Intel Xeon Phi Knights Landing (KNL)

SNUG TechTalk

SciNet www.scinet.utoronto.ca University of Toronto Toronto, Canada

October 12, 2016

Xeon Phi

http://www.intel.com

Xeon Phi

http://www.intel.com

History

History

Xeon "Phi" History

- Larrabee (concept video card design)
- Knights ferry (MIC development platform)
 - 32 core, 2GB
 - $\bullet~\sim$ 750 GFlops SP
- Knights Corner (1st Gen)
 - 60 core, 8/16GB
 - ullet \sim 1 TFlops DP
- Knights Landing (2nd Gen)
 - 72 core, 16 + upto 384GB
 - ullet \sim 3 TFlops DP
 - native processor
 - omni-path interconnect
- Knights Hill (3rd Gen 2018)
 - > 5 TFlops DP
 - omni-path 2 interconnect

Compute Canada Xeon Phi Resources

SciNet - KNL

- \bullet 4 x Intel Xeon Phi 7210 (64 @1.3 GHz cores and 96+16GB)
- ssh knl0[1-4]
- module load intel/17.0.0

Calcul Quebec - Guillimin

- 50 nodes (2 x 8-core Intel Sandy Bridge Xeon, 64GB)
- 2 x Intel Xeon Phi 5110P (60 1.053GHz cores and 8GB)

2nd Generation Xeon Phi - KNL

Knights Landing (KNL)

- 64-72 core @ 1.3-1.4 GHz
- 4 threads/core
- 16GB MCDRAM (430 GB/s STREAM)
- 384GB DDR4 (90 GB/s STREAM)
- AVX-512
- Self Host or PCIE coprocessor
- Integrated Intel Omni-Path Fabric *

KNL Mesh Interconnect

Mesh of Rings

- Every row and column is a (half) ring
- YX routing: Transmit in Y -> Turn -> Transmit in X
- Messages arbitrate at injection and on turn

Cache Coherent Interconnect

- Distributed directory to maintain cache coherency
 - CHA: caching/home agent keeps L2s coherent
 - Address hashes used to service L2 misses
 - MESIF protocol (F = Forward)

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. * Other names and brands may be claimed as the property of others. All products, dates, and figures are preliminary and are subject to change without any notice. Copyright © 2016, Intel Corporation.

Cluster Modes

Cluster Modes

- All-to-All
 - Memory Addressed uniformly
 - Lowest performance
- Quadrant (default on knl0[1-4])
 - Four Virtual Quadrants
 - Lower Latency and higher BW than All-to-All
 - SW transparent
- Sub-NUMA Clustering (SNC)
 - 4 Separate NUMA domains
 - Lowest latency
 - SW needs to be NUMA optimized

Xeon Phi Memory Modes

What to do with 16GB of MCDRAM?

Memory Modes

- Cache (knl0[1-2]])
 - OS Treats it like an L2 Cache
 - User only sees/controls DDR memory
- Flat (knl0[3-4]])
 - Explicitly allocatable
 - NUMA regions (0 DDR / 1 MCDRAM)
- Hybrid
 - 50% / 50% cache/memory
 - 25% / 75% cache/memory

Xeon Phi Memory Modes

Memory Modes

- Cache
 - No code modifications required
 - Latency hit to DDR (DDR → MCDRAM → L2)
 - Less total memory addressable
- Flat
 - Maximum bandwidth and latency performance
 - Max Memory addressable
 - Code modifications to use both in the same application

Xeon Phi Memory Modes - Numactl

Numactl - Control NUMA policy for processes or shared memory

user@kn103 \$numact1 -H

user@kn103 \$numact1 --membind 1 ./run-app

Xeon Phi Memory Modes - Memkind Library

The memkind library is an extensible heap manager allowing partitioning of heap between "kinds" of memory. A hbwmalloc interface simplifies usage, built on top of memkind.

```
#include <hbwmalloc.h> // hbwmalloc interface
const int n = 1<<10;
// Allocation to HBM
double* A = (double*) hbw_malloc(sizeof(double)*n);
// Deallocate
hbw_free(A);</pre>
```

```
user@kn103 $icpc memkindtest.cc -lmemkind -o test-memkind user@kn103 $
```

KNL Vectorization

Vector Support

- supports x87, MMX, SS3, AVX and AVX2
- AVX-512

http://www.colfaxresearch.com

Programming

Languages

- C, C++, Fortran
- MPI, OpenMP 4.0
- TBB, Cilk+

Tools

- Intel Compilers (icc, icpc, ifort)
- Intel MPI
- Intel Tools (VTune, Advisor, Inspector, etc.)

Which to Choose?

GPU vs. Phi vs. CPU Considerations

- CUDA/OpenCL vs. native C/C++/Fortran & OpenMP/MPI
- 1500* vs 72 vs 24 cores
- GPU requires heterogeneous
- GPU has theoretically higher Flops (SP & DP)
- KNL has MCDRAM
- AVX-512 in KNL & Skylake
- Power8/9 have CAPI/Nvlink

KNL Summary

Xeon Phi Knights Landing

- High computational intensity (Flops/Watt)
- ∼ 3 TFlops DP
- native processor
- 16GB MCDRAM
- Intel's Blue Gene Q (Alan Gara)
- Top 500 list (#117 Stampede-KNL)
- May compete more with Skylake than Pascal/Volta

Xeon Phi (KNL) Resourecs

Useful Resources

- http://colfaxresearch.com/get-ready-for-intel-knights-landing-3-papers/
- http://dap.xeonphi.com/#implinks
- https://wiki.scinet.utoronto.ca/wiki/index.php/Knights_Landing
- https://software.intel.com/en-us/articles/getting-ready-for-KNL

