
Scientific Computing (Phys 2109/Ast 3100H)
I. Scientfic Software Development

SciNet HPC Consortium

University of Toronto

November 2011

Part III

Structures in C, Simple ODE solvers

Homework 2 discussion

HW2 - Common non-pgplot pitfalls

What goes in a header file again, and why?

I Function declarations and constants (and a few others we will
see today).

I So including allows the code to use those functions and
constants.

I Header guards to prevent double inclusion:

#ifndef MODULEH
#define MODULEH

/* code */

#endif

HW2 - Common non-pgplot pitfalls

Unit testing

I Not the same as full program (integrated) testing.

I Focus on one function and write a test for it.

I Floating point and precision: Floating point is not of
unlimited precision.

I Comparing two floating points using == is a bad idea.
Put in a tolerance O(10−5).

HW2 - Common non-pgplot pitfalls

tar

I Tar or zip your files up before you send them in

I Easier for us

I Less error-prone for you.

Example

$ tar zcvf hw3.tgz *.c *.h Makefile README

HW2 - Building Pgplot

Some pointers

After makemake, edit Makefile:

I replace g77 with gfortran

I change FFLAGC with reasonable values

I may need to remove the line “pndriv.o:”

I Make sure devel. packages for X and png are installed.

I When linking, you need -lcpgplot -lpgplot -lgfortran

-lX11 -lpng. The order matters, and these libraries should
be the last arguments.

Linking to libraries

You will likely be linking to external libraries for a variety of reason:

I graphics

I faster/optimized math libraries

I blas

I fft

How does one do this in general?

Linking to libraries

Linking to libraries

At compilation stage

For your code to use the library, it needs to include the
corresponding header file.

#include "libraryname.h"

$ gcc -O3 -Ilibraryincludepath myfile.c -o myfile.o

At linking stage

The actual library is like an object file and has to be linked in.
There are in fact two types:

I Static(.a): are included in the executable (like .o files)

I Dynamic(.so): not in executable, loaded at startup

$ gcc myfile.o -Llibrarypath -llibraryname

Linking to libraries

Example: link diffuse2 with pgplot

I First compile with

-DPGPLOT

including a -I argument if needed.

I Link with the following additional libraries:

-lcpgplot -lpgplot -lgfortran -lX11 -lpng

Add a -L argument before it if needed.

⇒ HANDS-ON

Linking to libraries

Example: link diffuse2 with pgplot

I First compile with

-DPGPLOT

including a -I argument if needed.

I Link with the following additional libraries:

-lcpgplot -lpgplot -lgfortran -lX11 -lpng

Add a -L argument before it if needed.

⇒ HANDS-ON

Where are we going with this?
1. 2D diffusion for density field ρ(r, t) governed by PDE

∂ρ

∂t
= D

(
∂2ρ

∂x2
+
∂2ρ

∂y2

)
. (1)

2. Tracer particle satisfies ODE

mR̈ = F− α(ρ)Ṙ, (2a)

where m is the mass, F is a force acting on the particle and
the friction constant α is (proportional to) the viscosity.

I Ad hoc form for density dependent friction constant α:

α(ρ) = α0(1 + aρ). (2b)

I Ad hoc form for force, like a constant electric field:

F = qEx̂. (2c)

3. Periodic boundary conditions in all directions, i.e.,

r ∼ r + L(nx̂ + mŷ). (3)

where L is the length of the side of the periodic box.

Module

Module

Where are we going with this?
1. 2D diffusion for density field ρ(r, t) governed by PDE

∂ρ

∂t
= D

(
∂2ρ

∂x2
+
∂2ρ

∂y2

)
. (1)

2. Tracer particle satisfies ODE

mR̈ = F− α(ρ)Ṙ, (2a)

where m is the mass, F is a force acting on the particle and
the friction constant α is (proportional to) the viscosity.

I Ad hoc form for density dependent friction constant α:

α(ρ) = α0(1 + aρ). (2b)

I Ad hoc form for force, like a constant electric field:

F = qEx̂. (2c)

3. Periodic boundary conditions in all directions, i.e.,

r ∼ r + L(nx̂ + mŷ). (3)

where L is the length of the side of the periodic box.

Module

Module

Where are we going with this?
1. 2D diffusion for density field ρ(r, t) governed by PDE

∂ρ

∂t
= D

(
∂2ρ

∂x2
+
∂2ρ

∂y2

)
. (1)

2. Tracer particle satisfies ODE

mR̈ = F− α(ρ)Ṙ, (2a)

where m is the mass, F is a force acting on the particle and
the friction constant α is (proportional to) the viscosity.

I Ad hoc form for density dependent friction constant α:

α(ρ) = α0(1 + aρ). (2b)

I Ad hoc form for force, like a constant electric field:

F = qEx̂. (2c)

3. Periodic boundary conditions in all directions, i.e.,

r ∼ r + L(nx̂ + mŷ). (3)

where L is the length of the side of the periodic box.

Module

Module

Modularity and language constructs in C

I Modules will contain lot of variables for that module only.

I Do not want to use global (or static) variables.

I How to group variables then?

in C, you can use structs.

C Variables

Define a variable with
type name;

where type may be a
I built-in type:

I floating point type:
float, double, long double

I integer type:
short, [unsigned] int, [unsigned] long int

I character or string of characters:
char, char*

I array
I pointer
I structure

C structs

Structures: collection of other variables.
struct name {

type1 name1;
type2 name2;
...

};

Example

struct Info {
char name[100];
unsigned int age;

};
struct Info myinfo;
myinfo.age = 38;
strcpy(myinfo.name, "Ramses");

Struct definitions go in the header file!

C structs

Structures: collection of other variables.
struct name {

type1 name1;
type2 name2;
...

};

Example

struct Info {
char name[100];
unsigned int age;

};
struct Info myinfo;
myinfo.age = 38;
strcpy(myinfo.name, "Ramses");

Struct definitions go in the header file!

C structs

Typedefs

Used to give a name to an existing data type, or a compound data
type.

typedef existingtype newtype;

Similar to existingtype name; but defines a type instead of a
variable.

Example (a way to get rid of the struct keyword)

typedef struct Info Info t;

Then you can declare a struct Info simply by

Info t myinfo;

Type definitions go in the header file!

C structs

Typedefs

Used to give a name to an existing data type, or a compound data
type.

typedef existingtype newtype;

Similar to existingtype name; but defines a type instead of a
variable.

Example (a way to get rid of the struct keyword)

typedef struct Info Info t;

Then you can declare a struct Info simply by

Info t myinfo;

Type definitions go in the header file!

C structs

Typedefs

Used to give a name to an existing data type, or a compound data
type.

typedef existingtype newtype;

Similar to existingtype name; but defines a type instead of a
variable.

Example (a way to get rid of the struct keyword)

typedef struct Info Info t;

Then you can declare a struct Info simply by

Info t myinfo;

Type definitions go in the header file!

C structs

Pointers to structs
Imagine the trouble of calling an element element of a struct when
given a pointer ptr to that strcut:

(*ptr).element

This is confusing and prone to typos.
There an easier syntax for this:

ptr->element

This is particularly useful in functions.

C structs - example 1
void theoryCalc(float time,float **rho,float *x,int
npnts,float a0,float sigma0,float d,float x1,float
x2,int nimages);

⇓
typedef struct {

float **rho;
int npnts;

} Rho;
typedef struct {

float *x;
int npnts;
float x1;
float x2;

} Grid;
typedef struct {

int nimages;
float a0;
float sigma0;

} Theory;
void theoryCalc(float time,Rho*rho,Grid*x,Theory*start);

C structs - example 1
void theoryCalc(float time,float **rho,float *x,int
npnts,float a0,float sigma0,float d,float x1,float
x2,int nimages);

⇓
typedef struct {

float **rho;
int npnts;

} Rho;
typedef struct {

float *x;
int npnts;
float x1;
float x2;

} Grid;
typedef struct {

int nimages;
float a0;
float sigma0;

} Theory;
void theoryCalc(float time,Rho*rho,Grid*x,Theory*start);

C structs - example 2

float theoryError(float **rho1,float **rho2,int npnts){
float error = 0;
for (int i = 1; i <= npnts; i++)

for (int j = 1; j <= npnts; j++)
error += pow(rho1[i][j] - rho2[i][j],2);

return sqrt(error);
}

⇓
float theoryError(Rho* a, Rho* b){

float error = 0;
for (int i = 1; i <= a->npnts; i++)

for (int j = 1; j <= a->npnts; j++)
error += pow(a->rho[i][j] - b->rho[i][j],2);

return sqrt(error);
}

C structs - example 2

float theoryError(float **rho1,float **rho2,int npnts){
float error = 0;
for (int i = 1; i <= npnts; i++)

for (int j = 1; j <= npnts; j++)
error += pow(rho1[i][j] - rho2[i][j],2);

return sqrt(error);
}

⇓
float theoryError(Rho* a, Rho* b){

float error = 0;
for (int i = 1; i <= a->npnts; i++)

for (int j = 1; j <= a->npnts; j++)
error += pow(a->rho[i][j] - b->rho[i][j],2);

return sqrt(error);
}

Ordinary differential equations

General form

dx

dt
= f(x, t)

ODEs pop-up in lots of places

I Trajectories of molecules, celestial bodies

I 1d stationary soluations of PDEs

I Population dynamics

I . . .

Here, we’ll look only at ODEs with initial conditions:
i.e. x(t = 0) given.

Still leaves an enormous class of system.

Ordinary differential equations

Basic algorithm

I Discretize time curve x(t)

I Link the discrete elements (time points)

I Evaluate f along the way

Usually time stepping:

t −→ t′ = t + δt

x −→ x′

such that

x′ − x(δt) = O(δtk+1)

k is the order.

Ordinary differential equations

Example (Forward Euler)

EULER ALGORITHM
SET x to the initial value x(0)
SET t to the initial time
WHILE t < tfinal

COMPUTE f(x,t)
UPDATE x to x+f(x,t)*dt
UPDATE t to t+dt

END WHILE

Usually not very good and easily becomes unstable.
Order 1.

Ordinary differential equations

I There exist general algorithms to solve ordinary differential
equations numerically (see e.g. Numerical Recipes Ch. 16),
such as Runge-Kutta and predictor/correction algorithms.

I Many of these are too costly or not stable enough for long
simulations of many-particle systems.

I In MD simulations, it is therefore better to use algorithms
specifically suited for systems obeying Newton’s equations of
motion, such as the Verlet (or leap flog) algorithm.

I In other situations, RK may do.

I One then usually takes variable time steps.

Ordinary differential equations
Particle dynamics usually a second order differential equation:

ẍ = f(x, t) (4)

To handle this:

I define ẋ as a variable, so this becomes a set of coupled odes

I use a scheme for second order odes

Example (Verlet algorithm, 3rd order in position)

xn+1 = 2xn − xn−1 + fn
δt2

m

SET time t to 0
WHILE t < tfinal

COMPUTE the force f
COMPUTE new position xnew=2*x-xprev+f*dt*dt/m
UPDATE previous position xprev to x
UPDATE position x to xnew
UPDATE t to t+dt

END WHILE

velocities: ẋ ≈ (xn − xn−1)/δt (crude).

Handson 2

Write program for tracer particle in 2d with fixed friction
coefficient

mR̈ = qEx̂− α0Ṙ,

where m is the mass, qE is an electric force acting on the
particle and the friction constant α0 is proportional to the
viscosity.

I Periodic boundary conditions in all directions, such that
coordinates restricted to lie between 0 and L.

I Initial conditions: R(0) = R0 and Ṙ(0) = V0.

I Parameter values:
D = 1; m = 1;α0 = 1; qE = 1; L = 10; R0 = 0; V0 = 10ŷ

Use structs and the Verlet scheme.

Homework assignment #3

I Finish the interpolation and the test

I Rewrite program for tracer particle to work with a given
density field such that α0 → α(ρ(x)) = α0(1 + aρ(x)),
with a =15.

I Link the two so the density evolves at the same time as the
tracer particle.

Will send a more detailed assignment later today. . .

	
	
	Structures in C, Simple ODE solvers
	homework 2 discussion
	linking to libraries
	recap of where we are going
	structs in C
	odes
	handson 2
	homework 3

