Scientific Computing (Phys 2109/Ast 3100H)
|. Scientfic Software Development

SciNet HPC Consortium

University of Toronto

November 2011

Scilet

Part Il

Structures in C, Simple ODE solvers

Scilet

Homework 2 discussion

Scilet

HW2 - Common non-pgplot pitfalls

What goes in a header file again, and why?

» Function declarations and constants (and a few others we will
see today).

» So including allows the code to use those functions and
constants.

» Header guards to prevent double inclusion:

#ifndef _MODULEH_
#define _MODULEH_

/* code */

#tendif

cSeﬁ\let

AAAAAA

HW2 - Common non-pgplot pitfalls

Unit testing

» Not the same as full program (integrated) testing.
» Focus on one function and write a test for it.

» Floating point and precision: Floating point is not of
unlimited precision.

» Comparing two floating points using == is a bad idea.
Put in a tolerance O(1075).

Scilet

HW2 - Common non-pgplot pitfalls

tar

» Tar or zip your files up before you send them in
» Easier for us

> Less error-prone for you.

Example

$ tar zcve hw3.tgz *.c *.h Makefile README

cSei?\let

AAAAAA

HW?2 -

Building Pgplot

Some pointers
After makemake, edit Makefile:

>

>

>

replace g77 with gfortran

change FFLAGC with reasonable values

may need to remove the line “pndriv.o:"

Make sure devel. packages for X and png are installed.

When linking, you need -1cpgplot -lpgplot -lgfortran
-1X11 -lpng. The order matters, and these libraries should
be the last arguments.

Scilet

Linking to libraries

You will likely be linking to external libraries for a variety of reason:

v

graphics

v

faster/optimized math libraries
> blas
fft

v

How does one do this in general?

Scilet

Linking to libraries

.h .h
— b 3
.C .C .C .C .C
T T T T T
COMPILATION

v

Source code

/Lib%

o |€

v

.0

v

o [€

.a

LINKING

.SO

i

executable

(.'ieﬁ\let

AAAAAAA

Linking to libraries

At compilation stage

For your code to use the library, it needs to include the
corresponding header file.

#include "libraryname.h"

$ gcc -03 -Ilibraryincludepath myfile.c -o myfile.o

At linking stage
The actual library is like an object file and has to be linked in.
There are in fact two types:

» Static(.a): are included in the executable (like .o files)
» Dynamic(.so): not in executable, loaded at startup

$ gcc myfile.o -Llibrarypath -llibraryname

&Gﬁ\let

AAAAAAA

Linking to libraries

Example: link diffuse2 with pgplot

» First compile with
-DPGPLOT

including a -I argument if needed.
» Link with the following additional libraries:
-lcpgplot -lpgplot -lgfortran -1X1i1 -lpng

Add a -L argument before it if needed.

Scilet

Linking to libraries

Example: link diffuse2 with pgplot

» First compile with
-DPGPLOT
including a -I argument if needed.

» Link with the following additional libraries:
-lcpgplot -lpgplot -lgfortran -1X1i1 -lpng

Add a -L argument before it if needed.

= HANDS-ON

Scilet

Where are we going with this?
1. 2D diffusion for density field p(r,t) governed by PDE
2 2
2. Tracer particle satisfies ODE
mR = F — a(p)R, (2a)

where m is the mass, F is a force acting on the particle and
the friction constant v is (proportional to) the viscosity.
» Ad hoc form for density dependent friction constant a:

a(p) = ao(l + ap). (2b)
» Ad hoc form for force, like a constant electric field:
F = qEx. (2¢)
3. Periodic boundary conditions in all directions, i.e.,
r ~ r+ L(nx + my). (3)
where L is the length of the side of the periodic box. et

AAAAAAA

Where are we going with this?

1. 2D diffusion for density field p(r,t) governed by PDE

Module op D <32p 82p>

ot~ \ax2 | ay?

Ox2 Oy? (1)

2. Tracer particle satisfies ODE
mR = F — a(p)R, (2a)

where m is the mass, F is a force acting on the particle and
the friction constant v is (proportional to) the viscosity.
» Ad hoc form for density dependent friction constant a:

a(p) = ao(l + ap). (2b)
» Ad hoc form for force, like a constant electric field:
F = qEx. (2¢)
3. Periodic boundary conditions in all directions, i.e.,
r ~ r+ L(nx + my). (3)
where L is the length of the side of the periodic box. / et

AAAAAA

Where are we going with this?
1. 2D diffusion for density field p(r,t) governed by PDE

Module op D <32p 82p>

ot~ \axz | ay?

(1)

2. Tracer particle satisfies ODE
mR = F — a(p)R, (2a)

where m is the mass, F is a force acting on the particle and
Vodhe friction constant « is (proportional to) the viscosity.
OAUIS Ad hoc form for density dependent friction constant a:

a(p) = ao(l + ap). (2b)
» Ad hoc form for force, like a constant electric field:
F = qEx. (2¢)

3. Periodic boundary conditions in all directions, i.e.,
r ~ r+ L(nx + my). (3)
where L is the length of the side of the periodic box. / et

Modularity and language constructs in C

» Modules will contain lot of variables for that module only.
» Do not want to use global (or static) variables.

» How to group variables then?

in C, you can use structs.

cSei?\let

AAAAAA

C Variables

Define a variable with
type name;

where type may be a
> built-in type:
» floating point type:
float, double, long double
> Integer type:
short, [unsigned] int, [unsigned] long int
» character or string of characters:
char, char*
> array
> pointer
> structure

Scilet

) compute ca\cu\

C structs

Structures: collection of other variables.

struct name {
typel namels
type2 name2;

}s

ch?\let

AAAAAA

C structs

Structures: collection of other variables.
struct name {
typel namels
type2 name2;

Example

struct Info {

char name[100];

unsigned int age;
}s
struct Info myinfoj;
myinfo.age = 38;
strcpy(myinfo.name, "Ramses");

Struct definitions go in the header file! Sﬁ?\]et

) compute ca\cu\

C structs

Typedefs
Used to give a name to an existing data type, or a compound data
type.

typedef existingtype newtype;

Similar to existingtype name; but defines a type instead of a
variable.

cSeﬁ\let

AAAAAA

C structs

Typedefs
Used to give a name to an existing data type, or a compound data
type.

typedef existingtype newtype;

Similar to existingtype name; but defines a type instead of a
variable.

Example (a way to get rid of the struct keyword)
typedef struct Info Info_t;

Then you can declare a struct Info simply by

Info t myinfo;

cSei?\let

AAAAAA

C structs

Typedefs
Used to give a name to an existing data type, or a compound data
type.

typedef existingtype newtype;

Similar to existingtype name; but defines a type instead of a
variable.
Example (a way to get rid of the struct keyword)

typedef struct Info Info_t;

Then you can declare a struct Info simply by

Info t myinfo;

Type definitions go in the header file!

cSél?\let

CANADA

C structs

Pointers to structs
Imagine the trouble of calling an element element of a struct when
given a pointer ptr to that strcut:

(*ptr) .element

This is confusing and prone to typos.
There an easier syntax for this:

ptr->element

This is particularly useful in functions.

cSGH\let

AAAAAA

C structs - example 1

void theoryCalc(float time,float **rho,float *x,int
npnts,float a0,float sigmaO,float d,float xi1,float
x2,int nimages);

Scilet

) compute ca\cu\

C structs - example 1

void theoryCalc(float time,float **rho,float *x,int
npnts,float a0,float sigmaO,float d,float xi1,float
x2,int nimages);

U

typedef struct {
float **rho;
int npnts;
} Rho;
typedef struct {
float =*x;
int npnts;
float x1;
float x2;
} Grid;
typedef struct {
int nimages;
float a0;
float sigmaO; |
} Theory; :;H\Iet

void theoryCalc(float time,Rho*rho,Grid*x,Theory*start)¥us &

C structs - example 2

float theoryError(float **rhol,float **rho2,int npnts){
float error = 0j
for (int i = 1; i <= npnts; i++)
for (int j = 1; j <= npnts; j++)
error += pow(rho1[i]l[j] - rho2[il[j],2);
return sqrt(error);

cSei?\let

AAAAAA

C structs - example 2

float theoryError(float **rhol,float **rho2,int npnts){
float error = 0j
for (int i = 1; i <= npnts; i++)
for (int j = 1; j <= npnts; j++)
error += pow(rho1[i]l[j] - rho2[il[j],2);
return sqrt(error);

U

float theoryError(Rho* a, Rho* b){
float error = 0;
for (int i = 1; i <= a->npnts; i++)
for (int j = 1; j <= a->npnts; j++)
error += pow(a->rho[i][j] - b->rhol[il[j]1,2);
return sqrt(error);

Scilet

) compute ca\cu\

Ordinary differential equations

General form

dx

— = f(x,t

= =f(x1)
ODEs pop-up in lots of places

» Trajectories of molecules, celestial bodies

v

1d stationary soluations of PDEs

v

Population dynamics

| S

Here, we'll look only at ODEs with initial conditions:

i.e. x(t = 0) given.

Still leaves an enormous class of system.

Scilet

Ordinary differential equations

Basic algorithm

» Discretize time curve x(t)
» Link the discrete elements (time points)

» Evaluate f along the way
Usually time stepping:

t—t =t+ 4t
x — x’

such that
X' — x(0t) = O(ot<+1)

k is the order.

Scilet

Ordinary differential equations

Example (Forward Euler)

EULER ALGORITHM
SET x to the initial value x(0)
SET t to the initial time
WHILE t < tfinal
COMPUTE f(x,t)
UPDATE x to x+f(x,t)*dt
UPDATE t to t+dt
END WHILE

Usually not very good and easily becomes unstable.
Order 1.

Scilet

) compute ca\cu\

Ordinary differential equations

> There exist general algorithms to solve ordinary differential
equations numerically (see e.g. Numerical Recipes Ch. 16),
such as Runge-Kutta and predictor/correction algorithms.

» Many of these are too costly or not stable enough for long
simulations of many-particle systems.

> In MD simulations, it is therefore better to use algorithms
specifically suited for systems obeying Newton's equations of
motion, such as the Verlet (or leap flog) algorithm.

> In other situations, RK may do.

» One then usually takes variable time steps.

aSeﬁ\let

AAAAAAA

Ordinary differential equations
Particle dynamics usually a second order differential equation:

% = f(x, t) (4)

To handle this:
» define x as a variable, so this becomes a set of coupled odes
» use a scheme for second order odes

Example (Verlet algorithm, 3rd order in position)
at?
Xn+1 = 2Xp — Xp—1 + fn?
SET time t to 0
WHILE ¢t < tfinal
COMPUTE the force f
COMPUTE new position xnew=2*x-xprev+f*dt*dt/m
UPDATE previous position xprev to x
UPDATE position x to xnew
UPDATE t to t+dt

END WHILE
aciNet

velocities: x & (Xn — Xn—1)/0t (crude). Q@ o

Handson 2

Write program for tracer particle in 2d with fixed friction
coefficient
mR = qEx — aOR,

where m is the mass, qE is an electric force acting on the
particle and the friction constant oy is proportional to the
viscosity.

» Periodic boundary conditions in all directions, such that
coordinates restricted to lie between 0 and L.

» Initial conditions: R(0) = Rg and R(0) = V.

» Parameter values:
D=1m=1,00=1;q =1;L =10; Rg = 0; Vo = 10y

Use structs and the Verlet scheme.

Scilet

Homework assignment #3

» Finish the interpolation and the test

» Rewrite program for tracer particle to work with a given
density field such that g — a(p(x)) = ao(1 + ap(x)),
with a =15.

» Link the two so the density evolves at the same time as the
tracer particle.

Will send a more detailed assignment later today. ..

Scilet

	
	
	Structures in C, Simple ODE solvers
	homework 2 discussion
	linking to libraries
	recap of where we are going
	structs in C
	odes
	handson 2
	homework 3

