A

QR decomposition

1)

Schet




Orthogonalizing
columns of A

® |et’s take these n
column vectors of length
m and make an
orthonormal basis.

® Divide a by its norm; |
done. What about rest?

d1

Sciet

compute «calcul
CANADA



Gram-Schmidt
(don’t use this)

Easiest to follow at first isn’t
numerically stablest (should

use Householder transforms).

Subtract off q component
from a2, take unit vector of
that - qo.

And so on.

Bit like LU, but instead of
making zeros, you're making
orthogonality

42

dg — (az ' Q1) d1

|laz —az - q1]

ScCiet

’ compute calcul



Gram-Schmidt
(don’t use this)

® Gram-Schmidt handy for
generating orthgonal series of
basis functions from (say)
polynomials, as well.

® Same procedure, just different
definition of inner product,
norm.

42

dg — (az ' Q1) d1

|laz —az - q1]

Sciet

compute «calcul
CANADA



QR Factor a random
matrix

In [13]: r = numpy.random.random((50,50))

In [14]: for i in xrange(50):
ceeal for j in xrange(i):
ceeel r(i,j] = 0.

In [15]: print r[0:3,0:3]
[[ 0.4147775 0.64843642 0.41133882]
0. 0.88592831 0.54711704]
[ O. 0. 0.23438925]]

In [1l6]: g,x = scipy.linalg.gr(numpy.random.random((50,50)))
In [17]: a = numpy.dot(q,r)

In [18]: g2,r2 = scipy.linalg.qgr(a)

In [19]: a2 = numpy.dot(g2,r2) (ng
et

In [20]: print scipy.linalg.norm(a2-a)/scipy.linalg.norm(a) (’ Com?%f:ﬁ‘?lwl

6.60894445883e-16



Errors and residuals

Generate random matrices Q,R;
calculate A

QR factorization of A

Errors in Q2, R2 ~ sqgrt(machine
epsilon)

(Random matrix tends to be ill-
conditioned)

Residual in A: (machine epsilon).
Would be sqrt with classical G-S

In [18]: g2,r2 = scipy.linalg.qr(a)
In [19]: a2 = numpy.dot(q2,r2)

In [20]: print scipy.linalg.norm(a2-a)/
scipy.linalg.norm(a)
6.60894445883e-16

In [21]: print scipy.linalg.norm(g2-q)/
scipy.linalg.norm(q)
3.67030163525e-07

In [22]: print scipy.linalg.norm(r2-r)/
scipy.linalg.norm(r)
6.36755093518e-08

(ng et

" compute «calcul
CANADA



Normal equations with
QR are easy

® Now this is fairly (ATA)X — ATp
straightforward
RT'QTORx = R'Q'b
® End up with (Rx) -- T ST AT
forward solve -- equal to R Rx =R Qb

matrix-vector product. Rx — QTb

® Done!

Sciet

(’ compute «calcul
CANADA



Eisenproblems

Ax = Ax
® Tells a great deal about

the structure of a matrix

® How it will act on a _ o _
vector: project onto its A
eigenvectors, mutiply by Alai|as|...|zn | = | 21| 2. |20 .
eigenvalues. _ | 1 |l DY

® Goal is a complete
decomposition:

ScCiet

’ compute calcul



Eisenvalue
Decomposition

For square matrix

A
“Similarity Transform” y ~ A
1| X2|...|Tn = | 1| X2|...|Tn
. . A_
No restrictions on the structure of X
Can only happen if there are a full set
of eigenvectors. A= XAX 1

Diagonalizability: N non-null
eigenvectors;

Invertability: N non-zero eigenvalues

Sciet

compute «calcul
CANADA



Defective

Both these matrices
have eigenvalue 2, with
multiplicity 3

But A has full set of
eigenvectors (e|,e2,€3)

B has only one
eigevector; e|

Not diagonalizable

Matrices

(SEFN et

compute «calcul
CANADA



lterative Methods

So far, have dealt solely with direct methods.

Solution takes one (long) step, then answer is
complete, as exact as matrix/method allows.

Other approach; take successive approximations, get
closer.

Typically converge to machine accuracy in much less
time than direct, esp for large matricies

ScCiet

’ compute calcul



Krylov Subspaces

® Krylov subspace:
repeated action on b by
A.
Ax =Db
® For sufficiently large n, _ 21. ... An—1
final term should K= [b’ Ab, A”D, A b]
converge to eigenvector
with largest eigenvalue

® But slow, and only one
eigenvalue!?

(SQE‘N et

(’ compute «calcul
CANADA



Krylov Subspaces

® Can orthogonalize
(Gram Schmidt,
Householder) to project
out other components Ax=Db
2 n—1
e Should give K= [b’ Ab, 47D, -+, 4 b]
approximations to
eigenvectors (random b)

® But not numerically
stable

(SQE‘N et

(’ compute «calcul
CANADA



Arnoldi lteration

Stabilized orthogonalization

Becomes Lanczos iteration for q1 €1

symmetric A for j € [1,k— 1]
Orthogonal projection of A
onto the Krylov subspace, H

H is of modest size, can have Qk < qk — hj k-1
eigenvalues calculated hie 1 < ||qx]

hjk—1“— q; Qi

Note: Only requires matrix- qr;
vector, vector-vector products dk < n

. . kk—1
GMRES: Arnoldi iteration for
solving Ax=b

(ng et

(’ compute «calcul
CANADA



Sparse Matricies

So far, we've been assuming our matrices are dense; there
are numbers stored for every entry in matrix.

This is indeed often the case, but it’s also often that huge
numbers of the entries are zero: some roughly constant
number of entries per row, much less than n.

Difference between n? and n can be huge if n~109;
difference between doing and not doing the problem.

Happens particularly often in discretizing PDEs.

ScCiet

, compute calcul



o Qi+1 —2¢i T G

Discretizing 4

) Ax?
Derivatives
* Done by finite differencing the
discretized values il B
* Implicitly or explicitly involves L
interpolating data and taking
derivative of the interpolant ol o 4]

LLLLLLL



i 2 )
dq _
dt 1 -2 1
\ 1 -2
dq q1r1—|—1 _ qn
dat T At

q"! = q" + cAtAQ"
q"t = (I+0AtA)q

ntl _ G At - q°

ScCiet

’ compute calcul



Boundary I pEL R
Conditions

* What happens when stencil
goes off of the end of the box? o—0—+0

* Depends on how you want to
handle boundary conditions.

e Typically easiest to have extra
points on end, set values to

enforce desired BCs. ng
G et
" compgte:gglcul



Boundary
Conditions

* Dirichlet (fixed value)
boundary conditions: just have
| on diagonal, 0 elsewhere,
keeps value there constant.

* Neumann (derivitave) bcs:
requires more manipulation of
the equations.

’q|l g1 —2qi+qi
dz? |, Ax?
o—to+o

SQH\Jet

nnnnnnn



Inverses destroy
sparsity

® For sparse matrices like

above, LU 1 . L
decompositions may Sl I I b

- -?1 _;1 \ - -}1 1 : ]}
maintain much sparsity Lo " fpaaen
(particularly if banded, TR R P ii)

-1 2 -1 2 2 2 2 1.
etc) -1 2 1 11 1 1.

® [nverses in general are
full

® For large n, difference
beween cn and n? huge.

Sciet

compute «calcul
CANADA



Sparse (banded) LU

® [f entries only exist
within a narrow band (1 -1 )
-1 2

around diagonal, then . B
row, column operations -1 2 -1
fast. \ -1 2
{—11 1 \ (! 11 ~1 \
® May get significant “fill ol SR
in” depending on exact \ 1)\ 1

structure of matrix

® (This is artificially good
example)

(SQE‘N et

(’ compute «calcul
CANADA



Sparsity patterns

® Sparse matrices can have
arbitray sparsity patterns

® TJypically need at less
than 10% nonzeros to
make dealing with sparse
matricies worth it.

® Half zeros - typically just
store full matrix.

http://en.wikipedia.org/wiki/File:Finite_element_sparse_matrix.png

(SQFN et

compute «calcul
CANADA




Common Sparse Matrix
Formats:

® CSR (Compressed Sparse Row): Just join all the nonzeros
in rows together, with pointers to where each starts, and
(similar sized) array of column for each value

® CSC (Compressed Sparse Column): Same, but flip row/
column

® Banded:just store diagonals +/- some bandwidth

® Many many more.

(SQFN et

compute «calcul
CANADA



Iterative Ax=Db solvers:
Conjuate Gradient

® SPD matrices, works
particularly well on
sparse systems

® “Steepest Descent”, but

only on conjugate (w/rt X
A) directions:
) directions: no \ %

“doubling back”™

http://en.wikipedia.org/wiki/Conjugate_gradient_method

ScChet

compute «calcul
CANADA




Conjugate Gradient
Method

gi=1
repeat
L r’,frk Q’
oy, = t

>

Py Ap, O
Xp4+1 = X + O Pr \
Tpy1 =T — QAP

if re+1 is sufficiently small then exit loop end if
fd b
Trt1lh+1
Pr+1 = Trt1 + OkPr N /,

k=k+1
end repeat

http://en.wikipedia.org/wiki/Conjugate_gradient_method

ScCiNet

O compute «calcul
CANADA



Resources

® Trefethen & Bau,“Numerical Linear Algebra”
http://people.maths.ox.ac.uk/trefethen/text.html

® Strang on |Tunes U:“Mathematical Methods for

Engineers” or “Linear Algebra” - excellent lectures
by a master.

SEH\Jet

LLLLLLL



Homework

Educational and fun.

ScChet

compute «calcul
CANADA



Homework: Part |

® The time-explicit formulation of the |d heat

diffusion equation has a term that looks like this
(ignoring boundary conditions)

(SQE‘N et

(’ compute «calcul
CANADA



Homework: Part |

® |gnoring the constants, what are the eigenvalues
for this problem - what might we expect to get
amplified/damped by this operator? (use 100
points; D EV)

® Plot the eigenmode with the largest and smallest
absolute eigenvalues, and explain them.

® Use the largest abs. eigenvalue to put a constraint
on dt given dx, D. This is a stability constraint on
the numerical method; for larger timesteps,
method blows up.

(ng et

(’ compute «calcul
CANADA



Lapack Hints

If you are using an nxn array, the “leading
dimension” of the array is n. (This
argument is so that you could work on
sub-matrices if you wanted)

Have to make sure the 2d array is
contiguous block of memory

C vs FORTRAN array orderings
C bindings for LAPACK - lapacke

ScChet
" compute « calcul
CANADA



Homework: Part 2

For a Id grid of size 100 (eg,a 100x100 matrix A), using
lapack, evolve this PDE. Plot and explain results.

Have an initial condition where x = | at the first zone,
and zero everywhere else (hot plate “turns on” in a cold
domain.

You'll want to use driver routines for linear solves

( http://www.netlib.org/lapack/lug/node26.html ). Do
solve in double precision (D__ SV). Which solver should
you use!

Using a small enough timestep, timestep the temperature
evolution by finding dT. Do solution in double precision

(D__SV).
(ng et

(’ compute «calcul
CANADA


http://www.netlib.org/lapack/lug/node26.html
http://www.netlib.org/lapack/lug/node26.html

