
Scientific Computing (Phys 2109/Ast 3100H)
I. Scientfic Software Development

SciNet HPC Consortium

University of Toronto

Winter 2013

Part I

Introduction to Software Development

Lecture 3

Intro to Python for visualization and analysis
Intro to Python
Visualization with matplotlib
Miscellaneous

Intro to Python

Python

I Flexible, mature (20yo)
scripting-style
programming language

I Ubiquitous

I Huge standard library,
massive number of third
party modules

I Much slower than
C/Fortran or even
IDL/MATLAB

http://www.python.org

IPython

I Enhanced interactive
Python shell

I --pylab: automatically
loads lots of good math,
plotting stuff.

I If you write Python
scripts, have to load
these yourself.

I IPython notebook:
Mathematica/Maple-like
IPython environment in
browser
$ ipython notebook --pylab inline

http://ipython.org

Basic Python

I Variables

I Like most scripting
languages, dont have to
declare.

I Very handy for quick
stuff, but has real
drawbacks

I Math works the way
you’d expect

Numpy, Arrays

I Python has lists [] but
not “real” arrays

I Arrays are supplied by
numpy, automatically
included by pylab

I Numpy is the backbone
of most scientific
computing done in
Python.

Numpy, SciPy

I Numpy provides basic
N-dimensional array data
structure, “fast”
operations on that
structure.

I Some low level math
libraries

I SciPy has higher-level
routines - linear algebra,
fftpack, sparse matrix
stuff, optimization
modules, etc.

http://www.scipy.org/SciPy

Python Loops

I For loops are more like
foreach

I Each item in list

I If want a C-like for
loop, use xrange
(generates list 0..N-1)

I Note indentation:
indentation is important
in Python!

(what happens with for
element in z2d?)

Python Functions

I Can also
define
functions

I ’def’ keyword

If/Else

I Control flow

I Same : syntax, same
punctuation significance

I Functions needn’t return
a value

Writing Python Files

I Can write functions in
a file, import them in
ipython

I specify them with
filename.functionname

I Code not in functions
will be run at import
time.

Multidimensional Arrays

I Some special arrays:
identity matrix of size
n x n, or arbitrary shape
array of zeros

I Can pass nested list to
’array’

Multidimensional Arrays

I Python lists and numpy
arrays are zero based.

I You can select out
particular rows and
columns.

Python Array Slicing

I Like in Fortran
and MATLAB,
but:

I ’:’ selects the
entire range in
that dimension

I start:end selects
from start to
before end

I start:end:stride

Visualization with matplotlib

Basic Plotting with Matplotlib

I http://matplotlib.org

I gallery of example with
source code

I MATLAB-like

Basic Plotting with Matplotlib

I linspace(start,end,npnts)

I pi, e defined

I by default, overplot

Plotting Multiple Figures

I Use the subplot command.

I First two arguments are layout:
number of rows and columns

I Last argument sets current plot

Two-Dimensional Plotting

I First, let’s load
some 2d data

I Import your data
from HW1

I mgrid - generate
x,y coordinates

If you haven’t finished HW1 yet:

mercury$cat>create gausian.py
import math
f = open("data.txt","w")
dim = 301
for i in xrange(dim):

for j in xrange(dim):
x = i - dim/2.
y = j - dim/2.
z = math.exp(-(x**2+y**2)/(2*30.**2))

f.write(str(z) + " ")
f.write("\n")
f.close()
mercury$python create gausian.py
mercury$

Two-Dimensional Plotting

Three-Dimensional Plotting

I Lots of very powerful things possible with matplotlib

I Once you leave the simple things, starts getting cryptic.

Miscellaneous

Miscellaneous: Analysis

I Can get
maximum

I Can get size of
array

I Can create
histograms

I Can select
elements based
on criterion

I . . .

Miscellaneous: Analysis

Miscellaneous: Files

I Binary storage numpy
array: save(z), load

I Text (Ascii) storage:
loadtxt, savetxt,
genfromtxt

I Won’t discuss python
specific pickle format

I Other python modules
can use e.g. hdf5 and
other binary formats

I Can open files by hand
and write out explicitly

Miscellaneous: From IPython to Python Scripts

I Python scripts best written in pure python

I Need to import modules that IPython loads by default:

from numpy import *
from matplotlib.pyplot import *

Better practice:

import numpy as np
import matplotlib.pyplot as plt

and prepend np. and plt. in the right places.

I Use # for comments

I Use """ in functions for documentation: docstring

C++ versus Python

I High performance

I Low-level programming
possible

I Ubiquitous and
standardized

I Useful libraries

I Modular design

⇒ There is no ’best language’ for every purpose.

Common: C++ for performance; Python as driver and post-processor

I Easier to learn
and understand

I High-level programming

I Interactive
(IPython notebook)

I Graphics: matplotlib

I Slow performance

	Introduction to Software Development
	Intro to Python for visualization and analysis
	Intro to Python
	Visualization with matplotlib
	Miscellaneous

